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images. Some objects appear a lot of times in the testing 
images, such as monitor, microwave, chair, desk, sink, 
faucet, etc. Some objects such as tennis appear only once or 
twice. There are also some kinds of objects which do not 
have corresponding subsets in ImageNet, such as chopping 
board. We neglect such kinds of objects during training and 
testing. 

1.6. Expected Result and Evaluation 

We expect our algorithm can achieve good results on the 
testing images. The ideal result is shown as in figure 1. Our 
algorithm might not detect every object but it should detect 
as many objects as possible. For each kinds of object, we 
can get a detection rate and false alarm rate. We can also 
calculate the overall detection rate and false alarm rate. We 
will run part based models [1] on our dataset and compare 
the result with the result of our own algorithm. 

2. Related Work 

2.1. Part Based Models 

Deformable Part Based Models [1] is the state-of-art 
technique for detecting single object. Our approach is 
largely based on this work. This technique does not need 
depth information either in training process or detecting 
process. This technique is built on pictorial structures 
framework, which represent objects by a collection of parts 
and the spring-like connections between certain pairs of 
parts. There is a root filter for the whole object and a part 
filter for each part of the model. The score of detection is 
the sum of filter scores plus deformation scores. It also train 
multiple models for a kind of object according to different 
aspect ratio  

While Deformable Part Based Models is the state-of-art 
technique of detection and perform quite well on VOC 
dataset. However, it only takes advantage of 2D images 
which limit the performance, especially on real-world 
image datasets. Our approach adds depth information 
during testing process and gets better result. 

2.2. Part Based Models 

Koppula  et al. have tried detecting indoor objects using 
3D information [2]. They over-segment the input image 
and label each object as bed, table top, wall, etc. Their 
approach is based on a Markov Random Field model and 
explicitly models the geometric configuration between 
different objects. For example, a monitor is always 
on-top-of a table and chairs are usually near a table. They 
applied this algorithm on a mobile robot for the tasking of 
finding an object and got quite good results. 

However, unlike our approach, their training process is 
based on 3D images (images with 3D information) while 
we use web images to train classifiers. It is obviously that 

web images are more easily obtained and there are almost 
infinite categories of images on the internet. 

2.3. Coherent Object Detection 

Bao et al. [3] use support planes for coherent object 
detection and scene understanding. Their intuition is that 
many objects all usually on a plane. For example, mugs are 
usually on a table, which is a plane. In this way, they can 
rule out the false candidates which are not on the supporting 
plane or supporting planes. Once they get the planes, they 
further assume that the planes are horizontal and get the 
camera parameters.  

This method does not need 3D information as input, and 
has got quite good performance on certain dataset. 
However, when detecting many categories of objects, many 
objects are not on horizontal a few numbers of supporting 
planes. For example, pictures hanging on the wall. 

3. Approach 

3.1. Baseline Approach Using Part Based Models 

We detect each object independently using part based 
models and latent SVM, just as Felzenszwalb did. We 
briefly describe the algorithm in the following. 

It first computes HOG feature pyramid. A filter is a 
rectangular template defining weight for features and the 
response of a filter F at a position (x, y)  in a feature map G 
is defined as the dot product, 
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The score of a candidate (or hypothesis) is the sum of the 
scores of each part filter at its own position and scale minus 
the deformation cost, 
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The first term is the data term (the response of part 
filters). The second term is the deformation cost which 
punishes the displacement of each part relative to its anchor 
position. The bias term is introduced to make scores 
comparable between different models. Here ݌଴ is the root 
filter. 

For matching, we pick the candidates which maximize 
the score. ݌଴ is the root filter here. 
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As for latent SVM, we need to maximize the function, 
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image during training, we only need depth images for a 
small fraction of images. If we put some labeled testing 
data during training process and test on the rest, this will 
solve the problem and also make the training data more 
“familiar” with the testing data. This would definitely 
improve the performance. 
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7. Appendix 
My course project is part of a larger project in vision lab. 

Thanks for the instruction of Prof. Fei-fei Li and Ph.D. Jia 
Deng. 

8. Supplementary Materials 
My code is attached in the email as Ye_Code.zip. I also use 
P. Felzenszwalb’s code for part based models. The link for 
this code is 
http://www.cs.brown.edu/~pff/latent/voc-release4.01.tgz. 


