
Large Scale Image Deduplication

Tzay-Yeu Wen
Stanford University
tywen@stanford.edu

Abstract

With the rise of the Internet and personal digital camera,
it becomes easy for researchers to get image data in mass
quantity. With these large amount of image data coming
from different sources on the Internet, quality of the image
is becoming a major problem. Many Images from the Inter-
net are not original but are produced by cropping or trans-
forming from another image. Those images add little infor-
mation to the dataset and should be removed, but the large
amount of data make it infeasible for humans to examine
each image and find the duplicate counterpart. Therefore
it is crucial to develop algorithms that is both efficient and
scalable to process large amount of data.

In this paper, we use an efficient and scalable method
that can find near-duplicate images in an image dataset. In
order to take advantage of the traditional information re-
trieval methods, that are designed for large scale retrieval,
we represent each image using visual word. However, the
visual word approach lost all the information about the ge-
ometry structure of the image, which generate many false
positive when the dataset become larger. We use a method
proposed by [13], that groups visual words using local im-
age feature to increase the discriminability.

1. Introduction
Near-duplicate image detection is a special kind of image

retrieval problem, which is relatively easy and well studied
compared to other computer vision problems. Several im-
age features, for example [7] and [3], have been proposed to
calculate the similarity of two image or image parts. Those
features are robust to noise and many image transforms;
Therefore are more than enough for duplicate image detec-
tion.

Image representation aggregated features into Bag-of-
Words [2] can further increase the accuracy of large dataset
image retrieval. Using SIFT BoW, [9] has proposed a
method which will find similar images in the image dataset.
Their experiments showed that their method maintains high
accuracy for up to 1M of images.

[1] try to use min-Hash, a method borrowed from text
retrieval, to determined the similarity of two bags that con-
tain similar words. [13] proposed another features aggre-
gate algorithm that can take advantage from both local and
global features. It use multiple bags per image and calculate
the similarity as the sum of matching bags. On top of the
bag-of-word representation, it also consider the geometry
relation between words inside a bag.

The challenge however, is to be able to handle mas-
sive amount of images using reasonable computation re-
sources. The amount of data an image retrieval algorithms,
like K-means or KNN, can processed are constrained by the
amount of available memory. Therefore many methods that
can reduce the memory footprint or scale to multiple ma-
chines had been proposed.

[4] proposed a method that reduce the feature represen-
tation of each image into less than 100 bytes. This increase
the limit on a single machine but the result is less accurate.

Another approach proposed by [6] is to compute the ap-
proximate nearest neighbor on features using Map-Reduce,
which can process large amount of data with less accuracy.

2. Feature Extraction

2.1. Bundle Feature

For each incoming image we will build a discriminative
feature representation of it. We want the feature to be invari-
ant to some image transformations including rotation, illu-
mination, scale and crop, because those are the most com-
mon methods used by people when processing images.

SIFT, which is invariant to rotation and scale, is one
of the robustest point feature in computer vision. It can
achieve very high precision on small dataset. However,
when the dataset become larger, false positive increase
rapidly. To counter this problem, an intuitive method is
to increase the feature space by combing multiple SIFT
features into a feature bundle. Two bundles are consider
matched if matched SIFT features exceed certain threshold.

As one can imagine, how the features are grouped can
greatly affect the performance of the algorithm. Commonly
used clustering algorithms like K-means, which group fea-

Figure 1. Extracted Features. Blue regions are the MSER features and red points are the corresponding SIFT features

tures by some distance metrics, are not suitable for this
problem due to the following reason. First, because of dif-
ferent image depths and object occlusion, nearby feature
may not belong to the same objects. The resulting bun-
dle will depend on multiple objects and will be harder to
match when the image is cropped. Second, it is hard to
determined how many clusters each image should have, the
number may vary greatly between complex images and sim-
ple images. Finally, even the image are similar, depending
on different initial condition feature might not be grouped
consistently. Therefore, a better clustering algorithm that is
consistent across different images and can consider image
context will be preferable.

We use Maximally Stable Extremal Regions (MSER),
which detects affine-covariant stable regions in an image, as
our clustering algorithm. This method insure that the con-
sistent regions can be detected when cropping, rotating, or
translating is applied. It also can handle illumination change
provide that the variance of contrast remain small.

2.2. Construction

In this section we will describe how to build the bun-
dle image features using SIFT and MSER. For each im-
age Ii, extract the SIFT features Si = {sij}, where sij =

(x, y, ~f), x, y ∈ R, ~f ∈ N128, and the MSER fea-
tures Mi = {mij}, where mij = (x, y, cxx, cxy, cyy) and
cxx, cxy, xyy are the covariance of the region. Finally, de-
fine the bundles for image Ii as Bi = {bij}.

We define the bundle feature

bij = {s|s ∈ Si and s is inside region mij} (1)

The inside of mij is define by the ellipse, which is an ap-
proximation of the actual region, calculated from the co-
variance terms. We discard those bundles that has it’s ellipse
width or height larger than half of the image width or height
because it is very hard to reproduce the same region in two
different images. We also discard those bundle that has no
or only one SIFT feature because this indicates that the re-
gion is too small and can potentially match to many other

regions. In order to save storage and computing power, we
also discard bundles that has it’s SIFT features overlap with
another bundles by more than 97%.

3. Image Matching
3.1. Visual Word

To retrieve large amount of image from the database,
we need an efficient image representation that can be eas-
ily processed and indexed, compare to SIFT feature. The
state of the art in image retrieval is to model image as docu-
ment and image feature as visual word. We use the method
propose by [10] to convert SIFT feature into visual word.
It calculates the center of each visual word using hierarchi-
cal K-means [8]. After the center is calculated, we assign
each feature to the first k nearest visual words to reduce the
quantization error.

3.2. Hamming Embedding

To further reduce the quantization error, we use Ham-
ming Embedding(HE) to calculate the similarity between
features that are assigned the same visual word. This
method assign an extra Xbits signature ~he, which represent
the relative position of the feature in the cluster, for each
SIFT feature.

~he is calculated using the following steps.

1. Build a random matrix G ∈ R128×128 and apply QR
factorization on it to get Q, an orthonormal matrix.

2. Build the transform matrix M using the first X rows
in Q. Apply M on SIFT feature ~f will project it from
the original 128 dimensions space to a X dimensions
space.

~hi =M × ~fi, M ∈ NX×128

3. Let V be the visual words set and vi be the visual word
assigned to ~fi. Calculate the median value ~τs of each
cluster.

~τs = Median({~hi|vi = vs}), vs ∈ V

4. Finally, calculate ~he, the signature, using ~τs where vs
is the visual word assigned to ~fi

~hei[j] = ~τs[j] < ~hi[j], for j in 1 to X

Given the signature ~he the similarity between two fea-
tures is calculated by the hamming distance of the signature.

Sim(~fi, ~fj) = HammingDistance(~hei, ~hej)

3.3. Bundle Matching

In this retrieval framework, what we actually do is
matching bundles rather than images because the similar-
ity between two images is simply calculated by summing
the similarity between each pair of bundles in these two im-
ages.

S(Ii, Ij) =
∑
b1∈Ii

∑
b2∈Ij

S(b1, b2) (2)

Where b1, b2 are bundle from the first and second image, re-
spectively. The bundle similarity is calculated by the mul-
tiplying the standard information retrieval ranking function
by the correlation between bundles. We have tried different
ranking functions, amount them BM25 gave the best result.

S(b1, b2) = Corr(b1, b2)
∑

s∈b1∩b2

RankingFunction(s)

(3)

The correlation term is composed by similarity and lo-
cality.

Corr(b1, b2) = Corrs(b1, b2) + λCorrl(b1, b2) (4)

Where Corrs(b1, b2) is simply the number of visual word
these two bundles have in common.

Corrs(b1, b2) = |b1 ∩ b2| (5)

Currently this number is not normalized but we are ex-
perimenting with different normalization schemes, such
as max(|b1|, |b2|) and max(area(b1), area(b2)), to see if
there are improvement to make.

We assume that the extracted regions are the invari-
ant part of an image that are stable to image translation.
Therefore, the feature location inside two matching bundles
should be consistent, which is taken into account by the sec-
ond termCoorl(b1, b2). A high score means that the feature
inside these two bundles are positioned on similar location.
The term is defined by

Corrl(b1, b2) =

|b2|∑
i=1

OD
b1(s2,i) < OD

b1(s2,i+1) (6)

Where OD
b1
(x) is the order of feature x in bundle b1 with

respect to a defined geometric order D. To make the local-
ity term invariant to rotation, we ordered the feature by θ,
which is it’s position (θ, r) on the polar coordinate.

4. Experiment
4.1. Dataset

We will evaluate our method using two different image
dataset, one for accuracy and one for performance.

For accuracy measurement we will use a dataset pro-
duced by [9], which contains 2550 distinct images. For
each image we will generated 3 images by randomly com-
bine translation, cropping and rotation, which will result in
a total 10200 images dataset. We will query the database us-
ing all the 10200 images and calculate the accuracy accord-
ingly. Following [13] we will use mAP as our evaluation
metric.

For performance measurement we use a dataset provided
by ILSVRC2010, which contains 100 categories, 1.2M im-
ages, and 126GBytes of data. We indexed the whole dataset
with 100K visual words and produce the final representation
file with size around 26GBytes.

We use three different query image sets, which are pro-
duced by randomly select 5 images from each category and
randomly cropping out 10%, 30%, 50% of area respectively,
to evaluate our system performance on different level of oc-
clusion. We also record the CPU and memory usage.

4.2. Result

As Figure 4 shows the locality term plays a important
role on overall performance. Compare to the original pa-
per [13], which define the geometric order on X-Y coor-
dinate, our method have a much higher optimal λ. This
suggests that in our experiments the local term can more
accurately represent the similarity between images, which
confirms that rotation invariance can improve accuracy.

We also experiments with different visual words size.
The original image data contain about 2.6M SIFT features,
which are quantized into visual words. The size of visual
word affect the performance greatly. If there are too few
visual words, false match will increase. On the other hand,
too many visual words will make matching impossible be-
cause most of the visual words will only map into one SIFT
feature.

4.3. Implementation, Runtime and Memory Usage

The experiments were conducted on a Intel i5-2500K
machine with 16GBytes of memory. Although I use multi-
ple core to speedup to experiments, all the numbers reported
are ran on a single core to reduce other factor that may af-
fect the run time and make it easier to compare with others
work.

4.3.1 Query Runtime

The complexity of our query algorithm is linearly propor-
tional to the size of image dataset, but as Table 2 shows, the

Figure 2. The order of the features are marked with number. Left: These two bundle have the same feature order; therefore get full score
on Coor;. Right: The triangle and the diamond are out of order, but the triangle and rectangle are in order.

Figure 3. Some sample images and their respective query images

run time only increase about 17 times when the data size is
100 times larger.

There are two major factors that affect the run time. First,
when the number of visual word increase, possible match-
ing images for each visual word decrease; therefore, the im-
ages we need to consider do not increase linearly. Second,
the Hamming Embedding will filter out more false matches
when the cluster size of each visual word increase. The re-
sult of using HE are shown in Table 4.

We also breakdown the runtime into Feature Extraction,
Visual Word Conversion, and Query. The SIFT feature
and MSER feature are computed using VLFeat library [12],
and use OpenCV [8] for the approximate nearest neighbor
search. Table 2 shows the average run time of one image
query.

4.3.2 Indexing Runtime

In order to convert the SIFT feature into visual word we
need to compute the mapping at index time. This include
computing the center of each visual word in SIFT space and
the Hamming Embedding median. There are more than 10
billion of SIFT features in the dataset; therefore, we random
sample 10M of them as the training data to reduce the run-
time and memory usage. We use the hierarchical k-means
library from OpenCV [8] and it’s runtime is shown in Table
1.

10K Images With 50K VWord 19m46s
1M Images With 100K VWord 239m

Table 1. Visual Words Clustering Time

10K Images 1M Images
50K VWord 100K VWord

Feature Extraction 0.066362 0.066362
Visual Word Conversion 0.023341 0.013630

Query 0.033187 0.575602
Total 0.122890 0.655594

Table 2. Query Time per Image Breakdown

4.3.3 Memory Usage

To query the dataset, the only information we need is the
mapping from visual word to bundles. In our design each
entry in the inverted index table only takes 8Bytes. 4Bytes
for the bundle id, 3Bytes for hamming embedding signa-
ture, and 1Byte for geometry order. This compact data
structure allow the algorithm to store 227 entries in 1GBytes
of memory. Using the statistics from the 1M images dataset,
which has average 91 bundles per image and average 9 fea-
ture per bundle, we can store around 164K images data in
1GBytes memory.

Figure 4. Left: Comparison of different λ term with visual words size 100K. λ = 0 means only theCorrs term is used. Right: Comparison
of different visual words size with λ = 3. The original feature size is about 2.6M.

10K Images 1M Images
50K VWord 100K VWord

Query 0.043012 1.331271
Query + HE 0.033187 0.575602
HE Hit Rate 0.559185 0.449681

Speed Up 22% 56%

Table 3. Query Time per Image w/ and w/o HE

1M Images mAP
50% 0.434842
70% 0.689659
90% 0.800570

100% 0.912014

Table 4. Query accuracy for different image dataset

5. Conclusion and Future Works

5.1. Global Weak Geometric Validation

Currently, we only consider the geometric location of
each feature inside one bundle. As [13] and [11] show, full
geometric validation (i.e. re-ranking) can improve the re-
trieval performance significantly, but with a high computa-
tional cost.

In the future, it is possible to extend our weak geometric
validation to consider the location of each bundle in the im-
age. This extension have little overhead on the memory us-
age (around 1Bytes per bundle, or 2% for the ILSVRC2010
dataset), and only increase the computation complexity by
a constant factor.

5.2. Feature Detectors

In this paper, we use the standard Difference of Gaus-
sians(DoG) as our feature point detector. DoG has been
proven to be a very effective detector, but due to charac-
teristic of DoG and MSER, most of the detected points are
near the border of the MSER feature.

Experiments on different detectors and the relation be-
tween point and area detectors may give us more insight
on how to compose aggregate image representation and it’s
implication on retrieval performance. [5]

References
[1] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image

detection: min-hash and tf-idf weighting. In Proceedings of
the British Machine Vision Conference, 2008.

[2] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints. In
In Workshop on Statistical Learning in Computer Vision,
ECCV, pages 1–22, 2004.

[3] M. S. Extremal, J. Matas, O. Chum, M. Urban, and T. Pajdla.
Robust wide baseline stereo from. In In British Machine
Vision Conference, pages 384–393, 2002.

[4] H. Jegou, M. Douze, C. Schmid, and P. Prez. Aggregating
local descriptors into a compact image representation. In
CVPR’10, pages 3304–3311, 2010.

[5] T. Kadir, A. Zisserman, and J. M. Brady. An affine invariant
salient region detector. In European Conference on Com-
puter Vision. Springer-Verlag, 2004.

[6] T. Liu, C. Rosenberg, and H. Rowley. Clustering billions of
images with large scale nearest neighbor search. In Applica-
tions of Computer Vision, 2007. WACV ’07. IEEE Workshop
on, page 28, feb. 2007.

[7] D. Lowe. Object recognition from local scale-invariant fea-
tures. pages 1150–1157, 1999.

[8] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[9] D. Nistr and H. Stewnius. Scalable recognition with a vo-
cabulary tree. In IN CVPR, pages 2161–2168, 2006.

[10] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1 –8, june 2008.

[11] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, R. Vedan-
tham, R. Grzeszczuk, and B. Girod. Fast geometric re-
ranking for image-based retrieval. In ICIP’10, pages 1029–
1032, 2010.

[12] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms, 2008.

[13] Z. Wu, Q. Ke, M. Isard, and J. Sun. Bundling features for
large scale partial-duplicate web image search. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 25 –32, june 2009.

