
Robust Text Reading in Natural Scene Images

Tao Wang, David Wu
Stanford Computer Science Department

353 Serra Mall, Stanford, CA 94305
twangcat@stanford.edu, dwu4@stanford.edu

Abstract

In this paper, we consider using two-layer, convolutional
neural networks (CNNs) to construct an end-to-end text
recognition system for natural images. The approach we
take is similar to traditional approaches to text recogni-
tion in which we first train a text detector that finds regions
in the image that contain text, and then train a character
classifier and apply it to the regions of interest to perform
word-level recognition. While the basic two-stage system
we adopt is similar to other text recognition systems, we
note that in all existing systems, the detector and classi-
fier are treated as two distinct systems with different sets of
hand-crafted features. Here, we take a decisively different
approach by leveraging the power of unsupervised feature
learning and fine-tuning to construct a common framework
for both the detector and recognizer. Such a system demon-
strates the possibility of using a single, unified architecture
for both detection and recognition in the construction of a
full end-to-end system. In constructing such a system, we
present state-of-the-art results in cropped word recognition
and reputable results in full end-to-end recognition.

1. Introduction
Extracting textual information from natural images is

a challenging problem with many practical applications.
While current state-of-the-art methods achieve nearly per-
fect performance on Object Character Recognition (OCR)
for scanned documents, the more general problem of recog-
nizing text in unconstrained images is not so simple. Rec-
ognizing text in scene images is more challenging due to the
many possible variations in backgrounds, textures, fonts,
and lighting. As a result of these variations, many high-
performing text detection and character recognition sys-
tems combine cleverly hand-engineered features [3, 8] or
carefully-designed multi-step pipelines [11, 15].

In this paper, we approach the problem from a different
angle by using systems that can learn the underlying fea-
tures best suited for the problem. Like many previous text

Figure 1: Illustration of the end-to-end word recognition
problem we address. The input to our system is an image
and a lexicon (e.g. here, the lexicon contains ≈ 50 words,
including “SPIDER” and “MAN”). The output is a set of
bounding boxes labeled with predicted words.

recognition systems, we postulate a multi-stage approach.
We begin by training a text detector that performs a binary
classification task: determine whether a given image patch
contains text or does not contain text. Then, given a full
image, we take a sliding window approach across multiple
scales to identify regions of text. Given this multiscale re-
sponse map, we apply several post-processing stages to es-
timate candidate bounding boxes for regions of text. Then,
we train a 62-way classifier (one class for each lowercase
and uppercase letter and one for each digit) for character
recognition. Given the candidate bounding boxes generated
by the text detector, we again use sliding windows to com-
pute the character classifier response at each point in the
bounding box. Given the character responses at each point,
we leverage a lexicon-backed weighted string distance met-
ric to determine the word within the candidate bounding box
along with its recognition score. We then greedily make
predictions on the top-scoring candidate boxes and rule out
overlapping ones with lower scores. We also filter out false
positives by thresholding the recognition score.

1

2. Background
Many of the proposed methods for text recognition are

based upon sequential pipelines consisting of several dis-
joint components such as text detection, segmentation,
and recognition. In each case, top-performing systems
have generally combined simple classifiers with hand-tuned
or domain-specific features, such as stroke width [3] or
background-color consistency, aspect ratio, and number of
holes [14]. Others have applied probabilistic models incor-
porating various forms of prior knowledge to good effect
[18]. Additionally, many of these systems are targeted to-
wards one particular part of the full text recognition prob-
lem. The challenge has thus been in cohesively integrating
the different systems. For examples, features that work well
for detection will likely not work well for recognition and
vice versa; this is evidenced by the general lack of end-to-
end text recognition systems that incorporate both a detec-
tion and a recognition component.

Recent work in feature learning algorithms offer a way
to integrate the two systems. Such algorithms have enjoyed
numerous successes in many diverse fields such as visual
recognition [7]. In the field of text recognition, the system
in [6] has achieved decent text detection and state-of-the-
art character recognition using a simple, but scalable fea-
ture learning architecture incorporating virtually no hand-
engineering or prior knowledge. In their work, Coates,
et al. [6] adopt a purely unsupervised approach to learn a
dictionary of features and then use those features, evaluated
convolutionally over the image, as the inputs to a simple
classifier. In this paper, we diverge from their purely unsu-
pervised framework by applying supervised fine-tuning to a
multi-layered convolutional neural network. Such networks
have enjoyed many successes in similar problems such as
handwriting recognition [12], visual object recognition [5],
and character recognition [16]. In this paper, we consider
using the same convolutional architecture for both the de-
tection and recognition phases of the pipeline and in doing
so, demonstrate that by using a single feature-learning al-
gorithm, we can construct both a text detector as well as
a character recognizer and integrate them together into a
high-performing, complete end-to-end system.

3. Methodology
3.1. Learning Architecture

First, we discuss the learning architecture we adopt for
the detection and recognition phases. We consider a multi-
layer convolutional neural architecture similar to [5, 12, 16]
for both components of the system. In particular, we adopt
a two-layer convolutional structure (shown in Figure 2),
with an average-pooling layer following each convolutional
layer. The responses from the second pooling layer are then
combined in a fully connected classification layer, where

32×32 25×25×64 5×5×64 4×4×96 2×2×96

Convolution Average Pooling Convolution Average Pooling Classification

Figure 2: Convolutional neural network used for detection
and recognition. The only difference between the CNN
used for detection and recognition is the sizes of the con-
volutional layers.

we have one output unit for each class (binary in the case
of text detection, 62-way in the case of character recogni-
tion). For text detection, we pretrain the first convolutional
layer with filters generated by a feature learning algorithm
and fine-tune the overall network by backpropagation of the
classification error. In the 62-way character classification
task, there are considerably more parameters to tune and
thus, it is prohibitively expensive to perform full backprop-
agation over the network. Consequently, we again use unsu-
pervised pretraining to learn the second convolutional layer
and apply supervised training to just the top layer classifier,
keeping the first and second layer weights fixed. Finally,
we integrate the text detector and character recognizer to
construct a complete end-to-end text recognition system.

3.1.1 Unsupervised pretraining

We begin by using an unsupervised learning algorithm to
pretrain the filters used for both detection and recognition.
Here, we use a pipeline that resembles the architectures de-
scribed in [6, 7]. We briefly outline the key components of
this system:

1. Collect a set of m small image patches from the train-
ing set. As in [6], we use 8x8 grayscale patches. This
yields a set of m vectors of pixels x̃(i) ∈ R64, i ∈
{1, . . . ,m}.

2. Normalize each vector x̃(i) for brightness and contrast
(subtract out the mean and divide by the standard de-
viation). We then whiten the patches x̃(i) using ZCA
whitening [10] to yield a new set of vectors x(i).

3. Apply an unsupervised learning algorithm on the pre-
processed patches x(i) to build a mapping from input
patches to feature vectors z(i) = f(x(i)). In this paper,
we adhere to the variant of the K-means algorithm de-
scribed in [6] where we learn a dictionary D ∈ R64×d

containing d normalized basis vectors.

3.1.2 Convolutional layers

The two-layer convolutional architecture we use for text de-
tection is given in Figure 2. Note that we use the same ar-
chitecture to train the character classifier, with the exception
that the convolutional layers contain 300 and 3000 filters in-
stead of 64 and 96. The larger number of maps is due to the
fact that the character recognizer is performing 62-way clas-
sification rather than binary classification, and thus, requires
a more expressive model. For the first convolutional layer,
we use a set of 8-by-8 filters. More specifically, given a fil-
ter (kernel)K and an 8-by-8 window centered on (x, y), the
responseR at (x, y) will be given byR(x, y) = K?I(x, y)
where I(x, y) denotes the 8-by-8 window in the input patch
centered at (x, y) and ? denotes the convolution operator.
The input to our convolutional network is a 32-by-32 im-
age patch. Note that we only evaluate K over windows that
are completely within the bounds of the patch. The appli-
cation of each filter over the image patch yields a 25-by-25
response map. After evaluating each filter, we arrive at a 25-
by-25-by-64 response map as the output for the first layer.
As in [6], we apply a scalar nonlinear activation function to
the responses R(x, y): z = max{0, |R(x, y)| − α} where
α is a hyperparameter. In this paper, we take α = 0.5. As
is standard in the literature on convolutional architectures,
we now apply a spatial pooling step. This has the bene-
fit of reducing the dimensionality of the response maps at
each layer as well as providing the model a degree of trans-
lational invariance. Here, we opt for average pooling, in
which we sum over the values in a 5-by-5 grid over the 25-
by-25-by-64 response map. We then stack another convolu-
tional and average pooling layer on top of the outputs from
the first layer. The outputs of this second layer consist of
a 2-by-2-by-96 response map in the case of detection. This
output feeds into a fully connected classification layer. To
train the network for the text detector, we backpropagate the
classification error in the form of the L2-SVM loss through
the network to fine tune the parameters of the network. As
noted above, for the character classifier, we only train the
top-level classifer without backpropagating through the en-
tire network. Instead of fine-tuning, we adopt wide network
structures (25-by-25-by-300 on the first layer and 2-by-2-
by-3000 on the second layer) and pretrain each layer using
the response map from the previous layer.

3.2. Dataset

For text detection, we train a binary classifier that de-
cides whether a single 32-by-32 subwindow contains text
or not. Unlike [6], we consider positive examples to be
examples where a complete character appears centered in
the window. Examples where the character is occluded,
cropped, or off-center are considered negatives. This par-
ticular distinction is made so that the detector will focus
on identifying regions where the text is centered since such

windows are preferred for word-level recognition in the
subsequent part of the system.

Synthetic Training Data Coates et al. [6] have used
large synthetic datasets to improve classification results.
Likewise, in this paper, we generate high quality synthetic
training images using a total of 665 fonts for training both
the text detector and character classifier. The number of
images per character class are distributed according to the
unigram frequency obtained from the Brown Corpus [9] so
as to simulate the natural distribution of character classes.
The grayscale level of the characters and the background
are generated from Gaussian distributions with the same
mean and standard deviation as those in the ICDAR train-
ing images. We also apply small amounts of Gaussian blur-
ing and projective transformations to a random portion of
the images and finally blend the images with natural back-
grounds to simulate background clutter. The resulting syn-
thetic images are shown alongside with real-world charac-
ters cropped from the ICDAR 2003 dataset in Figure 3. One
advantage of using synthetic data is that we have full con-
trol of the location of the text in the image, so we can easily
generate many types of negative examples (e.g. improp-
erly scaled, improperly aligned, etc.) to use as hard neg-
atives. As such, we have compiled a dataset consisting of
examples from the ICDAR 2003 training images [13], the
English subset of the Chars74k dataset [8], and the sign-
reading dataset from Weinman, et al. [17], as well as syn-
thetically generated examples. In training the detector, our
training set generally consists of 75,000 positive examples
and 150,000 negative examples; for the classification task,
we use about 213,000 examples in total.

4. End-to-End Pipeline Integration
As discussed before, we use a two-pass pipeline where

we first run sliding window detection over higher resolu-
tion input images to narrow down a set of candidate regions
containing text. Then, we locate and recognize words us-
ing the responses of the sliding windows. There are sev-
eral ways to obtain word-level bounding boxes from these
sliding window responses. Wang et al. [11] use pictorial
structures together with a lexicon to locate the target words,
while others have used variants of conditional random fields
(CRFs) [17]. Since both our detector and character classi-
fier have high accuracies, we rely on simple non-maximal
suppression (NMS) based heuristics to obtain our final end-
to-end results.

4.1. Text detection

4.1.1 Pixel-level responses

Given an input image, we begin by identifying regions of
text using a sliding window approach performed over mul-
tiple scales. In this paper, we consider ten different scales,

(a) ICDAR posi-
tives.

(b) Synthetic posi-
tives.

(c) Synthetic nega-
tives (spaces).

(d) Synthetic neg-
atives (bad align-
ment).

(e) Synthetic nega-
tives (bad scale).

Figure 3: Images used to train the detector and classifiers.

(a) Sample image from ICDAR dataset. (b) Detector responses from multiple
scales.

(c) Pixel level responses over full im-
age.

Figure 4: Multi-scale response from text detector.

starting from 100% and proceeding down to 10% in decre-
ments of 10%. Due to the large numbers of windows in a
given image and the computational infeasibility of comput-
ing the activations for every possible window, we slide our
windows with a column stride of 3 and a row stride of 8.
We show a visualization of the responses for four different
scales in Figure 4b where for each window, we simply fill
the region spanned by the window with the corresponding
detection score. We also present a pixel-level response map
R(x, y) (4c) where we aggregate the scores from each scale
according to R(x, y) = maxsRs(x, y) where Rs(x, y) de-
notes the response at position (x, y) in the response at scale
s. While pixel-level responses maps present a viable way
of assessing the performance of the detector [6], it is not
immediately clear how to compute a proper bounding box
for regions of text. Noting that the responses tend to be
positive for regions of text and negative otherwise, one pos-
sibility is to construct the rectangle that maximizes the sum
of responses. This is a simple optimization problem that
may be solved efficiently using a dynamic programming al-
gorithm [2] over the response map. While this method does
construct reasonable bounding boxes, it also tends to cluster
multiple lines of text into a single bounding box, especially
if the separation distance between lines is small compared
to character height, thereby causing the maximum-sum rect-
angle to encapsulate multiple lines. This is a particularly
inconvenient format for the character and word recognizer,

which are designed to operate on a single word.

4.1.2 Bounding box estimation

Due to the difficulties in line segmentation discussed above,
we consider an alternative approach for estimating the
bounding boxes for regions of text. Noting that words will
generally align themselves to a particular line in the image,
we instead apply the sliding window approach to individ-
ual lines in the response map at each scale. Here we take a
line to be a single 32-by-w window in the image where w
is the width of the image. Note that by imposing this con-
straint, the predicted bounding boxes will all have a height
given by 32/s where s denotes the scale of the input. We
show two example lines with their respective detector re-
sponses in Figures 5a and 5b. In lines where the text is well-
centered (5a), the detector responses are generally positive
while for lines in which the text is off-centered (5b), the
responses are negative. We now score the line by comput-
ing the maximum-sum subarray over the detector responses
for the given line. We notice that this is effectively the 1D
analog of the problem encountered earlier with computing
the maximum-sum submatrix. As before, this may be effi-
ciently computed using a dynamic programming algorithm
[2].

By imposing a threshold on the scores for each line, we
have a set of candidate lines of text. The next task is to de-

(a) Response for centered line of text. (b) Response for uncentered line of
text.

(c) NMS responses.

Figure 5: Single line sliding window and NMS for bounding box estimation. Note that in this visualization, the score at a
position x denotes the score for the window between x and x+ 32. In particular, the scores are not for a window centered at
x.

termine the left and rightmost extents of the text. One pos-
sibility is to take the left and right edges for the maximum-
sum submatrix, but in practice, this approach does not work
well. Noting that our detector is trained on patches con-
sisting of characters center-aligned in an image, a window
centered upon a space would tend to get a low, negative
score. Since the character spacing in a word is variable, in
many cases, the detector will produce a large negative value
for a space between characters within a word. In turn, the
maximum-sum subarray across that line would not include
the space; as a result, the estimated rectangle would only
bound a portion of the word. To address this problem, we
use a metric that discerns the locations of the characters in
the line and construct the bounding box such that it con-
tains all the characters. Here, we make the observation that
since the detector activates strongly on centered characters,
the peaks of the line-response map will generally translate
to the positions of characters. To pick out the peaks, we
apply non-maximal suppression (NMS) [1] to the detector
responses. More precisely, for a responseR(x) at position x
in the response map, the NMS response mapR′(x) = R(x)
if and only if R(y) ≤ R(x) ∀x − ε ≤ y ≤ x + ε and 0
otherwise. Noting that characters generally occur together,
we take ε to be a small number, generally on the order of
one to two units in the response map. Sample NMS re-
sponses for the lines of text are shown in Figure 5c. Us-
ing the NMS responses, we take the leftmost peak (leftmost
nonzero response) and the rightmost peak to be the extents
of the bounding box. Note that this method does not per-
form word-level segmentation, and instead outputs a series
of boxes that should encapsulate all the text on a given line.

4.1.3 Word-level segmentation and post-processing

The input to the character and word recognizer modules
must consist of a single word and not a full line of text.
Looking at the responses across a line, it is evident that

when the detector sees a space, the response falls sharply
to a local minimum. In general, it is difficult to distinguish
between a space between words and a space between char-
acters, primarily due to the high degree of variability of both
cases across the dataset. Since our end goal is not to build
an optimal word detector, but rather an end-to-end system,
we have some room for error. In particular, our goal is to
achieve high recall on the dataset and tolerate some false
positives, the reason being that we can always filter out the
wrong candidates in the subsequent stages of the pipeline.
Using this simplification, we proceed to estimate spaces and
perform word-level segmentation. Here, we leverage the
same NMS framework as above, except now, we apply it to
the inverse (negative) of the detector response across the re-
gion of interest. Since spaces between words will tend to be
further apart, we suppress across a larger window (ε ≈ 15
units). The size of the peak denotes the confidence that
there is a space at the specified location. For each predicted
space, up to a maximum of 5-6, we split the box contain-
ing the space into two regions and add both candidates to
the list of predicted bounding boxes for the particular im-
age. Notice that we do not remove the original region from
the list of possible candidates. This means that if we falsely
predict a space to be in the middle of a word, the original
region containing the word will not be removed from con-
sideration. This way, we can improve recall by introducing
additional candidates while sacrificing precision in the form
of introducing additional false positives into the mix. Note
that when we split a region into two regions about a space,
we recompute the score for both regions, so as to maintain
a consistent scoring scheme across all regions.

In the previous section, we noted that because we are
performing a sliding window over individual lines in the re-
sponse map, our predicted bounding boxes will always have
a height of 32/s where s is a scale that we have consid-
ered. Since it is definitely not the case that the height of the
bounding boxes takes on a small, finite set of possible val-

(a) Bounding box before word segmen-
tation.

(b) Example realignments. (c) Sample bounding boxes passed to
recognizer.

Figure 6: Post-processing process: space estimation and realignment.

ues, some of the estimated bounding boxes are going to be
of the wrong scale. To remedy this, we propose a realign-
ment algorithm that effectively takes each of the predicted
bounding boxes and adjusts the top and bottom boundaries
of the bounding box so as to maximize the detector score
over the region. More precisely, if the top t of the bounding
box is originally at location y, we consider values of t rang-
ing from t − ε to t + ε. In our experiments, we have found
that using 8 evenly spaced intervals spaced between t − h

3

and t+ h
3 , where h denotes the height of the image offers a

good tradeoff between performance and speed.
After realigning all of the candidate bounding boxes, we

apply one final step of NMS, this time to reduce the number
of candidate bounding boxes. Effectively, given two over-
lapping bounding boxes A and B, with scores sA > sB ,
respectively, we suppress B if the ratio of the area of the
intersection A ∩ B to the area of the union A ∪ B exceeds
some ratio r (here, we have taken r to be between 0.4 and
0.5). Using this, we arrive at a candidate set of bounding
boxes that we may use in the word recognizer.

4.2. Word-level recognition

Here we consider the scenario in which the ground truth
word-level bounding box is given, and aim to build a word-
level recognizer that gives the correct labeling to the input
bounding box along with a recognition score reflecting the
confidence of its prediction. All word bounding boxes are
first resized to have a height of 32 pixels while maintaining
the aspect ratio. This way, the character classifier can slide
horizontally across the bounding box to generate a 62-way
classifier score at each window position. The confidence
score cw of a sliding window w is defined as the difference
between the highest and the second highest 62-way score
in that window. Intuitively, a more positive cw indicates
a higher confidence that a centered character is present in
window w. Since the cw’s are usually noisy, we apply NMS
on the cw’s to obtain a set of candidate character locations,
each associated with a 62-way classification score si. Our
initial guess of the word will simply be a string consisting of

characters with the highest 62-way score at each candidate
location. In order to match the initial guess with a word in
the lexicon, we use a variant of the weighted string distance
(WSD) described in [4]. Unlike ordinary string distance
where all edit actions have the same cost, each edit action
in WSD is associated with a weight that is equal to the dif-
ference between the 62-way score of the source character
and the target character at that location. To enable insertion
and deletion, a null character λ is defined, and its weight is
calculated as the average of the best 62-way score at each
location minus the best 62-way score at a particular loca-
tion. In other words,

si(λ) =

(
1

WNMS

WNMS∑
j=1

max sj

)
−max si (1)

WhereWNMS denotes the number of window locations after
NMS.

As with ordinary unweighted string distance, the
weighted distance between two arbitrary strings can be effi-
ciently computed using a dynamic programming algorithm
in O(mn) time, where m and n are the lengths of the two
strings [4]. By using WSD, we have a simple way of com-
paring our initial guessed string with all entries in the lex-
icon while taking the character classifier score into consid-
eration. The output string of the word recognizer will be
the lexicon word with smallest weighted edit distance to the
initial guessed word.

Finally, the location of each character in the final output
string can be determined by backtracing the dynamic pro-
gramming table for the WSD. For a word bounding box b,
we define the recognition score Sb(str) of its output string
str as the sum of the classification scores associated with
each predicted character at their respective locations:

Sb(str) =

length(str)∑
j=1

sL(str(j)) (2)

where L(str(j)) is the sliding window index of the jth

character in the final predicted string. The recognition score

(a) Candidate bounding boxes with their predicted label and
recognition score.

(b) Final output after filtering and NMS.

Figure 7: Removing false positive bounding boxes using recognition scores.

Sb(str) will be useful for removing false positives gener-
ated by the detection stage as well as generate word-level
segmentation in the end-to-end recognition stage.

4.3. End-to-end word recognition

The word recognition approach described in Section 4.2
assumes a word-level bounding box is given. As shown in
Figure 7, the candidate bounding boxes returned by the text
detector may contain a fair amount of false positives, and it
is the job of the word level recognizer to filter these out. The
word level recognizer evaluates every candidate bounding
box, assigning each of them a recognition score. Bounding
boxes with classifier scores lower than a threshold are dis-
carded to reduce the false positive rate. We then sort the
bounding boxes by their recognition scores, and make pre-
dictions on the top-ranked ones, while removing bounding
boxes with lower scores which overlap with the predictions
using the same NMS approach described in Section 4.1.3.

5. Experiments

In this section we present a detailed evaluation of our
end-to-end system, as well as the subsystems in our pipeline
using the ICDAR 2003 dataset [13]. In particular, we com-
pare our text detection results with other similar systems
and our character classifier results with [6]. We also evalu-
ate our system on cropped word recognition as well as end-
to-end word recognition on full images and compare our
results with [11], which has the best known state-of-the-art
results on the ICDAR dataset.

5.1. Text detection

We use two metrics to evaluate the performance of the
text detector: pixel-level average precision as in [6] as well

Figure 8: Pixel level precision-recall curves for text detec-
tor. Numbers in brackets denote average precision.

as the quality of the word-level bounding boxes using pre-
cision and recall as defined in [13]. The latter is the stan-
dard metric used to assess the performance of text local-
ization and recognition systems over the ICDAR dataset.
We first consider the effect of using different datasets to
train the detector. The end goal here is to train a detector
that is effective at picking out centered and properly scaled
characters suitable for the word recognizer. Thus, we con-
sider augmenting the standard dataset described in Section
3.2 with two additional types of synthetic negative exam-
ples: examples where the text is off-centered (Figure 3d)
and examples where the text is of the incorrect scale (Fig-
ure 3e). Using these augmented training sets, we train a
CNN and evaluate the average precision of the detector over
the full ICDAR dataset. These results are summarized in

Method Precision Recall F-Score
Baseline 0.4686 0.4416 0.4348

Word Segmentation 0.3901 0.6425 0.4702
Realignment 0.4875 0.5831 0.5165
Best Recall 0.3687 0.6626 0.4536

(a) Bounding box estimation steps.

Method Precision Recall F-Score
Pan et al. [15] 0.67 0.71 0.69

Epshtein et al. [3] 0.73 0.60 0.66
Our approach 0.49 0.58 0.52
HWDavid [13] 0.44 0.46 0.45

(b) Text detection results comparison.

Table 1: Precision, recall and F-scores for different systems on the ICDAR test set [13].

the precision-recall curves in Figure 8. The results indicate
that incorporating these additional negative examples tend
to hurt the performance of the detector with average pre-
cision dropping by about 2-4% in each case. While these
examples are better at defining the notion of a “positive,”
they are also increasing the difficulty of the detection prob-
lem. By imposing a strict scale and position requirement on
the positive examples, we are also working against the spa-
tial invariance implicit to the structure of the CNN, which
in turn, may lead to a weaker detector. Given that, we fall
back to the baseline detection system for the remainder of
this paper. This detector attains an average pixel-level pre-
cision of 0.60, which is comparable to the best performance
(0.62) of the much larger network (1000 input filters) in [6].

Having trained a detector, we now apply the full detec-
tion pipeline to construct word-level bounding boxes. We
assess each step of the post-processing pipeline separately
and summarize the results in Table 1a. We begin with the
baseline system, which emits a set of bounding boxes for
lines of text. Note that we also apply non-maximal sup-
pression to these boxes to reduce the number of candidate
boxes. Because the ICDAR test metric is for word-level
bounding boxes, the system will be heavily penalized when-
ever there are multiple words in a single line. Nonetheless,
this method yields a combined F-score (harmonic mean of
precision and recall) of 0.4348 on the ICDAR test set. A
comparison with other text detection systems is provided in
Table 1b. The first step in the post-processing aims to slice
a line-level bounding box into word-level bounding boxes.
Introducing this yields a 4% boost in the F-score to 0.4702.
Notice that there is a substantial improvement in the recall
of the system from 0.4416 to 0.6424 since the system is now
localizing the individual words. There is a corresponding
reduction in the precision of the system since the system
will emit both the entire line as well as the segmented re-
gions as candidate bounding boxes. Thus, some of them are
guaranteed to be false positives; however, we note that we
can prune out these false positives in the recognizer stage,
so the lowered precision is not a significant problem. Fi-
nally, we apply the realignment process, which increases
the detector’s F-score to 0.5165, which is still below from
the state of the art in detection, but reputable nonetheless.

Figure 9: Cross-validation accuracy with varying number
of synthetic data examples.

Method Accuracy
REAL+SYNTH 84.0%
REAL 78.2%
Coates, et al. [6] 81.7%
Neumann and Matas [14] 67.0%

Table 2: Test recognition accuracy on ICDAR 2003 Char-
acter Dataset.

However, as noted earlier, what we are optimizing for is
the end-to-end recognition results, in which case recall is
more important than precision. Thus, we select the mini-
mum value to be the detection threshold, which translates
to a recall of 0.6626.

5.2. Character Classification

To prevent overfitting, we first train our character clas-
sifier using a mixture of the ICDAR 2003 sample images
[13], the Chars74k dataset [8], the Weinman dataset [17]
and varying amounts of synthetic data, and then run cross-
validation (CV) over ICDAR 2003 train images. The train-
ing (blue) and CV (red) learning curves are shown in Figure
9. We can see that the best CV results are obtained using
100,000 synthetic examples. We then train our final char-
acter classifier using the best CV settings with all 113,000
examples (100,000 synthetic examples + all real training ex-
amples; we call this setup REAL+SYNTH), and achieve a

Figure 10: Example images in the ICDAR 2003 Robust
Word Recognition Dataset.

Method WD-50 WD-FULL WD-NO-LEXs
Our approach 86% 73% 52%
Wang, et al. [11] 76% 62% -

Table 3: Cropped word accuracy on ICDAR 2003 Dataset.

Method K = 5 K = 20 K = 50
Our approach .67 .65 .63
Wang, et al. [11] .72 .70 .68

Table 4: F-scores for end-to-end evaluation on ICDAR 2003
Dataset.

62-way classifier accuracy of 84% on the ICDAR 2003 test
set, which consists of 5198 test images. We also train on
the 13,000 real examples alone and achieve an accuracy of
78.2% on the test set (we call this REAL). As shown in Ta-
ble 2, our result trained with the REAL+SYNTH setup is
superior to all other (purpose-built) systems tested on the
same problem. We also observe that training with a large
number of good-quality synthetic data can significantly im-
prove classification results.

5.3. Cropped Word Recognition

This part of our system is evaluated on the ICDAR 2003
Robust Word Recognition dataset, which contains images
of perfectly cropped words as illustrated in Figure 10. We
use the exact same testing set-up as [11]. More concretely,
we measure word-level accuracy with a lexicon containing
all the words from the ICDAR test set (called WD-FULL),
and with lexicons consisting of the ground truth words for
that image plus 50 random “distractor” words added from
the test set (called WD-50). In addition, we also evaluate
the performance of our system without a known lexicon. In
that case, we feed the raw classifier output string into Hun-
spell1 to obtain a set of suggested words, and run the same
WSD method using those suggested words as our lexicon
(called WD-NO-LEX). Note that in [11], the authors ig-
nored all words shorter than 3 characters, as well as words
containing non-alphanumeric characters. We perform the
same pre-processing on our data. Table 3 compares our re-
sults with [11]. Apart from achieving significantly better
results on WD-FULL and WD-50, our system can achieve
decent accuracy without relying on a known lexicon in the
WD-NO-LEX setup, which is a missing feature from [11].

1Hunspell is an open source spell checking software available at
http://hunspell.sourceforge.net/

Figure 11: Precision-Recall Curves of our end-to-end word
detection and recognition on the ICDAR dataset, with lex-
icons containing 5, 20, and 50 distractor words. Best F-
scores are shown in square brackets.

5.4. End-to-end Word Detection and Recognition

To construct a fair comparison of our end-to-end system,
we again test using the exact same settings as [11]. We con-
struct a lexicon for each image by taking the ground truth
words in that image and adding K (K = 5, 20, and 50) ex-
tra distractor words chosen at random from the test set. Fig-
ure 12 shows some sample outputs of our system. As in
the previous experiment, words shorter than 3 characters or
containing non-alphanumeric characters are removed. We
follow the standard evaluation criterion described in [13],
where a predicted bounding box is considered to be a true
positive if its area intersects a ground truth bounding box
by more than 50% of the area of the smallest rectangle that
can contain these two bounding boxes, and the words match
(ignoring case). Precision and recall can then be calculated
as usual: precision is equal to the fraction of true positives
in the set of predictions, and recall is the fraction of true
positives in the set of all ground truth bounding boxes. Fig-
ure 11 shows precision and recall plots for different values
of K. As before, we also compute the standard F-score.

As a standard way of summarizing results, we report the
highest F-score across the precision-recall curves and com-
pare our results with [11] in Table 4. Our system attains
slightly lower F-scores than [11]. However, do note that our
system has better results on cropped word recognition, and
thus, making further improvements to the text detector can
potentially improve upon the full end-to-end system.

6. Conclusion and Future Considerations
In this paper, we consider a new end-to-end scene text

recognition system that uses essentially the same architec-
ture for both the detection and recognition subsystems. By

Figure 12: Example outputs of our end-to-end system with K = 20.

applying NMS-based heuristics in conjunction with sliding
window responses, we outperform state-of-the-art systems
in cropped word recognition, and achieve decent results in
end-to-end text recognition on the ICDAR 2003 dataset.
This demonstrates the possibility of using a single, unified
architecture for both detection and recognition in the con-
struction of a full end-to-end system.

As discussed above, to further improve the system, we
should focus on improving the detector. In particular, we
notice in Figure 11 that recall is significantly lower than pre-
cision, which means that many words are simply not cap-
tured by the detector. This could be because the candidate
bounding boxes generated by the text detector are not bound
tightly (of the wrong scale). Very often, these boxes are as-
signed low scores by the word recognizer, and subsequently
removed by NMS. This problem can potentially be fixed
by more careful tuning of the NMS during the text detec-
tion stage or by training context-dependent classifiers that
take into account not only the responses of a single window,
but also that of its neighboring windows. By increasing the
amount of information available to the detector, it should be
able to make more informed decisions, thus yielding higher
quality bounding boxes.

References
[1] L. G. A. Neubeck. Efficient non-maximum suppression. In

ICPR, 2006. 5, 11
[2] S. An, P. Peursum, W. Liu, and S. Venkatesh. Efficient algo-

rithms for subwindow search in object detection and local-
ization. In IEEE, 2009. 4, 11

[3] Y. W. B. Epshtein, E. Oyek. Detecting text in natural scenes
with stroke width transform. In CVPR, 2010. 1, 2, 8

[4] C. Barat, C. Ducottet, É. Fromont, A.-C. Legrand, and
M. Sebban. Weighted symbols-based edit distance for string-
structured image classification. In ECML/PKDD (1), pages
72–86, 2010. 6

[5] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber. High performance neural networks for vi-
sual object classification. Technical Report IDSIA-01-11,
Dalle Molle Institute for Artificial Intelligence, 2011. 2, 11

[6] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh,
T. Wang, D. J. Wu, and A. Y. Ng. Text detection and char-
acter recognition in scene images with unsupervised feature
learning. In ICDAR, 2011. 2, 3, 4, 7, 8, 11

[7] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-
layer networks in unsupervised feature learning. In AISTATS,
2011. 2, 11

[8] T. E. de Campos, B. R. Babu, and M. Varma. Character
recognition in natural images. In VISAPP, February 2009. 1,
3, 8

[9] W. N. Francis and H. Kucera. Brown corpus manual. Tech-
nical report, Department of Linguistics, Brown University,
Providence, Rhode Island, US, 1979. 3

[10] A. Hyvarinen and E. Oja. Independent component analysis:
algorithms and applications. Neural networks, 13(4-5):411–
430, 2000. 2

[11] S. B. K. Wang, B. Babenko. End-to-end scene text recogni-
tion. In ICCV, 2011. 1, 3, 7, 9, 11

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1:541–551, 1989. 2, 11

[13] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and
R. Young. ICDAR 2003 robust reading competitions. IC-
DAR, 2003. 3, 7, 8, 9

[14] L. Neumann and J. Matas. A method for text localization
and recognition in real-world images. In AACCV, 2010. 2, 8

[15] Y. Pan, X. Hou, and C. Liu. Text localization in natural scene
images based on conditional random field. In ICDAR, 2009.
1, 8

[16] Z. Saidane and C. Garcia. Automatic scene text recogni-
tion using a convolutional neural network. In Workshop on
Camera-Based Document Analysis and Recognition, 2007.
2, 11

[17] J. Weinman, E. Learned-Miller, and A. R. Hanson. Scene
text recognition using similarity and a lexicon with sparse
belief propagation. In Transactions on Pattern Analysis and
Machine Intelligence, volume 31, 2009. 3, 8

[18] J. J. Weinman, E. Learned-Miller, and A. R. Hanson. A dis-
criminative semi-markov model for robust scene text recog-
nition. In Proc. IAPR International Conference on Pattern
Recognition, Dec. 2008. 2

7. Appendix
This project was done in collaboration with Adam

Coates in Professor Andrew Ng’s lab. In this section, we
summarize the components of this project that directly per-
tain to computer vision as well as our own contributions, as
per the requirements.

7.1. Computer Vision Components

This project focuses on the task of scene text recogni-
tion, which is a core problem in computer vision. Convolu-
tional neural networks have been applied with great success
to many problems in computer vision [5, 12, 16], as has un-
supervised feature learning [6, 7]. In this project, we have
elected to take an existing and high-performing framework
and apply it to the field of text recognition. Once we have
trained a text detector and recognizer, the way we evalu-
ate it over full images draws upon standard techniques in
computer vision: sliding windows across multiple scales,
finding maximum-sum subregions for bounding box esti-
mation [2] and applying non-maximal suppression to filter
results [1]. In a sense, the entire post-processing pipeline
we described for text detection is a standard object recogni-
tion system where we try to apply a single, highly accurate
object detector to full images in order to localize objects of
interest (the object of interest being text in this case). The
word-level recognizer uses a lexicon-based search strategy
not too different from the ideas proposed in [11] to go from
character-level responses to full word recognition. Over-
all, the primary focus of this project has been to use the
low-level representations from a CNN to construct a com-
plete high-level system that can extract and recognize text
from natural images. The majority of the project was spent
constructing this high-level, text-recognition system using a
single, unified low-level framework.

7.2. Project Contributions

This project is a major part of the Photo OCR project that
we are working on in Professor Ng’s lab. As part of this,
we hold weekly meeting with Adam Coates, during which
we discuss potential ideas and further experiments. Apart
from Adam however, there are no other collaborators on this
project at this time. Additionally, this research is not part of
any other course projects that we have done, either past or
present. The two of us are the main collaborators on this
project and the vast majority of the code has been written
by us. There are two main exceptions to this: for training
the convolutional neural network, we used Jiquan Ngiam’s
CNN toolbox and for setting up distributed jobs, we used
Adam Coates’ distributed MapReduce framework. Both Ji-
quan and Adam are students in Professor Ng’s lab. Note
that in the case of training the CNN, we wrote the code that
computes the L2-SVM loss for our particular setup. There
is also some legacy code that we wrote before this quarter

that we incorporated into the project, most notably the code
for K-means pretraining and some of the code for gener-
ating synthetic data. For the new system (CNN, bounding
box computation, word recognition, and full end-to-end),
all components were written in the course of this quarter.

To some extent, our work is an extension of the system
described in our previous ICDAR paper [6]. At the same
time, we have made substantial modifications to it since
this summer, particularly with the focus on the construc-
tion of an end-to-end system. For instance, in the case of
the text detector, we are using a new training set based on
synthetic examples and are training a CNN rather than us-
ing just a single fully connected network. In the case of
the character recognizer, we have also moved towards using
a multi-layered convolutional neural network rather than a
single layer of pretrained filters. Furthermore, all of the
post-processing pipeline that we have described above, the
word-level recognition using a lexicon-backed WSD, and
the various applications of NMS were formulated and im-
plemented by us during the course of this project. All of
the analysis described in this paper is largely our own, al-
though Adam did offer some insights into improving the
system. This project constitutes a portion of the honors the-
sis (David) and Master’s thesis (Tao) that we are working
on this year.

We thus affirm that we are the sole authors of the work
described in this paper.

7.3. Note on Code Submission

Note that in our code submission, we have omitted Ji-
quan’s CNN toolbox and Adam’s distributed system frame-
work. All the code that we have included has been written
by us. Please let us know if you would like to discuss the
CNN and distributed systems codes.

7.4. Note on Future Distribution

Since we may write a research paper based on ideas dis-
cussed in this project, please DO NOT post this report on
the course website.

