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Abstract

We will explore the use of event specific object detec-
tors (part based models) in multimedia event detection. The
challenge is to choose a well-trained object detector spe-
cific to the event videos. The presence of dataset bias would
make an object detection model trained on an unrelated
generic image database less useful for the video dataset in
hand. Given such a generic object model, we propose an
iterative method to build a more effective detector, trained
only on frames from the training video dataset. The generic
model, in combination with an optical flow based filtering
method is used to extract objects with high confidence from
training videos, which are then used to train a new object
detection model. This model is again used to extract ob-
jects, used for training in the next iteration. The process is
repeated to finally obtain a dataset specific model trained
only on frames from training videos. The performance of
the final model is evaluated on manually annotated frames
form test videos. It is compared with the original object de-
tector to show the gain of the proposed method. A group
of such dataset specific object models corresponding to dif-
ferent objects can be used to build features from videos for
high level vision tasks. Finally, in order to evaluate the new
model in the context of video understanding, the two mod-
els are used to extract some simple features from a set of
videos belonging to two event classes and corresponding
Precision Recall curves are presented for the two models in
this binary classification setup.

1. Introduction
Video understanding aims to identify spatial and tem-

poral patterns in a video to recognize the events captured
by it. Given a set of pre-defined events, multimedia event
detection identifies the occurrence of an event in a video-
clip. This is akin to the fundamental challenge of object
recognition in images. The difficulty of the event detection
task arises from the huge interclass variation in camera view
points, appearance of objects/ persons involved in the event,

resolution, illumination, video quality etc.
In this project, we will focus on the task of event detec-

tion using event specific object detectors. In general, such
detectors are a part of a larger framework, where the motion
of the object is also identified in successive video frames
and compared with corresponding motion in training videos
[6, 8]. However, in this project we will restrict the analysis
to tagging videos based only on detection of event specific
objects. In particular, we propose a method to build an ob-
ject detector which would perform well for a given video
dataset.

An object detector trained on a generic image database
like Imagenet [1] would not be effective on the video
dataset, due to the presence of inherent dataset bias. For
instance, in the case of detecting ”skateboards” in skate-
boarding videos, it can be seen that the videos mostly con-
tain frames showing people moving on skateboards. On
the other hand, Imagenet skateboard images show skate-
boards from different views often occluded by other objects.
Some sample “skateboard” images from Imagenet database
and “skateboard” images segmented from Trecvid video se-
quence are shown in Fig. 1. The effect of such dataset bias
has been explored in [10]. The paper has analyzed the per-
formance of detectors trained on one dataset and tested on
others. The performance was seen to degrade even for the
two class classification problem. Hence, in order to achieve
best results, we would like to train the object detector only
on video frames from the training video dataset. However,
it is impractical to manually annotate video frames, every
time we are given a video dataset. Instead, we will use the
object detector trained on a readily available annotated im-
age dataset like [1] to build an object detector specific to
the given video dataset. This object detector will be used to
extract relevant object sequences from event videos and tag
them according to the presence or absence of such object
sequences.

A part based model for object detection was proposed in
[3] and shown to achieve state-of-the-art results on the PAS-
CAL VOC benchmarks [2]. [3] represents object classes as
multi-scale models with deformable parts. We will use this
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Figure 1. Sample “skateboard” images from (a) Imagenet database
and (b) video frames from Trecvid video database. The difference
in orientations and context surrounding the object can be seen in
these images.

part based model obtained from [4] to detect event related
objects from training videos and iteratively train the model
with the segmented objects. This would improve the per-
formance of the model for videos belonging to the event
set. While detecting objects from videos for training, an
optical filter[5] based filtering is applied in the temporal do-
main to ensure that only objects which are detected consis-
tently in successive frames and with motion along the path
predicted by optical flow are retained. This minimizes the
chance of spurious detections. The final improved detector
can be used to extract object (pertaining to a certain event)
sequences from a test video.

The initial part based model for detecting event related
objects in videos is trained with images obtained from Ima-
geNet [1]. TRECVID [9] event kits is used for training and
testing the proposed algorithm. Each event kit contains the
definition and evidential description of the event. For a spe-
cific event, the event related objects are decided based on
this evidential description.

It was shown in [7], that a bank of object detectors can be
used to build powerful features from images for high level
vision tasks like scene understanding. We extend this idea
to find the utility of a set of dataset specific object models in
the context of video understanding. In particular, we present
results for binary event classification problem by consider-
ing a simple feature (developed along the lines of [7]) ex-
tracted from videos, using a set of two object detectors. We
compare the results for object models trained on a generic
database as well as the iteratively trained models.

2. Background
We have used the part based model [3] for object de-

tection from target video frames. The current work also
explores a strategy similar to [7], for event detection by us-
ing a bank of object detectors to identify relevant object se-

Figure 2. An illustration of the part based model for the object
class “person”. The two rows corespond to the two components
of the model. The first colum shows the root filter (The HOG
feature representation). The second column shows the different
part filters of the model and the last column shows the deformation
cost assocaited with the plasemnt of each part with respect to the
root filter.

quences from videos. In addition to an object detector, we
use the optical flow based tracking algorithm to deduce the
motion of an object in successive frames. The part based
model and optical flow algortithms are discussed in Sec. 2.1
and Sec. 2.2. We have also provided a brief description of
the objectbank scheme for scene classification in Sec. 2.3.

2.1. Part based model for object detection

The part based model is a deformable model which
makes uses of a root filter and a set of part filters to identify
objects. At a given scale and position in an image, the de-
tection score is computed as the sum of the score obtained
from the root filter and sum of parts of the maximum (over
the placement of that part) of the part filter scores minus a
deformation cost associated with the deviation of the parts
from their ideal location. A set of root filters and part fil-
ters are said to constitute a component of an object. Each
object is modeled as a mixture of such components. The
final score is then obtained as the maximum of the scores
corresponding to each component. The mixture of compo-
nents captures the variation associated with different view
and orientations of an object. An illustration of the differ-
ent filters associated with an object model is shown in Fig.
2.

The training of the model uses a technique known as
the latent SVM (LSVM). The LSVM formulation is shown
in Eq. 1, where each example x is scored by the function
fw(x).

fw(x) = maxz (w · φ(x, z)) (1)

Here, w corresponds to a concatenation of the weights



associated with different filters. z represents the latent vari-
ables of the model, which indicate the configuration of the
object in an image and the component label corresponding
to it. φ(x, z) is the feature vector, which is the concatena-
tion of the window of the feature map corresponding to the
root filter and the sub-windows corresponding to the differ-
ent parts. In general, the problem in Eq. 1 is convex in w
for negative examples, but not for positive examples. The
problem is made convex by fixing one possible latent vari-
able for each positive example.

2.2. Optical Flow

The optical flow algorithm attempts to determine the dis-
placement of pixels between two successive frames in a
video based on assumptions of spatial coherence and small
displacement. Let us represent the pixel at time t+τ located
at the position vector x = (x, y) by I(x, t + τ). The pixel
position at time t can be obtained by considering a small
displacement in time τ , denoted by the displacement vector
δx, t, τ as shown in Eq. 2.

I(x, t+ τ) = I(x− δ(x, t, τ), t) (2)

A Taylor series expansion of Eq. 2, neglecting the higher
order terms gives us a constraint as shown in Eq. 3, where
Vx represents the velocity of the pixel at position x.

∇xI ·Vx = −∂I
∂t

(3)

The equation has two unknowns in the components of the
velocity vector Vx, and is solved by imposing an additional
condition based on the assumption of spatial coherence. In
this project, we have made use of the Lucas-Kanade itera-
tive implementation of the optical flow algorithm which as-
sumes that the movement of pixels within a small neighbor-
hood of the pixel under consideration between successive
frames is small to slove Eq. 3.

2.3. Objectbank

[7] provided a method to represent images as a set of
response-maps of object detectors, for high level visual
tasks like image understanding. Pre-trained generic object
detectors were used to build a feature, denoting the pres-
ence of objects at different scales and quadrants of an im-
age. This representation was shown to capture semantic and
spatial information of objects present in an image. They had
further analyzed the choice of objects needed for a specific
visual task. We extend on this idea to build a simple fea-
ture vector to represent a video as a collection of the best
object sequences present in it. The idea of object sequences
in explained in Sec. 4.2.

3. Approach
Given an object detector trained on images from a

generic database (which will be refered to as the generic
object model), we wish to gradually remove the dataset bias
from the model and move towards a model (referred to as
the dataset specific object model) more specific to the video
dataset in hand. We first initialize the training procedure
with a model trained on an image database. Secondly, we
use this model in combination with an optical flow based
filtering method to detect objects with high confidence and
annotate corresponding frames from training videos. A flow
diagram depicting the extraction of object sequences from
one video is shown in Fig. 3. Thirdly, the newly annotated
video frames along with the original database images are
used to train a new object detection model. This procedure
is repeated iteratively to train object detection models. The
different steps are explained below.

We also discuss, the use of a small set of these object
detectors to build a simple feature vector for event classi-
fication. These features will later be used in Sec. 4.2 to
show the improvement in performance obtained by switch-
ing from the generic object model to the specific model.

3.1. Initialization

The event specific object is decided based on the eviden-
tial description of the event provided in the event-kit. In
this project, we consider only one event related object for
each event class. For instance, ”skateboards” are chosen as
the object relevant to the event class ”attempting a board
trick”. The corresponding annotated images from the Ima-
genet database are used to train an initial part based model
as described in [3].

3.2. Bounding box detection in video

This part based model is used to detect object bounding
boxes from all training video frames. The top four bound-
ing boxes Bj

i where, j ∈ {1, 2, 3, 4} with highest detec-
tion scores in each frame is retained along with their corre-
sponding scores Sj

i . These four bounding boxes are used to
assign score values to pixels in the image to form a score-
map. Each pixel in an frame from a video is assigned the
score of the best bounding box it falls into. If a pixel does
not fall into any bounding box, it is assigned a very high
negative score Smin. Let Si(x) denote the score assigned
to the pixel at position x in the ith frame of a video. The
score values are now filtered using a optical flow based filter
to ensure that only objects which are consistently detected
in a sequence of frames are retained.

3.3. Optical flow based temporal filtering

Optical flow can be used to track a dense set of points
across a sequence of frames. For every pixel in a frame, the



Figure 3. A flow diagram showing the extraction of object sequences from a video using the scheme expalined from Sec. 3.1 to Sec. 3.3

corresponding position in another frame can be obtained.
Let ui,k(x) denote the displacement of the pixel at position
x from the ith frame to kth frame. We use this information
to filter the scores Si. This filtering is carried out across a
window of frames. Let (2N + 1) denote the window size
andRi(x), the modified score at pixel x of ith frame. Then,

Ri(x) =

N∑
k=−N

wkSi−k(x+ ui,i−k(x)) (4)

The filter coefficientswk are chosen according to a Gaus-
sian kernel. This smoothens out any irregularities in ob-
ject detection across successive frames. a toy example is
demonstrated in fig .4, for a window size of 3. After ob-
taining Ri, the filtered scores Rj

i of bounding boxes Bj
i in

images are computed as the average of all pixels belonging
to the bounding box.

Rj
i =

∑
x∈Bj

i
Ri(x)

|Bj
i |

(5)

Here, |.| represents the size of the bounding box. Having
obtained the filtered score values, we still need to elimi-
nate a large number of spurious detections and retain only

Figure 4. A toy example showing the temporal filtering carried out
at a pixel x in the 3rd frame of a video. We have considered a
temporal window of size 3. y and z are the positions of the pixel
in the 2nd and 4th frame respectively, estimated by optical flow.
Si represents the original score-map obtained from the detection
algorithm. R3 is the final score-map after filtering. wi represents
the filter coefficients.

”good” detections. Again, we impose the criteria that good
detections will be consistent across a sequence of frames.
Hence, we retain the detection only if the same region is
detected in neighboring frames as well. We impose a set of
hard conditions to achieve this. Let, Bmax

i be the box with
the highest score Rmax

i in the ith frame. We reject all other
bounding boxes in the frame. Let B′i denote the bounding
box obtained by displacingBmax

i from ith frame to (i+1)th



using optical flow. We reject the detectionBmax
i if the over-

lap between the dispalced box B′i and Bmax
i+1 is less than a

threshold δ. Then, we move a window of size M in the
temporal domain and retain only those detection sequences
which have a length greater than M . A detection sequence
in this context refers to a set of consecutive frames where
an object has been detected (bounding box retained accord-
ing to the previous conditions). Finally, the average velocity
of the object in the sequence is computed using optical flow
measurements. The detection sequence is rejected if this ve-
locity is less than a threshold τ . This condition helps elim-
inate noisy detections particularly from background clutter.
Moreover, objects which are static through a sequence of
frames will add less value to training. The conditions are
enumerated below.

1. Only the bounding box Bmax
i with naximum score in

each frame is retained

2. Bmax
i is rejected, if the overlap between the dispalced

box B′i and Bmax
i+1 is less than δ

3. Only detection sequences(consecutive frames, where a
bounding box has been retained) with length greater
than M are retained

4. A detection sequence is rejected if the average velocity
of the object in the sequence is less than τ

These stringent conditions enforce the criteria, that only
good detections are retained. This method is used to extract
object sequences from all training videos belonging to the
event class.

3.4. Iterative training

Let PImagenet represent the object detection model ob-
tained by training only with the Imagenet object images.
The object detection results from Sec. 3.3 are used to
obtain a set of image annotated with the bounding box
information. These new images are now added to the
pool of Imagenet images to train a new object detection
model PImagenet+video. Alongside, another object detec-
tion model Pvideo is obtained by training only with the ob-
jects detected from Sec. 3.3. Both the models are cross val-
idated on image frames from test videoset using 5 − fold
validation. The model with the better average precision
score is used in the next iteration. The steps discussed in
Sec. 3.2 and 3.3 are repeated with this new object detection
model. Finally an object detection model trained only on
frames from training video sequence is obtained which out-
performs the original model PImagenet. It is to be noted that
in our experiments the negative training examples remain
consistent throughout all iterations. However, this need not
be the case. An equal number of negative training sam-
ples can also be extracted in a similar fashion form training
videos and used for training.

3.5. Choice of objects

Experiments in [7] have shown that, rich semantic infor-
mation in image scenes can be captured with only 20 ob-
ject filters. By object filters, we refer to a convolution filter
which would provide a response-map denoting the presence
of a specific object at different image locations. It was fur-
ther hypothesized and verified that the distribution of ob-
jects in images followed Zipf’s law. Hence extending this
idea, with a choice of few object detectors, we should be
able to extract meaningful object related information from
videos. The choice of these objects is naturally dependent
on the evidential description of events provided in the event
data kit. The evidential description provides a list of at-
tributes related with each event. The objects mentioned in
this description can be used for iterative training of object
model and subsequent event identification. If more than one
event class share the same attribute (the object “person” for
instance is associated with a large number of event classes),
the iterative training can be carried out by extracting video
frames from videos of all event classes which share this at-
tribute. Due to computational and time limitations, we re-
strict the analysis to two event classes and two objects in our
experiments. “skateboards” and “tires” are the prominent
objects in the event classes “Attempting a board trick” and
“Changing a tire” respectively. The presence and absence
of these objects would almost provide sufficient informa-
tion to distinguish these two classes. Hence, experiments
in Sec. 4.2 will use these object classes only. It is to be
noted that a more rigorous treatment should involve, con-
sidering all objects mentioned in the evidential description
and finally selecting a smaller set based on a mutual infor-
mation or similar criterion often used in feature selection.
For the purpose of this report, we have bypassed this step
and assumed that the two object classes ”skateboard” and
”tire” would provide maximum information about the event
classes considered.

3.6. Features for video classifcation

In order to gain some insight into the actual utility of
the scheme, a toy experiment is demonstrated in Sec. 4.2,
where videos are classified into two categories based on a
set of features. In this section, we describe a simple feature
for videos similar to the Objectbank scheme for scene clas-
sification. Until now, we have looked at an iterative training
method for developing effective object detectors for video
detection. Once the object detectors are available, a video
can be described in terms of the response of video frames to
the object detectors. More specifically, we are interestd in
the best sequence corresponding to an object in an image.
We extract object sequences (of a fixed length M ) with the
same criteria mentioned in Sec. 3.3. However, an object se-
quence may not be present in a video always satisying these



Figure 5. An illustration of the feature construction from a video
using two object detectors. The top row shows the best “skate-
board” sequence extracted from the video along with detection
score for each frame. The bottom row shows the best “tire” se-
quence and corresponding scores below it. The two score vectors
are concatenated to form the feature vector.

stringent conditions. Hence, we gradually relax the overlap
threshold δ, till we obtain a ”good” sequence. In the pres-
ence of multiple object sequences, we retain the sequence
with the highest object detection score averaged across all
frames of the sequence. This is similar to the Objectbank
approach for scenes, where the highest responsemap score
in spatial bins is concatenated to represent an image. Once
the object sequence is obtained, we build a feature vector
by concatenating the detection scores in each frame to form
a feature vector of length M . Hence, by running n object
detectors (pertaining to n objects like skateboard, tire, · · · )
we can obtain a feature of length nM by concatenating all
these scores together. An example is demonstrated in Fig.
5. It is to be noted that, although we restrict ourselves to one
sequence, a more rich feature can be obtained by consider-
ing multiple object sequences in an object and also taking
into account the trajectory of such objects in the sequence.

4. Experiments

The experiments presented in this section were carried
out on two event classes “Attempting a board trick” and
“Changing a vehicle tire” from the Trecvid [9] event kit.
Each event class contains 100+ videos with variable length
(usually around a 1000 frames). We have used two com-
ponent models with six parts each for object detection. As
mentioned in Sec. 3.5, we present results by considering
detectors corresponding to two object classes “skateboard”
and “tires”. We first demonstrate some experiments to jus-
tify the use of iterative training, followed by a simple binary
event classification exercise to show the gain of the iterative
training scheme in the context of event detection.

(a)

(b)

Figure 6. Change in performance of the Pvideo with time is shown
for (a) skateboard and (b) tire models. The dashed line corre-
sponds to the average precision of PImagenet.

4.1. Dataset specific object detector

In this section we compare the performance of the
generic object detector and the dataset specific object detec-
tor developed as discussed in Sec. 3. We build two object
detectors (“skateboard” and “tire”), each corresponding to
one event class. For each of the object models, training was
iteratively carried out by extracting objects from a training
set of 40 videos from the corresponding event class. The
resultant models PImagenet+video and Pvideo are evaluated
on a set of 170+ manually annotated images obtained from
a test video set of 40 videos belonging to the corresponding
event class. 5− fold cross validation is carried out on these
images to obtain an Average Precision (AP) value for each
model at the end of each iteration. During each iteration of
the 5− fold validation experiment, the model is tested on
4 folds to identify the best detection threshold for the part
based model. This threshold is then used to evaluate the AP
value on the remaining 1 fold according to the PASCAL voc
benchmark. The AP values reported are the average of the
5 AP values obtained from the 5 iterations of 5-fold vali-
dation. The progress of the iterative training is plotted in
Fig. 6 for Pvideo of the two objects. The performance of all
the three models after 3 iiterations is shown in Fig. 7. This
variation in performance for the two models are discussed
below



Figure 7. The Average Precision value upon 5-fold validation for
the three models PImagenet, PImagenet+video and Pvideo are
shown for the tire and skateboard objects.

4.2. Event classification

In this experiment, we build feature vectors from videos
as described in Sec. 3.6 and explore the classification results
under different conditions. We run experiments on a set of
50 videos, 25 belonging to the event class “Attempting a
board trick” and 25 belonging to the class “Changing a ve-
hicle tire”. The results are presented in the form of average
Precision-Recall curves by averaging the curves over all 50
videos. For a given video, the remaining videos in the test
set are ranked according to the Euclidean distance of their
feature from the test video feature under consideration.

First, we build a feature vector of size 10 by extracting
the best 10-frame skateboard sequence from a video and
concatenating the detection scores. In this experiment, we
have made use of only the “skateboard” model. The PR
curve is compared for Pvideo and PImagenet models in Fig.
4.2. Similarly, the results obtained by using feature vectors
of size 10 from “tire” models (by extracting the best “tire”
sequence from videos) are plotted in Fig. 4.2. Next, re-
sults are obtained by concatenating both the features from
“skateboard” and “tire” models as shown in Fig. 5. The re-
sults using this feature obtained from Pvideo and PImagenet

are shown in Fig. 4.2. It is seen that the average precision
value is greater for Pvideo in all three cases. The model
obtained from iterative training is seen to perform better.

Finally, we explore the information addition by consider-
ing more than one object models for Pvideo. The PR curves
are shown in Fig. 4.2. The Mean Average Precision values
for each case is also shown in the figure. As expected, the
performance improves by extracting more object related in-
formation from videos. This result can also be seen in the
light of results presented in [7], where scene classification
results improve with addition of more object filters.

5. Discussions

In this section, we discuss the possible reasons for the
observed change in model performance with introduction

(a) (b)

(c) (d)

Figure 9. Three sample video frames from test videos is shown,
where Pvideo performs better. The green bounding box orresponds
to Pvideo, while the red one corresponds to PImagenet. Only the
best detection in a given frame is shown in this example.

of iterative training. We consider the change in AP values
in the 5-fold validation experiment.

5.1. Skateboard model

After the third iteration, the Pvideo outperforms the re-
maining models. In other words, we have gradually moved
from an object detector trained on a generic image database
to a detector specific to the video dataset of interest. The
number of training objects detected at the end of each it-
eration also increases with the number of iterations (from
180 after initialization to 640 after 2nd iteration). It was
seen that, roughly 85% of the detected objects pertained to
a skateboard or atleast a large part of the skateboard, while
the remaining were spurious detections. The performance
of PImagenet+video and Pvideo is also seen to be vastly bet-
ter than PImagenet. Some sample video frames are also
shown in Fig. 9, where Pvideo is seen to perform better
than PImagenet.

The improvement in performance can be accounted to a
favourable change in the model components as well as some
contextual details added by the iterative training. It was
observed that the Imagenet skateboard images contained a
large number of images of independent skateboards, some-
times in vertical orientation. However, the skateboard im-
ages extracted from the videos correspond to people skating
on the skateboard. Hence, the segmented skateboard images
contain a part of the human feet segmented as well. Also,
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Figure 8. The PR curves are plotted for Pvideo (green) and PImagenet (red) using (a) feature of size 10 built from only “skateboard” model,
(b) feature of size 10 built from only “tire” model and (c) feature of size 20 built from both “skateboard” and “tire” model. The PR curves
are plotted for Pvideo using features from “skateboard” only (red curve, MAP = 0.6377), “tire” only (black curve, MAP = 0.6575) and
both the models(green curve, MAP = 0.6856)

the orientation of the skateboard was always horizontal and
pertained to the longitudinal view of the skateboard. This
led to a change in the components of the Pvideo model as
compared to PImagenet. It can be seen from Fig. 10, that
both the components of Pvideo correspond to the horizontal
longitudinal view, unlike the PImagenet model.

5.2. Tire model

The performance of the Pvideo model corresponding to
the “tire” model does not show significant improvement as
compared to PImagenet. It was observed that the model
components did not change significantly with iterative train-
ing. The extracted images from the videos were also found
to be close to the images from Imagenet. This result is ex-
pected, since “tire” is a low level object, in the sense that it
has smaller variation with changing orientation and lesser
parts. Hence, no additional information is added to the
model by iterative training.

6. Limitations
A major limitation of the proposed method is the ex-

cessive computation time for iterative training. The part
based model requires ≈ 2secs for bounding box detection
from one image. The iterative training runs the detectors on

40 videos with more than 1000 frames for each iteration.
Alongside, the optical flow algorithm requires ≈ 2secs per
frame. Hence, each iteration along with the time required
for training the model requires more than 24 hours. Hence,
a large amount of time is spent in training a single object
model iteratively. Similarly, extracting the best object se-
quence from a video is also time consuming. This is not ac-
ceptable and a more practical approximation of the scheme
should be used. Some possible solutions are to use a model
without parts and lesser components. A less dense feature
tracker like KLT tracker can be used. Pre-computation of
these tracks can tremendously reduce the computation time.

Although, we have used models to extract object se-
quences from event videos, some videos might not be com-
pletely distinguishable in terms of objects. For example,
the events ”Feeding an animal” and ”Grooming an animal”
would share similar object attributes. The main sifference
lies in the interaction between objects in such cases. How-
ever, object sequences in videos do provide valuable in-
formation. The trajectories of these objects in the videos
should be used to build richer features.



(a)

(b)

Figure 10. The model visualization for the skateboard models cor-
responding to (a) PImagnet and (b) Pvideo after the final iteration.
It is seen that both the components of the Pvideo correspond to a
longitudinal view of the skateboard unlike PImagenet.

7. Conclusion
In this project, we proposed a method to build a dataset

specific object detector from a generic object detector by
iteratively extracting object instances from the training
videos and training newer models. While extracting object
sequences from videos, we used the assumption of tem-
poral coherence among video frames to segment objects
with high confidence. We tested the scheme on two ob-
jects, “skateboards” and “tires” by training on two event
classes. It was observed that the “skateboard” model un-
derwent a significant change on iterative training, as only
context (like longitudinal orientation and presence of hu-
man feet on skateboard) relevant to the video dataset was
retained, making it perform better on the test videos. The
newly trained models were used to extract a simple fea-
ture for event classification. The feature denoted the pres-
ence of an object sequence in a video. It was again shown
that the iteratively trained model performed better than the
model trained on a generic image database. However, the
iterative training process is currently very computation in-
tensive, and a faster implementation needs to be developed
with perhaps fewer components in the model. The next step
in the project would be to explore the effect of introducing
more object models for event classification and building a
richer feature to encompass the interaction between differ-

ent objects in a video. The object related information could
also be combined with lower level features for better perfor-
mance.
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