
Multiple Feature Learning for Action Classification

Benjamin Poole
Computer Science Department, Stanford University, Stanford, CA

poole@cs.stanford.edu

Abstract

We investigate the performance of various features on
an action classification dataset. Utilizing a variety of
feature combination techniques, we were able to achieve
near state-of-the-art performance using simple classifica-
tion techniques. We found that multiple kernel learning,
stacked feature representations, and simple cross-validated
feature selection all work well in identifying discriminative
features for action classification. Furthermore, we found
that by randomly selecting and pooling over regions within
our feature set we were able to achieve competitive per-
formance. Our results indicate that learning from multiple
types of features helps to boost performance in action clas-
sification tasks with little increase in computational cost.

1. Introduction

Traditional object classification datasets have focused on
objects that are substantially different in their visual char-
acteristics. These datasets generally focus on objects that
may be of vastly different sizes, shapes, and colors (e.g.
car, plane, chair, person). This focus has led to the devel-
opment of techniques that are successful at discriminating
very different objects, but fail to discriminate similar ob-
jects or instances of objects. With the exception of facial
recognition, very little work has gone into classifying sim-
ilar objects such as different types of dogs or cars. These
classification tasks rely on very small, fine-grained differ-
ences in visual features, such as different ears or tails in
dogs. More recent datasets containing humans performing
activities and playing instruments has led to new classifica-
tion techniques, however these techniques tend to rely only
on one type of feature (e.g. SIFT or HoG).

In this project, we explore a large set of features for ac-
tion classification, and identify feature combinations that
perform well on the PASCAL VOC 2010 action classifica-
tion database. In particular, we evaluate SIFT, HOG, LBP,
and color histogram features with a variety of different pa-
rameters. We explore a variety of techniques to combine
these features including multiple-kernel learning, stacked

Figure 1. Difficult images from the PASCAL VOC 2010 Action
Classification dataset.(a) Additional unlabeled people.(b) Oc-
clusion.(c) Mixture of high and low-quality images.

Figure 2. Example image from the PASCAL VOC 2010 Action
Classification dataset.(a) Raw image with bounding box for
the ridinghorseaction. (b) Extracted foreground image from ex-
panded bounding box

representations, and WTA-Hash. We find that all these tech-
niques work reasonably well and help to boost performance
over single features.

2. Related Work

Most approaches toward recognizing actions in still im-
ages have focused on pictorial part-based models (e.g.
[6, 7, 10]). These approaches introduce a complicated learn-



ing procedure, and a much more involved detection and
classification stage. In general, they attempt to identify the
location and orientation of the humans in a scene, and the
overall layout of the human body. To function well, these
models must have accurate estimates of location and pose,
and thus do not function well in high noise environments.
To cope with these problems, more discriminative models
have been developed recently that do not require explicit
pose estimation. The work by Yao et al. (2010) achieves
state-of-the-art performance using randomized forests, but
only multi-scale SIFT features. Many of these action-
classification techniques ignore other potential featuresdue
to the computational constraints involved in incorporating
different features into their algorithms. Here we investi-
gate possible feature combinations for action classification
to determine whether there exists computationally efficient
but discriminative feature sets that can beat the typical stan-
dalone features.

3. Methods

3.1. Shared Approach

3.1.1 Image Representation

In our experiments, we use four different types of features.
These features were chosen to provide a heterogeneous de-
scription of image attributes that is able to provide informa-
tion about shape, color, and texture.

• Color: To incorporate color, we convert the image to
HSV-space and cluster pixels using a dictionary of size
64.

• Local Binary Pattern (LBP): This feature has been
shown to provide very good performance on texture
classification tasks [2]. It represents an image patch
by comparing uniformly spaced points in a circle to a
central pixel, and determining which is greater. The
histogram of these points’ responses represent the fea-
ture descriptor for the patch. Here we used one LBP
feature, with a radius of 2 pixels, and 16 evenly spaced
points. Each descriptor is quantized using LLC with a
dictionary of size 1024.

• SIFT: We use the classic greyscale SIFT descriptor
with a fixed spacing (6 pixels), and a variety of dif-
ferent scales (8, 12, 16, 24, and 30).

• HOG: We use the histogram of oriented gradients de-
scriptor, using the parameter settings and code from
Felzenszwalb et. al (2010), [5]. This equates to using
HOG with a grid spacing of 6 and a patch size of 16.
Each HOG descriptor is quantized using LLC with a
dictionary of size 1024.

3.1.2 Incorporating Context

The primary dataset we are experimenting with, PASCAL
VOC 2010 action classification, includes bounding boxes to
denote which person in an image we are classifying. These
bounding boxes are somewhat noisy, and often crop out
parts of an activity that may be useful. For example, the
bounding box for the “ridinghorse” action in Figure 1 crops
out a large part of the horse. Many prior studies in image
classification have shown that including background infor-
mation can help to improve performance (e.g. [6]). We
adopt their foreground-background model here, which con-
sists of two regions:

1. Foreground: We rescale the bounding box by1.5×,
and resize the image so that the longest edge of the
bounding box is 300 pixels. We then use a 3-level spa-
tial pyramid on the features from within the foreground
region. An example of the extracted foreground image
can be found in Figure 2.

2. Background: The background region is computed
from the resized image above, and then we use a 2-
level spatial pyramid on all features within the image.

By enlarging the foreground bounding box, we are able to
pick up more fine details closely related to the action. Hav-
ing a 2-level spatial pyramid for the entire image allows us
to represent more of the global context across the image
without overfitting detailed features in the background.

Given these two different regions, we will end up with
two different kernels. Typically these kernels are averaged,
however we will explore more complex techniques for com-
bining this information.

3.1.3 Coding

We used locally-constrained linear coding (LLC) for coding
the HOG, SIFT, and LBP features. LLC has been shown to
outperform simple hard-quantization when using SIFT and
HOG features [11].

For each feature type, and each region (foreground and
background) we learned a different codebook of size 1024.
For the color histogram feature we used a codebook with 64
codewords. All codebooks were learned using k-means++,
a variant of k-means with a smarter initialization procedure
to avoid local optimum [3].

3.1.4 Spatial Pyramid Matching

For all of our experiments, we compute a set of features
from patches sampled uniformly on different sized grids in
the foreground and background images. These features are
informative, but we need a method to pool over these fea-
tures to reduce noise and incorporate invariance to scale and



translation. As noted above, we use spatial pyramids, which
divides an image up into hierarchical regions at multiple
scales and computes a histogram over features within each
region [9]. We use the histogram intersection kernel as the
features for our final classifier. Note that for each of the 4
different feature types, we have a different histogram ker-
nel that still has to be combined in some way. Furthermore,
we have different foreground and background kernels. SPM
only pools spatial information, but we still need to combine
the different feature types.

3.2. Feature Combination Techniques

3.2.1 Combining Kernels

The simplest method for combining multiple features is
to take the average across all kernels, weighting each one
equally. Alternatively we can compute the product over all
kernels. Both of these operations (multiplication and ad-
dition) maintain the property that the kernel is symmetric
PSD. Furthermore, recent work on multiple kernel learning
(discussed below) has shown that average and product ker-
nels work quite well in practice [8].

To determine which kernel to use generally requires a
combination of brute force (trying many different kernels)
and careful manual selection (deciding how to weight and
combine different kernels into a single kernel). Alterna-
tively, we can automatically determine the weightings for
each kernel for each class using multiple kernel learning
(MKL). Multiple kernel learning, allows for automatically
learning a linear combination of kernels that performs opti-
mally [4]. Thus MKL provides a framework for automati-
cally determining how to combine multiple features.

Adopting MKL instead of a traditional SVM will allow
us flexibility in two ways: (1) We can weight different types
of features differently for each class, (2) we can weight fore-
ground and background elements differently. Being able
to alter the weights on the different feature types may be
beneficial as certain action classes may be better defined
by texture than shape or color. Allowing the foreground to
be weighted stronger than the background may also be im-
portant in discriminating classes if some classes have very
static backgrounds (such as horseback riding), and others
have very dynamic backgrounds (such as phoning). For this
paper we used a variant of MKL called LP-β that learns the
SVM weights and kernel weights separately. First, an SVM
is trained for each kernel independently. Then the weighting
of each kernel (β) is learned based on the output scores from
the independent SVMs. The final classifier is then given
as the weighted sum of the responses of each classifier. In
this sense, the LP-β framework resembles boosting, where
each of the SVMs represents a weak classifier, and theβ

coefficients combine them to create a strong classifier. The
implementation we used is from [1].

3.2.2 Stacking Features

An alternative approach to feature combination is to com-
bine features before coding. Here we compute all our fea-
tures over the same grid, and simply form a new vector
which is the concatenation of all of our features at each
point. We then normalize each feature by subtracting the
mean and dividing by the standard deviation so each fea-
ture is at approximately the same scale. Given this fea-
ture vector, we then perform k-means clustering to iden-
tify 4096 codewords. We then perform the same fore-
ground/background SPM and averaging to obtain our final
kernel. Theoretically the stacking approach has the poten-
tial to encode more high-resolution features, such as a small
red edge, because the codewords represent combinations of
all the feature types. In contrast, SPMs only allow us to
say that there was an edge in a region, and there was also
red in that region. Thus for action classification, where
highly-discriminative fine-grained information determines
the class, being able to code these feature combinations may
boost performance.

3.2.3 WTA Hash

Given the stacked feature vector, we can also compute the
final features in a different manner. Instead of pooling over
a fixed set of regions (i.e. the hieararchical quadrants de-
fined by SPM), we can pool over any arbitrary region. One
way to determine these regions is via discriminative meth-
ods such as [13]. These discriminative methods have been
shown to outperform state-of-the-art results on the PAS-
CAL VOC 2010 Action classification dataset (personal cor-
respondence). However, this method is very computation-
ally expensive, and only pools over contiguous regions of
an image. Here we investigate pooling over random regions
of the image using Winner-Take-All (WTA) hashing [12].
This technique randomly selectsK features, and computes
the index of the maximum. We repeat this process for a
large number of random selections (a.k.a hashes), and we’re
left with a new feature vector containing a concatenation of
the 1-hot index vectors. This method is relatively new, but
has been shown to be quite effective and requires extremely
small computational cost. Given the final concatenated vec-
tor, we simply train a linear SVM on top, thus we do not
have to perform any extra coding/pooling/kernel computa-
tion.

3.3. Evaluation

To evaluate our results, we utilize the same metric as the
PASCAL competition: average precision. For each feature
combination method, we learn a classifier that outputs real-
valued confidence estimates for each of the 9 classes. For
each class, we then compute the precision-recall curve, and
find the area under the curve to get the average precision. To



quantify how well a technique performs across all classes,
we compute the mean average precision, which is just the
mean of the average precision over the 9 classes. An exam-
ple precision-recall curve for the walking class is shown in
Figure??.

4. Experiments

4.1. Dataset

For all the experiments we use the PAS-
CAL VOC 2010 Action classification dataset
(http://pascallin.ecs.soton.ac.uk/challenges/VOC/).
This dataset contains images of people performing any
of 9 activities: phoning, playing a musical instrument,
reading, riding a bicycle or motorcycle, riding a horse,
running, taking a photograph, using a computer, walking.
Every image (in both the training and testing set) includes
a bounding box around the person of interest. There are
approximately 450 total images, containing 600 labeled
people. These images are split evenly into a designated
training and validation set. There is also a test set, but the
labels are not publicly available, thus we treat the validation
set as the test set, and split the training set 70/30 to generate
a new training/validation set.

This dataset presents a number of interesting challenges.
In particular, there are multiple people per scene. This leads
to overlapping bounding boxes in many cases, and occlu-
sion in others. Furthermore the scale and quality of the im-
ages varies tremendously. Sometimes the person of interest
is only a few pixels wide, while other times they occupy the
entire screen. Identifying discriminative features that are in-
variant to all these changes has proven to be a difficult task.
Some examples of these difficult images can be seen in Fig-
ure 1. The best classifiers from the competition were only
able to achieve a mean average precision of around 60%,
indicating that a) this task is difficult, and b) there is room
for improvement.

4.2. Individual Features

To determine a baseline to compare to later results, we
first looked at each type of feature independently. For each
feature (e.g. dense SIFT with scale=16px, HOG, dense
SIFT with scale=20px), we first computed a foreground and
background dictionary using k-means++. Next we used
LLC to encode the features (except for color histogram,
where we used hard vector quantization), and pooled us-
ing a spatial pyramid with 3 levels for the foreground, and 2
levels for the background. The final kernel is given by com-
puting the histogram intersection for the foreground, and
the background, and then averaging these two kernels. This
baseline procedure follows the one in [6].

We then split the training data 70/30, and trained an
SVM with a histogram intersection kernel with varying

slack penalties on the 70%, and tested on the remaining
30%. The optimal slack penalty for each action class was
chosen independently to maximize the mean average preci-
sion. This allows us the flexibility to have different slack
penalties for different actions. Finally, the full model was
trained on all of the training data with the fixed slack penal-
ties learned from cross-validation. Using all of the above
parameter settings, we were able to achieve quite good per-
formance for each feature (see Table 1).

category SIFT20 SIFT24 SIFT30 HOG Color LBP
phoning 31.4 29.7 35.5 35.6 26.2 10.9

instrument 35.6 33.2 36.5 29.9 39.3 14.5
reading 42.6 39.6 40.8 32.4 28.9 12.6

ridingbike 37.6 46.6 54.7 30.4 57.8 13.5
ridinghorse 87.6 85.3 84.5 61.3 52.3 14.2

running 64.8 67.7 65.4 44.5 44.2 16.4
takingphoto 9.2 9.3 9.3 10.6 10.7 26.6

usingcomputer 39.1 39.3 36.4 26.6 25.8 10.9
walking 72.1 71.6 72.2 65.2 35.5 22.8

mAP 46.7 46.9 48.3 37.4 35.6 15.8

Table 1. Average precision of individual features for each of the
9 action categories. We removed the first two scales of SIFT fea-
tures (12 and 16) for brevity. Their mAP were 46.9 and 48.1 re-
spectively.

We found that all the SIFT features performed compa-
rably, with HOG and color histogram doing substantially
worse, and LBP barely functioning at all. One of the lim-
itations of the experiments here was that we only utilized
one patch size for HOG (16) and one configuration for LBP
(16,2). With more scales of HOG or LBP it is possible
that one of them could have matched the performance of
any of the SIFT features. Another interesting property is
that any single feature type does not perform best for all
action classes. For example, color histogram was the best
for playinginstrument, andLBP significantly outperformed
all other features fortakingphoto. This is likely due to the
scale of LBP matching up with the size of the camera in
mosttakingphotoimages.

Given that different features perform better for different
classes, we can simply take the best feature for each action,
and use that to train the classifier for that action. In this way
we use different features, but we still do not have to combine
them. To select the feature to use, we simply choose the
feature that maximizes average precision on the validation
set. Using this method we were able to achieve a mAP of
53.4, which is the best of all feature combination methods
(Table 2).

4.3. Combining Kernels

To actually combine the different types of features, we
first looked at computing sums and products of the differ-



ent kernels. We took the kernels computed from the indi-
vidual feature experiment, and took their unweighted sum
to get the average kernel. Similarly, we took the product
over all the foreground and background kernels separately,
then added them together to get the product kernel in Table
2. Curiously, both the average and product kernels perform
worse than the maximum feature classifier. In particular,
the performance fortakingphotodrops off significantly. Be-
cause we are weighting each feature equally, and we have
many scales of SIFT, it appears as though SIFT is dominat-
ing the classification choices. In particular the usefulness of
LBP seems to have disappeared, and the results for most
classes resemble the single SIFT features. These results
match the insight of [8] who noted that simply computing
the product or average of kernels can yield fairly good re-
sults in many cases.

To cope with the unequal distribution of feature types
and to learn better weights we used LP-β. We selected the
optimal weightsβ and slack penalties for each class from
the training set, and then retrained on the training + vali-
dation set. We found that LP-β did not suffer from all the
same problems as the simple feature combination methods.
In particular, it achieved performance better than the maxi-
mum single feature for 3 different classes. However, LP-β

was still not able to learn the importance of the LBP fea-
tures for thetakingphotoaction. This was unexpected, but
may be due to the very limited amount of positive training
instances (only around 30/actions). The mean average pre-
cision was also extremely competitive at 53.3 (compared to
53.4 for maximum single feature).

4.4. Stacking Features

We first built the raw stacked feature vector by concate-
nating all the features at each spatial location in the image
using a standard grid spacing. The raw stacked feature vec-
tor was first normalized by computing the mean and vari-
ance of each element from the training data. When test-
ing, the mean was subtracted off and then we divided by
the standard deviation. For coding we used LLC with 4096
codewords, training on a random subset of the images. We
found that the overall performance of the stacked feature
vector was quite good, matching the best performance with
a mean average precision of 53.4. However, the stacked
version was not the best in any single action.

One potential problem with this methodology is that the
dictionary we learn over the stacked feature vector may not
be a very good representation of our raw features. Even
after normalizing, some of the features are noisier than oth-
ers, but we treat each dimension equally when performing
clustering. We also were not able to train a larger dictionary
due to computational constraints, so it remains unclear what
the limiting factor of the stacked approach is. Theoretically
having a codebook of the combined features would allow

for greater descriptive ability, but the classification results
did not improve.

4.5. WTA-Hash

Following the protocol described in the methods sec-
tion, we computed random hashes maximizing overK = 2

random features from the stacked feature vector. We ex-
perimented with varying the size of the hashes, and found
that in general more hashes improves performance. Going
from 10,000 to 100,000 hashes, the mean average precision
went from 46.4 to 50.0. WTA-Hash also had the best per-
formance forphoning, ridinghorseandwalking. Further-
more, this technique is extremely fast as we do not have
to compute quantizations, LLC, or spatial pyramids. How-
ever, WTA underperformed on the difficulttakingphotoac-
tion, most likely because it did not randomly sample enough
from the subset of LBP features. Overall, WTA-Hash pro-
vided good performance with little computation, and is a
promising approach for action classification.

4.6. Qualitative Evaluation

To gain a better understanding of the flaws in our ap-
proach, we performed more analyses on the results of the
maximum single feature technique. In Figure 3, we show
the top 5 objects for each of the 9 classes. For the phon-
ing, running, walking and riding a horse classes we do quite
well. However for many of the other classes we make a few
mistakes even in the top 5 objects. For example, two women
on phones are confused for playing an instrument, probably
due to their stance and attire. The taking a photo class and
reading classes are quite noisy. The biking class produces
good results but we see the confusion where a man walk-
ing is interpreted as biking. The classifier seems to pick out
more of the stance of the person and less of the object that is
involved with the action. We see the same issue with read-
ing where a man on the phone staring down at his baby is
misclassified as reading.

To get a slightly more quantitative look at these results,
we computed the top 50 objects for each action, and then
looked at the distribution of true labels for these objects.
This yields a confusion matrix in Figure 4, where each row
represents the distribution objects that are classified as be-
longing in that row. Here we see that ridinghorse, running,
and walking are mostly along the diagonal. But phoning
is often confused to be using a computer or playing an in-
strument. These results again seem to reinforce the notion
that we’re picking out more pose-based features and less
object-based features (such as detecting the actual phone or
reading material).



hi

Figure 3. Top 5 objects with the highest score for each of the 9
classes. Each row corresponds to the top 5 objects for a different
action. The order of the actions is the same as in Table 1. Cor-
rectly classified objects are highlighted in green, while incorreclty
classified objects are highlighted in red.

4.7. Comparison to state-of-the-art

Although the results for performance on the validation
set were not released on the PASCAL VOC 2010 website,
they do release the testing performance. If we assume the
validation set and testing set are similarly distributed, then
it is likely that our performance on the testing set would
only increase as we would have more training data. How-
ever, this assumption may not be true thus these compar-
isons should be taken with quite a few grains of salt. The
results we are comparing to can be found here:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/results/index.html

In 6 out of 9 categories we do substantially worse than

 

 

ph
on

in
g

pl
ay

in
gi

ns
tr

um
en

t

re
ad

in
g

rid
in

gb
ik

e

rid
in

gh
or

se

ru
nn

in
g

ta
ki

ng
ph

ot
o

us
in

gc
om

pu
te

r

w
al

ki
ng

phoning

playinginstrument

reading

ridingbike

ridinghorse

running

takingphoto

usingcomputer

walking

0

5

10

15

20

25

30

Figure 4. Top 5 objects with the highest score for each of the 9
classes. Each row corresponds to the top 5 objects for a different
action. The order of the actions is the same as in Table 1. Cor-
rectly classified objects are highlighted in green, while incorrectly
classified objects are highlighted in red.

state-of-the-art for all methods. However forreading, our
best performance is 50.5, while the competition’s best is
35.9. Our results forridinghorseare also competitive, we
had 89.4 compared to 89.7. For walking we again beat the
competition with 74.2 compared to 72.5. Thus despite the
naive and simple techniques we use, along with the rela-
tively small variety of features, we are still able to achieve
reasonable results. Most of the models in the competition
utilized either pose estimates or part-based models. These
structured models can tremendously boost performance as
shown in [6, 7, 10, 13].

5. Conclusions

We explored a variety of feature combination techniques,
and found that we could achieve good performance on
action classification without explicitly modeling poses or
parts. By incorporating a variety of different features, we
were able to boost performance on an action classification
task with little additional computational cost. Furthermore,
we believe that utilizing randomization techniques (such as
WTA-Hash) can help to automatically identify regions to
pool, and reduce the computational overhead of quantiza-
tion and classical spatial pooling.

In the future, action classification models should in-
corporate multiple features to help boost performance.
Whether the techniques described in this paper can be ap-
plied depend on the particular application, but we believe
that incorporating multiple feature types should boost per-
formance on a variety of datasets. Future work should
address this question in a concrete setting by evaluating
whether incorporating any of these techniques into existing



single-feature type architecture (such as in [13]) improves
performance.

References

[1] http://www.vision.ee.ethz.ch/ pgehler/projects/iccv09/.
[2] T. Ahonen, A. Hadid, and M. Pietikainen. Face Recognition

with Local Binary Patterns. pages 469–481. 2004.
[3] D. Arthur and S. Vassilvitskii. k-means++: the advantages

of careful seeding. InProceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’07,
pages 1027–1035, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

[4] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple
kernel learning, conic duality, and the smo algorithm. InPro-
ceedings of the twenty-first international conference on Ma-
chine learning, ICML ’04, pages 6–, New York, NY, USA,
2004. ACM.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. InIn CVPR, pages 886–893, 2005.

[6] V. Delaitre, I. Laptev, and J. Sivic. Recognizing human ac-
tions in still images: a study of bag-of-features and part-
based representations. InProceedings of the British Machine
Vision Conference (BMVC), 2010. updated version, available
at http://www.di.ens.fr/willow/research/stillactions/.

[7] V. Delaitre, J. Sivic, and I. Laptev. Learning person-object
interactions for action recognition in still images. InAd-
vances in Neural Information Processing Systems (NIPS),
2011.

[8] P. V. Gehler and S. Nowozin. On feature combination for
multiclass object classification. InIEEE International Con-
ference on Computer Vision (ICCV), 2009.

[9] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. InProceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition - Volume 2, CVPR ’06, pages 2169–2178, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[10] S. Maji, L. Bourdev, and J. Malik. Action recognition from
a distributed representation of pose and appearance. InIEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[11] J. Wang, J. Yang, K. Yu, F. Lv, T. S. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, pages 3360–3367, 2010.

[12] J. Yagnik, D. Strelow, D. A. Ross, and R.-s. Lin. The power
of comparative reasoning.csutorontoca, 2011.

[13] B. Yao, A. Khosla, and L. Fei-Fei. Combining randomiza-
tion and discrimination for fine-grained image categoriza-
tion. In The Twenty-Fourth IEEE Conference on Computer
Vision and Pattern Recognition, Colorado Springs, CO, June
2011.

6. Appendix

This project is also my course project for CS229 as well
as my rotation project. The computer vision component fo-
cuses on manually selecting good features and using them in

the MKL framework while the machine learning component
is focused on utilizing WTA-Hash and comparing manually
chosen features to those learned with unsupervised feature
learning.



Table 2. Average precision (%) for all techniques for each of the 9 action categories. Bolded entries indicate the largest value in the row.
category MaxFeat Avg Prod LP-β Stacked WTA10k WTA50k WTA100k
phoning 35.6 33.2 32.6 28.7 37.6 37.6 41.6 39.3

instrument 46.2 38.7 32.8 45.0 45.2 34.9 34.3 36.5
reading 43.4 38.7 32.3 50.5 44.0 42.4 41.9 36.9

ridingbike 54.7 43.6 43.4 61.0 54.0 41.8 60.1 60.9
ridinghorse 87.5 86.9 83.7 88.0 87.8 79.9 85.9 89.4

running 67.7 62.9 58.9 70.9 67.6 61.9 63.1 64.9
takingphoto 26.6 9.2 18.1 17.4 26.6 9.4 9.2 9.2

usingcomputer 46.9 42.6 35.0 44.6 45.1 36.5 36.1 39.1
walking 72.2 73.1 61.9 73.5 72.4 72.7 74.0 74.2

mAP 53.4 47.7 44.3 53.3 53.4 46.4 49.6 50.0


