
CS231A Course Project Final Report
Unsupervised Learning of Text-sensitive Features For Large-scale Scene

Classification

Maurizio Calo Caligaris
Stanford University

maurizio@cs.stanford.edu

Abstract

“It’s not neccesarily who has the most powerful algo-
rithm who wins, but rather who has the most data” is a
widely held belief in the machine learning community. One
could always try to find more labeled data, but this may
sometimes be expensive or prohibitive. In this work, we seek
ways to leverage vast amounts of freely available unlabeled
data along with weak or noisy annotations (possibly coming
from different modalities, such as images and text) to our
advantage and create meaningful feature representations.
Specifically, we use freely available Flickr images along
with their tags to learn features that capture both visual and
sematic information, and evaluate the performance of such
features on the SUN large-scale image classification task.

1. Introduction
Unsupervised feature learning addresses the challenge of

levering vast amounts of data that is available at little or
no cost to develop meaningful feature representations for a
task of interest. For example, if we’re trying to perform a
computer vision task on a specific dataset, we might look at
other images on the web to gather natural image statistics
and come up with features that are useful for the task we’re
interested in. The analogy here is, in loose terms, that we
let out a robot “in the wild” and let it learn a understand
what the world looks like. We let it remain there for as long
as possible (which corresponds to using as much data as we
can) and then evaluate it on a particular task(s) of interest.
The advantage of such approach is that unlabeled data is
often cheap and plentiful, so we can learn from lots of it
and can thus obtain greatly improved results.

Very often, we can obtain vast amounts of data that
comes with (noisy) annotations at no extra cost. Such an-
notations might even come from a different modality from
the original data source. For instance, Wikipedia contains
text, audio and images; YouTube contains audio, video and

text; and Flickr contains images and text. To maximize per-
formance on specific tasks, we would like to use all of the
information available to us. Hand-engineering task-specific
features for a single modality in itself is a notoriously dif-
ficult and time-consuming task. The challenge gets sig-
nificantly pronounced when the data comes from multiple
sources. We develop unsupervised feature learning algo-
rithms that relate information from disparate data sources
to take the most advantage of data (e.g. weak annotations)
that comes at no extra cost to us.

In this particular project, we focus on a computer vi-
sion application. We’ve downloaded hundreds of thousands
of images from Flickr along with their corresponding tags
using the Flickr API - we would like to use such data to
learn computer vision features that are sensitive to tags. The
premise here is that the tags serve as weak annotations for
an almost unlimited number of images available for free,
which can be used to learn semantically meaningful feature
representations. We can then use such features for a wide-
variety of computer vision tasks that are not necessarily di-
rectly related to Flickr; in fact, the images in the dataset may
(and probably will) have different statistics from the Flickr
images.

One approach consists in taking an off-the-shelf descrip-
tor such as HOG and trying to predict the tags associated
with an image using neural networks. This way, we learn a
representation of images that captures both visual and se-
mantic information. Another approach consists in using
unsupervised feature learning to learn our own descriptors
from image patches, and combine such descriptors to pre-
dict tags. The result is that local descriptors end up being
sensitive to tags and therefore captual semantic information.

We focus on evaluating the performance of our method
in the SUN scene classification task [1]. Torralba et al. have
put up together a large-scale database of images contain-
ing 397 scene categories, ranging from abbey to zoo, which
serves as a benchmark to evaluate numerous state-of-the-art
algorithms for scene recognition. With such a large number

of classes (and sometimes not many training examples from
each class), it seems that we can use vast amounts of freely
available data with weak annotations such as Flickr images
along with corresponding tags to create a meaningful fea-
ture representation.

In the following sections we describe related work and
describe some background related to unsupervised feature
learning. We then present our models and describe an ex-
perimental setting which demonstrates the effectiveness of
our approach. Ultimately, we conclude and offer sugges-
tions for further work.

2. Related Work
2.1. Unsupervised Feature Learning

Raina et al. have introduced the paradigm of “self-taught
learning” [5], in which a vast amount of unlabeled images
are downloaded from the World Wide Web to learn good
feature representations and improve performance on a given
computer vision classification task.

Algorithms commonly used for unsupervised feature
learning include deep auto-encoders ,convolutional neu-
ral networks, Restricted Boltzmann Machines (RBMs) and
sparse coding. Such methods have had numerous success,
obtaining state-of-the-art results in benchmark datasets such
as NORB and CIFAR[7].

While much of the work in unsupervised feature learn-
ing and deep learning has focused on learning features for
single modalities, there has been work regarding multiple-
modality feature learning. In particular, Ngiam et al. have
applied unsupervised feature learning and deep learning
techniques to learn features for both audio and video[4].
They’ve demostrated an instance of cross-modality learning
in which better video features can be learned if audio fea-
tures are present during feature learning time. We adopt a
similar approach to learn better computer vision features by
taking advantage of text information during feature learning
time.

2.2. Scene Classification

Scene classification is an area of active research in com-
puter vision. A standard approach for scene categorization
is the visual bag-of-words model, which essentially “chops”
an image into patches and disregards their original posi-
tion in the image. The bag-of-words model often works
surprisingly well, as it is very simple and efficient and can
be made robust to clutter and occlusion. The drawback of
these methods is that they disregard the spatial layout of
the images, which is very useful for scene classification.
A common way of improving the effectiveness of bag-of-
words models to take into account the spatial arrangement
of features is to perform pyramid matching [6]: the image
into increasingly fine sub-regions and compute histograms

of local features inside each sub-region. In our approach,
we learn local descriptors using codebooking and combine
them using spatial pyramid.

We compare our method with other hand-engineered fea-
tures commonly used for scene classification such as GIST,
SIFT and HOG.

Torralba and Oliva have shown that urban and natural
scenes can be distinguished on the basis of simple second
order statistics (global amplitude spectra)[3] . We hypothe-
size that the Flickr tags can help us discover interesting im-
age statistics that can be helpful for image categorization.

3. Background
3.1. Autoencoders

An autoencoder is a simple neural network with one hid-
den layer that learns to predict the input form itself (i.e. out-
put is set to be equal to input). If there are less hidden units
than input units, the network is forced to learn a compressed
representation by discovering correlations among the input
features, and yields results similar to PCA. The autoencoder
is also able to discover meaningful structure in the data by
using an overcomplete hidden layer with a sparsity con-
straint that the average hidden unit activation is ρ, where ρ,
the sparsity parameter is a small number. The parameters of
the model are W (1),W (2), b1, b2 where W (1) and W (2) are
the weights connecting the input layer to the hidden layer,
and the hidden layer to the output, respectively, and b1 and
b2 are the bias terms. The activations (for an input x) are:

h = σ(W (1)x + b1) (hidden activations)

y = σ(W (2)h + b2) (reconstruction of the input)

where σ denotes the sigmoid function.
The loss function (corresponding to a single training ex-

ample) we seek to optimize is

J(W1,W2, b1, b2) = ‖y − x‖2
2+βKL(ρ||ρ̂)+λ(

∥∥∥W (1)
∥∥∥2

2
+

∥∥∥W (2)
∥∥∥2

2
)

i.e., a squared-norm of reconstruction error, a sparsity
penalty (KL denotes the Kullback-Leibler divergence) and
weight decay to prevent overfitting (β and λ are hyperpa-
rameters of the model controlling the sparsity penalty and
weight decay penalty, respectively).

We use backpropagation to compute the gradients and
use stochastic gradient descent to find the best parameters
W (1),W (2), b1, b2 that minimize the loss function.

Having obtained the optimal parameters, for a given in-
put x we compute the corresponding hidden unit activations
h = σ(W (1)x+b1), which constitutes our learned features.

The real power of the autoencoders come from stack-
ing several auto-encoders together to form a deep auto-
encoder, using greedy layer-wise pre-training to initialize

near a good local optima [2]. With many layers, the net-
work is able to predict several non-linearities and is thus
able to discover more useful structure.

3.2. Y-shaped Network

For the Flickr data, we have image data as well text data.
We use a network that uses image data as input and tries to
reconstruct both the original input as well as corresponding
tags (the name comes from the fact that there is one input
and 2 outputs). We use cross-entropy loss function for the
text reconstruction and weight the error corresponding to
the text reconstructions by α and the error corresponding to
the image by 1 − α, where α is the text weight which indi-
cates how much we care about text reconstructions relative
to the image reconstructions. For more details, see [8].

4. Our Models
4.1. First Approach: Predict Tags from Hand-

engineered Features

Our first approach is basically a “brute-force” approach
of encoding semantic information into hand-engineered
computer vision features, such as SIFT or HOG. More
specifically:

1. We are given a computer vision feature (e.g. HOG or
SIFT wit Spatial Pyramid) that transforms image pixel
data into a vector, along with a computer vision task
(e.g. scene classification).

2. We train a Y-shaped network that learns to predict the
concatenation of the input with the Flickr tags from
the given computer vision features applied to the cor-
responding Flickr images (for which we have tags).

3. The hidden layer constitutes the learned joint features
that captures image/text correlations.

4. We then forward propagate the network using as input
the images from the dataset for the task of interest to
obtain a new set of features for the specified task.

Since this approach does not take into account any task-
specific knowledge, this approach would presumably work
with a number of computer vision features for a wide variety
computer vision tasks.

4.2. Learning Our Own Descriptors

The problem with the previous approach is that most
features are hand-engineered without considering text in-
formation, so it would be fairly difficult to hard-code tex-
tual information into already existing descriptors. Further,
it would be difficult for an auto-encoder to capture much

Figure 1. Text-Free Model. We train a one-layer autoencoder that
learns a useful representation of a PCA-whitened 16 by 16 patch

Figure 2. Y-shaped Network. We train a single-layer network
that predicts tags from a visual input, while trying to reconstruct
the input. The textWeight controls the relative importance of the
text/visual features.

of the predictive power of the features given the complex
non-linearities that such features entail.

Figure 3. Feature Learning Scheme. We learn our own descriptors
and codebook of visual words using Flickr data. We then densely
extract features for the SUN task, and feed it into a one-vs-all SVM
which predicts a class label given the learned features.

Thus, we would like to include tag-sensitivity during
feature learning phase, i.e. use unsupervised feature learn-
ing to learn our own local descriptors while predicting tag
output as well. We first describe an approach that learns
good descriptors using image data alone, which serves as a
good starting point for more complex models that produce
tag-sensitive descriptors.

4.3. Starting Point: Unsupervised Learning of De-
scriptors From Image Data

Essentially, we use auto-encoders to learn a good feature
representations of local 16x16 patches.

The feature learning phase is as follows (again, features
are learned using Flickr dataset).

1. From an rgb image, extract a 16 by 16 patch and unroll
it into a 256-D vector.

2. We normalize the data so as to have zero mean and unit
variance.

3. Since pixels are highly redundant, we use PCA to re-
duce the dimensionality of the data.

4. We learn an auto-encoder that learns to predict the pre-
processed patch from itself (The hidden layer consti-
tutes our learned features).

We rely on the stationarity property of natural images,
meaning that the statistics of one part of the image are the
same as any other part. This suggests that the features that
we learn at one part of the image can also be applied to other
parts of the image, and we can use the same features at all
locations.

Once we have learned features for local patches, we do
feature extraction as follows (for images in the dataset cor-
responding to the task of interest):

1. Convolve the learned weights with the whole image,
i.e. use the weights to densely extract the correspond-
ing feature for all (overlapping) 16x16 patches in the
image. Using overlapping patches ensures that the de-
scriptors are translationally invariant.

2. Compute spatial pyramid representation (L = 2) for
the image from the extracted features. We obtain the
codebook of n = 300 visual words by running k-
means on patches extracted randomly from Flickr data.

4.4. Towards tag-sensitive descriptors

The challenge is how to incorporate text information into
our learned descriptors.

4.4.1 Y-shaped Network

Our first approach is very simple modification of the previ-
ous idea: We do exactly the same as before, but instead of
using an autoencoder to predict a PCA’d patch from itself,
we use a Y-shaped network to predict tags from each 16 x
16 patches. We don’t expect this to work very well as it is
unreasonable for most 16x16 patches of an image to give
us any tag information (the statistics corresponding to most
16x16 patches are different from the statistics correspond-
ing to a particular tag), but it’s an approach worth trying and
serves as a baseline for more complex models.

4.4.2 A Convolutional Neural network

.
We can take all the learned features densely extracted

from an image, combine them together using mean/max
pooling or spatial pyramid and predict the tags from such a
representation. We then backpropagate errors all the way to
finetune the weights corresponding to the low-level patches.
Such afinetuning essentially encodes textual information
into the local descriptors themselves.

More specifically, we train a convolutional neural net-
work that takes an entire image as input and uses the tags
corresponding to the image as the prediction output. The
network works as follows:

1. From an entire image, use dense sampling to extract
all 16 by 16 patches in the image. We preprocess
each patch by normalizing the data so as to have
zero mean and unit variance and then runnning PCA.
This transforms an image into a set of PCA’d patches
x(1), . . . , x(m).

2. For each patch x(i), we predict hidden activations
h(i) = σ(Wx(i) + b1)

Figure 4. Convolutional Neural Network

3. We aggregate the hidden unit activations using spa-
tial pyramid or pooling to create a layer s. e.g. s =
1
m

∑
h(i) if we’re using mean pooling.

4. We predict pj = σ(vT
j s+b2,j) as our prediction for tag

j, tj which is either zero or one, depending on whether
the tag j is present for the image or not. We use a
dictionary of size 2000 by considering only the 2000
most frequent tags in Flickr.

We seek to optimize a cross-entropy loss function L =∑
tj log(pj) + (1 − tj)log(1 − pj) with respect to the pa-

rameters W,V, b1, b2.
We use backpropagation to compute the derivatives of

the loss function with respect to the parameters, and run
stochastic gradient descent to find the optimal parameters.

Given that this optimization problem is highly non-
convex, we initialize the weights W, b1 using the previously
learned features (learned descriptors from patches) to get
near a good local optima. THus, it is very important that
the tag-free descriptors themselves achieve good predictive
power.

We use the weights W, b1 to create tag-sensitive descrip-
tors for each patch of a given image.

As before, the feature extraction phase is as follows: We
densely extract 16 by 16 patches from an image, take the
learned weights to predict descriptors, which are then ag-
gregated using spatial pyramid matching.

Figure 5. Text-Free

Figure 6. Text-Weight = 0.25

5. Visualizations
Before we present classification results, we first show a

visualization of the bases learned by the algorithms we’ve
implemented. Each square is a 2D depiction of a patch
that would cause each hidden unit of the autoencoder to be
maximally activated. In other words, each square depicts
what each hideen unit is “looking for”. We see that the
algorithm yields localized filters that resemble Gabor filters
- different hidden units have learned to detect edges at
different positions,colors and orientations of the image.

Furthermore, we observe that the tag-sensitive bases
learned by the convolutional network are more sensitive to

Figure 7. Text-Weight = 0.5

Figure 8. Text-Weight = 0.75

color, which seems like a good feature to learn if we’re do-
ing scene classification.

6. Results
We evaluate the performance of our method on the SUN

scene classification task, using n = 5 training examples
per class and test on 50 examples per class. The dataset
contains 397 indoor and outdoor scene categories, ranging
from abbey to zoo. We do feature extraction as described
above, and train a one-vs-all svm to predict the category of
each image. We repeat the experiment for 10 different splits
of the data to obtain more statistically significant results.

The task becomes computationally expensive as we start

Figure 9. Text-Weight = 1. This corresponds to only trying to pre-
dict tags from images without trying to reconstruct the input. This
is a degenerate case of the Y-shaped network and no learning oc-
curs. The features learned are just gibberish

Figure 10. Text sensitive weights. We can see that the weights
are more sensitive to color, which could presumably be helpful for
scene recognition.

using more training examples. Therefore, we have decided
to use 5 training examples per class so we can iterate more
quickly and try out several ideas. In general, as shown in
[1], the relative performance of different descriptors is not
dependent on the number of training examples.

We further compare performance of our models with
state-of-the art features such as SIFT,GIST and HOG. We
evaluate performance of such features as described in [1].

6.1. Results of First Approach

HOG is the feature that performs best in this task, so
we’ve devoted most of our efforts into trying to improve the
performance of HOG.

Feature Classification Accuracy
Sparse-SIFT 3.2
Tag-Free Descriptors 4.71
TextWeight = 0.25 4.12
TextWeight = 0.50 4.04
TextWeight = 0.75 4.13
Our Convolutional NN 6.12
GIST 6.9
HOG 10.8

Table 1. Results for n = 5 training examples per class. We note
that our (text-free) descriptors perform reasonably well, and that
performance is improved by leveraging tag data using the convo-
lutional neural network described earlier.

We’ve observed that most of the predictive power of the
features such as HOG comes from the similarity histogram
kernel. Unfortunately, since our learned features are sig-
moid units in the 0-1 range, the similarity histogram kernel
applied to our features does not yield particularly good re-
sults. We’ve experimented with many different kernels such
as chi-squared and Gaussian kernels, but the best results that
we’ve obtained are 5.32 % accuracy in the task, which are
not very good compared to HOG’s performance of 11.15
%, using n = 5 training examples per class in both cases.
Concatenating the learnt features with the original features
yields no improvement whatsoever (compared to the per-
formance of the original features by themselves). This is
mostly because our learn features don’t perform very well
by themselves.

It is worth noting that the our learned features are not bad
by themselves. In fact, our learned features beat HOG if we
use a linear kernel in both cases. The performance of HOG
features using a linear kernel is of 4.25 %, whereas our
learned features (concatenated with the original features)
yield a performance of 4.98 % (again, using n = 5 train-
ing examples per class). Furthermore, using text informa-
tion does better than using image information alone (4.98
vs. 4.45 % classification accuracy). The problem is that
we don’t know of a kernel that we can apply to our learned
features to improve on HOG+similarity histogram.

So, the autoencoder is able to learn reasonable features
from hand-engineered features, but this is more or less a
“brute-force” approach that tries to encode text informa-
tion into already engineered features, and in the process we
destroy the properties of the hand-engineered features that
make them suitable for powerful kernels.

6.2. Results of Our Own Descriptors

We’ve evaluated performance of our models: the tag-free
model, and the tag-sensitive models (convolutional network
and the y-shaped for local patches model). For the convolu-
tional network, we use the tag-free model as a starting point

Figure 11. Comparison of our learned descriptors (tag-free) rela-
tive to other hand-engineered features for varying training set size.

for the optimization, and use mean pooling to aggregate the
local descriptors. The results are summarized in Table 1.

We see that the learned descriptors (tag-free) by them-
selves do a reasonable job - yielding classification perfor-
mance comparable to sparse-sift histograms and not much
worse than GIST. As we’ve suspected, trying to predict tags
from local patches does not help at all, in fact, performance
decreases.

Furthermore, we see that the convolutional neural net-
work is able to use the tag annotations to our advantage:
performance jumps from 4.7% (using tag-free descriptors)
to 6.2%, which is better than sparse-sift and approximately
equal to GIST.

The results are not yet as good as HOG, but there is still
much room for improvement. In particular, spatial pyra-
mid aggregation will likely work better than mean pooling.
Moreover, by training deep networks, we will be able to
learn more complex non-linearities and thus we would ex-
pect to greatly improve performance. We may also take ad-
vantage of much more data available from Flickr to create
even better representations.

To get a feel of where our descriptors help, we take a look
at the confusion matrix and compare it to other features . Ta-
ble 2 shows the types of images that our features are best at
classifying. It is worth noting that these categories are not
generally the easiest categories for other hand-engineered
features, so our features are essentially providing new in-
formation which can be exploited to our advantage when
combining all of the features together. We also show on the
3rd column a list of scenes for which tag-sensitive features
help the most (compared to our own tag-free descriptors).
It is worth noting that some of the features for which we

Tag-Free Descriptors Most-Improved (by leveraging text)
arrival gate aquarium
florist shop beach
racecourse athletic field
aquarium wind farm
hayfield aqueduct

Table 2. Results. Ours is better.

obtain the most benefit by levereging text are beach, aquar-
ium, etc. which are generally correlated with frequently oc-
curring tags such as water, etc.

7. Conclusion
We’ve introduced a general technique to take the most

advantage of vast amounts of unlabeled data with weak an-
notations that come at no cost to improve performance on
tasks of interest.

We establish a proof-of-concept by evaluating our
method on a large-scale scene categorization task. We are
able to use unsupervised feature learning to learn descrip-
tors that are comparable to state-of-the-art descriptors such
as SIFT and GIST. Further, we are able to leverage the weak
annotations from Flickr images to our advantage and learn
tag-sensitive features that yield even better performance.

We envision our approach to be more generally applica-
ble, and can be used for a wide variety of tasks in which
we’re able to obtain weakly annotated data for free. For in-
stance, the same method can be applied for video data in
which the task is to recognize actions, sat. We may take
advantage at weak segmentation that comes for free using
motion cues, for example, to improve performance on the
action categorization task.

References
[1] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba. SUN

Database: Large-scale Scene Recognition from Abbey to Zoo.
Computer Vision and Pattern Recognition (CVPR), 2010.

[2] G. Hinton and R. Salakhutdinov. Reducing the dimensionality
of Data with Neural Networks. Science, 313(5876):504–507,
2006.

[3] A. Torralba and A. Oliva Statistics of Natural Image Cate-
gories. Network, 14:391-412, 2003.

[4] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee and A. Ng.
Multimodal Deep Learning Prc. ICML , 2011.

[5] R. Raina, A. Battle, B. Packer, H. Lee and A. Ng. Self-taught
learning: Transfer learning from unlabeled data. Prc. ICML ,
2007.

[6] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natu-
ral Scene Categories. Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, 2006.

[7] A. Coates, H. Lee and A. Ng. An Analysis of Single-Layer
Networks in Unsupervised Feature Learning. AISTATS, 14,
2011.

[8] M. C. Caligaris Unsupervised Multi-modal Learning: Images
and Text CS 229 Final Project, 2010.

8. Appendix
This course is part of a larger research project in advised

by Prof. Andrew Ng. I worked in this project with Andrew
Maas and Andre Filgueiras de Araujo. The problem we’re
trying to tackle is within a bigger context of machine learn-
ing - that of learning mearningful representations from vast
amounts of unlabeled or weakly annotated data.

In this project, we apply the machine learning technique
to a computer vision task: Scene Classification. We use
computer vision techniques such as

1. Bag of Words Model in computer vision

2. Spatial Pyramid Matching

3. Similarity Histogram Kernel

4. Evaluated performance of common computer vision
descriptors such as SIFT, GIST, etc.

5. Pooling

The ideas for the models were discussed in research meet-
ings and small group meetings. I personally gathered the
Flickr dataset, implemented code for the Y-shaped network
and the convolutional network, and ran SUN experiments
using code provided by Torralba et al.

I verify and confirm that I am the sole author of this
writeup. As of right now, this is the first paper related to
this work. We’re planning to improve on these results and
apply the technique to other tasks to eventually submit a
paper to a machine learning conference such as ICML.

