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Abstract

A preliminary framework for 3D tumbling target recon-
struction through fusion of vision and line-scanning LIDAR
data is outlined. The utility of using both vision and LI-
DAR for on-orbit target reconstruction is first presented.
The technical approach, including a new camera-LIDAR
Structure from Motion (SfM) framework, is next detailed,
though this technical framework remains in development.
Preliminary results indicate that the method holds potential
to perform well, though there remains significant develop-
ment work ahead to make this a viable, robust solution.

1. Introduction

Target reconstruction is a necessary capability for safe
and reliable autonomous rendezvous and docking capabil-
ity on orbit. Vision is a natural sensor for object reconstruc-
tion as it is capable of providing frame-to-frame point cor-
respondence and texture information. The field of Structure
from Motion (SfM) is a well-developed one, providing the
capability to map a target (structure) and recover the camera
motion, up to a similarity transformation (unknown overall
scale), assuming calibrated cameras. This scale ambiguity
is a problem for real operation on orbit, and cannot be re-
solved without more information.

Range data (LIDAR) provide 3D structure data directly.
When using 3D LIDAR technology (e.g. Flash LIDAR), it
is possible to solve for scan-to-scan correspondence through
alignment of point clouds (typically, with a form of Itera-
tive Closest Point algorithm [1]). Conversely, line-scanning
(2D) LIDAR can only solve the correspondence problem in
loop closure situations, other than for the degenerate case
where the axis of target rotation is perpendicular to the line-
scan plane. In terrestrial applications, the use of 3D LI-
DAR is most likely the correct choice. However, for ap-
plications on small satellite chaser vehicles, limitations on
power, size, and weight may/will dictate use of the line-

scanning LIDAR. The estimation framework proposed here
is designed for the camera and line-scanning LIDAR sensor
configuration. However, the results will be extensible to use
with more complex LIDAR technology.

It should be explicitly noted that this is not a triangu-
lated active illumination system. Active light systems such
as the Microsoft Kinect have found great uses in 3D recon-
struction. However, these sensor modalities are, in general,
highly sensitive to natural lighting conditions - the harsh
lighting environment of space all but precludes this form of
sensor.

2. Related Work

3D reconstruction is a well-researched field. In computer
vision, the problem of recovering camera motion and scene
geometry from temporal sequences of images is generally
referred to as Structure from Motion (SfM), and has been
the focus of a good deal of work. Hartley and Zisserman
provide a comprehensive overview of multiple-view geom-
etry algorithms[4], as do Ma et al. [9]. SfM algorithms can
coarsely be segmented into algebraic and factorization so-
lutions. Algebraic solutions typically rely on iterative tech-
niques whereby the full SfM solution is achieved through
alternating solution of camera motion (holding projective
depths constant) and projective depth estimation (holding
camera motion constant) [9].

Factorization methods, first proposed by Tomasi and
Kanade [12], offer a clever solution to the SfM problem
whereby the tracking matrix is factorized via the singular
value decomposition (SVD) into motion and structure ma-
trices. Affine factorization assumes an affine camera model,
and as such does not need to include projective depths in
the tracking matrix. Affine factorization methods typically
work best for scenes that are distant from the observing
cameras and that have little relief. Projective factorization
methods, as first proposed by Triggs [13], use a similar fac-
torization scheme with perspective camera models, where
the tracking matrix includes a projective depth for each ob-



served feature. The difficulty of using this projective factor-
ization method is in obtaining sufficiently accurate projec-
tive depths.

A problem with using factorization methods in general
is that they require that all features in the tracking matrix
be observed in all of the frames. For situations where light-
ing is variable or there is the potential for self-occlusion,
it cannot be gauranteed that a sufficient number of features
will be visible across multiple frames for population of the
tracking matrix. In the case of tumbling target observation
on-orbit, this is an especially dangerous assumption.

The fusion of range and vision data for 3D reconstruc-
tion is not new. Liu et al. proposed a method of automatic
alignment of 2D image sequences with 3D range data [7].
3D-3D range registration is performed to produce a dense
range point cloud, and an SfM vision solution generates a
more sparse (and scale ambiguous) point cloud. The vi-
sion and range data is aligned under the assumption that
there will be strong horizontal and/or vertical lines present
in the scene structure. While this assumption is suitable
for many urban/man-made scenes, this is clearly unsuitable
for observation of natural terrain/debris (e.g. asteroid) or
targets for which we cannot assume there are strong edges.
Mastin et al. proposed a 2D-3D registration technique based
on the maximization of mutual information between 2D im-
ages and 3D LIDAR features projected onto the 2D image
plane [10]. Their method is specifically aimed at registra-
tion of airborne LIDAR measurements with aerial imagery
of urban scenes. They explored different methods for evalu-
ating mutual information between images and LIDAR pro-
jections, e.g. the mutual information between elevation in
LIDAR and luminance in the optical image, where higher
elevations of the point cloud are rendered with higher inten-
sities.

Registration of co-located camera/LIDAR systems has
been investigated in the context of camera-LIDAR calibra-
tion. Zhang and Pless [14] developed a framework for ex-
trinsic calibration of a line-scanning LIDAR to a camera
with strong results. The calibration method of Zhang and
Pless is used in our work to estimate camera-LIDAR ex-
trinsics. Extensions to their method have been developed to
incorporate the use of multi-planar LIDAR [5].

There has been some great progress made in high-
resolution 3D reconstruction through fusion of optical im-
agery and time-of-flight (ToF) ranging. In [3] the authors
present an algorithm for improved 3D resolution (”‘super
resolution”’) using Markov Random Fields. More recently,
these authors and colleagues have demonstrated in [6] a
multi-view system that fuses imagery and ToF sensing for
impressive, dense reconstruction. The approach presented
in this paper differs from that of [6] in that we do not have
a 3D ToF ranging sensor. Instead, for our problem we are
restricted to the use of a line-scanning LIDAR. As such, we

Figure 1: Schematic of algorithmic pipeline.

are provided far less information from the ranging sensor,
and must rely more heavily upon the visual SfM solution
framework for correspondence.

3. Approach

The approach presented here toward 3D reconstruction
through fusion of visual imagery and simple (line-scanning)
LIDAR data is evolving. Preliminary results indicate that
the foundation of the methodology is promising, but signif-
icant development work must be completed before this will
be a viable and robust solution for 3D reconstruction. Fig-
ure 1 shows the current algorithmic pipeline. It is key to
note that this formulation is developed under the assump-
tion that this will be run offline — this is not a real-time
formulation, and computational efficiency has not been ex-
pressly considered.

3.1. Camera-LIDAR Calibration

The reconstruction algorithm outlined in this paper as-
sumes a calibrated camera-LIDAR system. Extrinsic cali-
bration of the camera to LIDAR (i.e. rotation and translation
from LIDAR frame L to camera frame C) is accomplished
using the method of Zhang and Pless [14]. This method uti-
lizes standard camera calibration [2]. Hence, we assume for
all the following algorithmic detail that we have a fully cal-
ibrated system consisting of the camera intrinsic matrix K,
radial distortion parameters kc, LIDAR-to-camera frame ro-
tation matrix CRL and camera-to-LIDAR frame translation



CtL/C .

3.2. Robust Frame-to-Frame Feature Correspon-
dence

Frame-to-frame feature correspondence is the first step
in our reconstruction pipeline. Feature correspondences
can be generated by any suitable method, e.g. SIFT, SURF,
Harris-Laplace. The choice of feature to use does not af-
fect the structure of our reconstruction solution, with the
requirement that the feature be sufficiently robust to illumi-
nation and affine transformation variation. In the current
implementation SIFT features (keypoints and descriptors)
are used for correspondence. Outlier rejection is critical
for success of our algorithm downstream of feature corre-
spondence. In order to prune the set of candidate matches
to a more accurate inlier subset, we execute a pairwise
RANSAC homography estimation. Subsets of the feature
matches are randomly chosen (subsets larger than or equal
to the minimum 4 required for 2D homography estimation),
and a homography model (8-parameter, ambiguous scale) fit
by a linear least squares pseudoinverse solution. The model
is then applied to the entire candidate match set, and inliers
chosen such that the pixel error between the homography-
predicted pixel location and the measured pixel location is
below a threshold. The homography solution with the high-
est inlier count is selected as the true model, and only the
inlier matches are passed down the pipeline.

3.3. Frame-to-Frame Relative Pose Estimation

Frame-to-frame relative pose estimation is accomplished
via two-frame epipolar constraints. Assuming a calibrated
camera, the Essential matrix E is estimated using the well-
known 8-point algorithm [4], provided that there are 8 or
more point correspondences. In the event that less than 8
point correspondences are available (but more than 4), we
estimate E using the 5-point algorithm first presented by
Nister [11].

Accuracy of the Essential matrix estimation is vital to
success of the overall algorithm. Estimation is signifi-
cantly improved by inclusion of a nonlinear optimization
step wherein the estimate of the Essential matrix is refined
further. By suitable parameterization of the fundamental
matrix, as presented in [9], we can form a nonlinear opti-
mization problem for fundamental matrix estimation sub-
ject to the rank-2 constraint. For simplicity, and at the ex-
pense of computational efficiency, our fundamental matrix
refinement was formulated as an outer-loop/inner-loop for-
mulation, depicted below, where the outer-loop enforces the
rank-2 constraint and the inner loop solves an unconstrained
nonlinear least squares optimization. Reformulating this as
a parameterized nonlinear estimation that enforces the rank-
2 constraint is future work, along with performance compar-
ison of the two formulations.

while ε ≥ tol

F ∗ = arg min
F

n∑
j=1

x̃Ti,jFx̃i+1,j

F ∗ = UΣV T

Σ(3, 3) : = 0

F : = UΣV T

ε : =
1

n

n∑
j=1

x̃Ti,jFx̃i+1,j

end while

E = K−TFK−1

From the Essential matrixEi, we extract the rotation and
translation (i+1Ri, i+1ti/i+1) between frames Ci, Ci+1. A
well-known method using the SVD is used to extract ro-
tation and translation from E, yielding four possible solu-
tions, from which one solution is selected based on chirality
(triangulated feature depths should be positive in the camera
frame). The rotation and translation estimates are further
refined in a two-frame bundle adjustment (minimization of
re-projection error) for each frame pair.

Outlier rejection can be performed on the frame-to-frame
pose estimates by enforcing some measure of camera tra-
jectory smoothness. Especially for high frame rate data, we
know that the camera linear and angular velocities should
vary smoothly, so we can reject camera motions that imply
discontinuous velocity profiles. This has not yet been in-
corporated into the solution strategy, but would be useful
in cases where we know something about the smoothness
of our motion, e.g. torque free motion of a tumbling orbital
target.

3.4. Vision-Range Correspondence

Correspondence between image pixels and range returns
is necessary for effective fusion of these two data sources.
We assume that the camera and LIDAR are co-located such
that the relative translation between the two sensors is small,
and as such there is no occlusion from ranged point to the
image plane. Under this assumption, and with known ex-
trinsic calibration of the LIDAR to camera (rotation, trans-
lation), and known intrinsic calibration of the camera, we
can unambiguously project range scans onto the image
plane:

C x̃j = K[CRL CtL/C ]LX̃j (1)

Where K is the camera intrinsic matrix, C x̃j is the ho-
mogeneous 2D image of ranged point j in camera frame
C, and LX̃j is the homogeneous 3D ranged point in the



LIDAR frame L. Let xi be an image interest point pixel
location, let xj be a range projection pixel location, let α be
a distance threshold, and let M be the set of vision-range
matches. A vision-range match is identified by the simple
Euclidean distance measure:

if ‖xi − xj‖2 ≤ α→ (xi, xj) ∈M (2)

There is an inherent problem of sparseness in this vision-
range correspondence. If we simply look for matches be-
tween our range points and robust interest points, e.g. SIFT
features, then we will have little matches in general for rea-
sonable α. This will diminish the ability to successfully
fuse these data.

In addition to this sparse search, we also propose a dense
search of range projections between frames. The heart of
this dense search lies in our previous estimation of the pair-
wise 2D homographies between camera frames. Using the
homography Hi, which is an estimate of the mapping from
frame Ci to Ci+1, and given our estimated range projection
of 3D feature j onto image Ii, we estimate the projection of
the same 3D point j onto image Ii+1 by the linear homog-
raphy relation given by (3).

x̃ji+1 = Hx̃ji (3)

In order to avoid significantly inaccurate vision-range
correlation, we avoid applying this homography mapping
to points near significant range discontinuities. Although
range discontinuities provide useful information on 3D ge-
ometry, it is near these discontinuities that errors in our
camera-LIDAR calibration can produce the most drastic er-
rors. In order to quickly estimate range discontinuities, a
simple difference operator is convolved with the range-scan
returns, and values above a threshold are labeled as discon-
tinuities.

3.5. Projective Depths and Absolute Translation
Scale

Unlike the canonical SfM vision-only problem, with the
addition of LIDAR sensing we can directly measure pro-
jective depth to 3D features. Given frame-to-frame rela-
tive pose estimates, we can formulate a global optimization
problem for the projective scale to each 3D feature, and the
proper scale of the frame-to-frame translation. These initial
depth and scale estimates can then be used to further refine
global pose estimates.

The optimization formulation is adapted from the for-
mulation presented in [9] for two-view triangulation with
known relative pose. The formulation makes use of a clever
cross-product trick in order to re-shape the problem. This
paper adapts this framework into a new convex optimiza-
tion problem that utilizes the direct measurements of range
from range-vision correspondence in order to yield a scale

unambiguous estimate of 3D structure and relative camera
poses.

Let λji be the projective depth of feature j from camera
frame {Ci}, measured with image pixel coordinates xji . Let
i+1Ri, i+1ti/i+1 be the relative rotation and translation esti-
mates from frame {Ci} to {Ci+1}. Relative pose estimates
are obtained initially from frame-to-frame Essential matrix
estimation. Let γi,i+1 be the scale factor estimate between
the relative translation estimate i+1ti/i+1 and the true rel-
ative translation. Let βki be the projective depth of feature
k from the camera center {Ci}, derived from the LIDAR
measurement that was matched with vision feature k by the
vision-range correspondence step. Finally, we define [x̃i

j ]x
to be the cross-product matrix of homogeneous vector x̃ji .

([x̃ji+1]x
i+1Rixji )λ

j
i + ([x̃ji+1]x

i+1ti/i+1)γi,i+1 = 0 (4)

([x̃ji+1]x
i+1ti/i+1)γi,i+1 = −βki ([x̃ki+1]x

i+1Rixki ) (5)

Relation (4) holds ∀j = 1, ..., Nλ
i,i+1, where Nλ

i,i+1 is
the number of feature matches from frame {Ci} to {Ci+1}
that have no vision-range correspondence. Relation (5)
holds ∀j = 1, ..., Nβ

i,i+1, where Nβ
i,i+1 is the number of

feature matches with vision-range correspondence in frame
{Ci}.

We take the relations (4), (5) for all frames i and
features j, k, and form a large linear matrix equality
Mλ = 0. Although we know the values βki , sub-
ject to ranging noise and calibration errors, we treat
these projective depths as unknown in the linear matrix
equality, and denote them as βλki . The reason for this
relaxation is to allow for a camera-consistent estima-
tion of projective depths, which we subsequently scale
by our knowledge of βki . Thus, our scale vector is λ =

[λ1
1, ..., λ

Nλ1,2
1 , βλ1

1, ...,
β λ

N
β
1,2

1 , γ1,2, λ
1
2, ...,

β λ
N
β
m−1,m

m−1 , γm−1,m]T .

Further, we formulate constraints across frame-to-frame
pairs by incorporating triangulation for features that are ob-
served over 3 (or more) frames.

(i+1Rixji )λ
j
i+1 − x

j
i+1λ

j
i+1 +i+1 ti/i+1γi,i+1 = 0 (6)

We take these constaints (6), for all frames i, and fea-
tures j for which the relations can be formed, and construct
another linear matrix equality Aλ = 0.

Now we are able to form the following convex optimiza-
tion problem to solve for our vector λ of unknown projec-
tive feature depths and translation scale factors.



minimize
λ,ε

‖Mλ‖22 + C‖ε‖22

subject to Aλ+ ε = 0

Dλ � ζ

Slack variables ε are introduced to allow for minor devi-
ations from the linear constraints. However, we penalize the
size of the slack values by inclusion of the term C‖ε‖22 in
the objective, where C is some (large) positive scalar. Fur-
ther, we include the elementwise constraint that each pro-
jective feature depth is greater than ζ. This requires some
knowledge of the distance of the camera from the target, for
which we can use our range returns to generate a conser-
vative lower bound ζ. The inclusion of this constraint is a
safety precaution against the solution λ = 0. The matrix D
selects only the projective scale depths from λ, omitting the
translation scale variables.

Once we have solved for our projective depths and trans-
lation scalings λ, we can now remove the overall scale am-
biguity by use our vision-range projective depths βki . We
solve for the global scale value by RANSAC estimation.
RANSAC is preferable to pure least squares estimation in
that we can reject outlier values that would weaken the so-
lution. Scale is 1-D, and the number of scale candidates
is quite moderate, so we implement RANSAC as a greedy
search. For each candidate scale, we select a test scale and
find the number of scale candidates within a threshold ratio
of the test scale. Upon choosing the largest inlier set, we
average the scale factors for our scale estimate ŝ, and scale
the λ vector by ŝ. At this point we have an initial estimate
of camera motion and 3D target geometry with no scale am-
biguity (Euclidean solution).

The sparseness of the matricesM ,Amake this a quickly
solvable convex optimization problem. Note that the effec-
tiveness of this solution is entirely dependent on the accu-
racy of the frame-to-frame relative pose estimates. If our
relative pose estimates are not sufficiently accurate, our pro-
jective depth and translation scale estimation will be poor.
This perhaps points to a key flaw in this methodology ver-
sus factorization methods, which simultaneously estimate
the motion and the structure. However, as previously stated,
factorization methods suffer from the key flaw of requiring
that a sufficient number of feature correspondences are im-
aged over all frames considered. Performance comparison
of our algebraic method to factorization methods has not
yet been conducted, and is planned as future work. It may
be that this algebraic approach can serve as an initialization
step to a projective factorization solution, where there is suf-
ficient feature frame-to-frame overlap to allow for a factor-
ization solution. This would replace other methods that seek
to initialize projective depths for the projective factorization
solution, while in addition removing the overall scale ambi-
guity.

3.6. Bundle Adjustment

Refinement of the relative pose estimates and projective
depths is necessary for accurate target reconstruction. In
canonical SfM, this global refinement is termed bundle ad-
justment (BA), and is typically a minimization of summed,
squared reprojection error. We use the well-known Sparse
Bundle Adjustment (SBA) software package [8] for bun-
dle adjustment. SBA employs a variant of the Levenberg-
Marquardt that is tailored to the sparse nature of the SfM
problem, and as such can handle very large SfM problems
quickly.

The author believes there is an opportunity to do bet-
ter than pure vision-only bundle adjustment. There is an
opportunity to include 3D range measurmements into the
bundle adjustment solution, at the very least in loop clo-
sure. Based on our current estimate of structure and motion,
which should be close to the true solution for BA to be ef-
fective, we can hypothesize loop closure. Based on this hy-
pothesis, we can search correlation of range measurements
with the prior map of the region, and fold that into a global
optimization formulation. Due to time constraints, this re-
mains as future work.

4. Experimental Results
The 3D reconstruction method was tested through sim-

ulated and experimental results. First, the framework was
tested on data from our tumbling target simulation envi-
ronment. In the simulation environment, a target model
is flown with a specified state trajectory, e.g. torque free
motion. An observer is populated in the environment, and
simulated range returns and images (with simulated image
features from 3D points) generated, as shown in Figure 2.
From these simulated range returns and images, it is pos-
sible to test algorithms in a noise-free environment where
perfect truth data is avaialble. Furthermore, this environ-
ment allows for noise to be injected at various stages of the
measurement pipeline in a known way.

The reconstruction algorithm performed well in noise-
free simulations. Unfortunately, due to time constraints in
the author’s rush to obtain experimental results, error anal-
ysis with simulated noise remains as future work.

The results presented herein are from hardware exper-
iments of a target model measured by a co-located cam-
era and URG Hokuyo line-scanning LIDAR in the Stanford
Aerospace Robotics Laboratory. Figure 3 depicts the testing
environment. The camera resolution and dynamic range are
low, which have the dual efffects of making the reconstruc-
tion more difficult, while more faithfully approximating the
sensing situation that can be expected on-orbit.

Regarding validation, the author ran into an unforeseen
problem that must be mentioned. In the Aerospace Robotics
Laboratory we have an IR motion detection system capa-



(a) 3D Simulation (b) 2D Synthetic Image

Figure 2: Simulation environment with simulated vision features
(red) and simulated range scan (green). (a) 3D geometry and ob-
server range scan simulation. (b) Synthetic image as viewed by
observer (green ball with axes) with simulated camera intrinsics
and camera-LIDAR extrinsics.

Figure 3: Testing environment in the Aerospace Robotics Labo-
ratory.

ble of high accuracy pose estimation, and this system was
planned to be used for validation of camera motion esti-
mation. However, there was a string of problems with the
IR system that rendered all of the data virtually useless for
the testing conducted. Validation by the IR system remains
a very attainable near-term future task, but remains future
work nonetheless.

4.1. Camera-LIDAR calibration

Camera-LIDAR extrinsic calibration was accomplished
by the method of [14]. Checkerboard images, along with
range scans of the checkerboard plane for each image, were
input to a calibration engine that includes standard cam-
era calibration software [2]. The accuracy of the camera-
LIDAR calibration method in the case of perfect measure-
ments was validated in simulation. Evaluation of the ex-
perimental (hardware) camera-LIDAR calibration is more
difficult to quantify, but meaningful qualitative evaluation
can be derived from analysis of the range projections over
distinct 3D geometry, as shown in Figure 4.

The left image of Figure 4 shows strong qualitative cor-
relation between discontinuities in 3D geometry and dis-

(a) Consistent Alignment (b) Noticeable Occlusion and/or
Calibration Error

Figure 4: Projections of range returns on image plane.

continuities in range projections. The right image of the
figure also shows good correlation in areas farther from
teh camera, but there are clear errors in the range pro-
jection around the cylinders. Some of this can be di-
rectly attributed to errors in the camera-LIDAR calibra-
tion. However, the main cause of these errors is occlusion
and violation of the largest assumption of camera-LIDAR
correspondence—that they are imaging the same 3D geom-
etry. The LIDAR scanner is roughly 6cm in negative cam-
era Y and 5-6cm in camera X (up and to the right if we are
looking down the boresight from the camera center). This
explains why the green scan line seemingly passes through
the middle cylinder in the right image—the LIDAR has di-
rect line of sight over the edge of the cylinder, whereas the
camera does not. Due to the proximity of the 3D target ge-
ometry to the camera-LIDAR sensors, these occlusions are
pronounced, as the offset of the camera to LIDAR is not in-
significant at this projective scale. However, in expected on-
orbit sensing situations, the depth to the target is expected
to be at least one to two orders of magnitude larger. At these
scales, any small error in camera to LIDAR translation esti-
mate and any occlusion due to this offset will be negligible.

4.2. Frame-to-Frame Fundamental Matrix and 2D
Homography Estimation

Hardware results for frame-to-frame estimation of the
Fundamental (and Essential) matrix are visualized in Fig-
ure 5, showing the the qualitative accuracy of homography
and fundamental matrix estimates (when things go well, as
we will see in the following section). The yellow range
points in the upper image map well to the lower image
through the estimated 2D homography. Furthermore, the
epipolar lines estimated for each selected (red) projected
range point passes very nearly through the homography-
estimated point. A quantitative comparison of error metrics
between two reconstructions based on epipolar constraints
and homography estimation will be detailed in the follow-
ing section.



(a) Frames 1,2 (b) Frames 9,10

Figure 5: Visualization of epipolar geometry estimation, range
to image projection, and homography estimation. Each Upper im-
age corresponds to its respective lower image. Green lines in up-
per figures are projections of LIDAR scans onto images Ii, while
cyan points denote labeled range discontinuities. Yellow lines in
each upper image are range projections that are mapped to the re-
spective lower image via the homography estimate. Red Points
in each upper image are members of the yellow line set, and the
lower image red line is the epipolar line estimate corresponding
the to upper image red point. Similar for the blue points, which
are matched SIFT points between each upper-lower image pair.
(a) Upper image is frame 1, lower image is frame 2. (b) Upper
image is frame 9, lower image is frame 10.

4.3. 10-Frame Reconstruction: Quasi-Success and
Failure

The 4 frames shown in Figure 5 bookend the 10 frames
used to solve the small reconstruction shown in Figure .
Though only 10 frames are solved for, the results of Figure
?? show that the algorithm produces a decent initial recon-
struction of the ranged target geometry. Furthermore, the
structure solution appears to be proximal to true scale. The
Hubble model height is roughly 40cm, with a base diameter
of 13-14cm. The height and base width of the reconstruc-
tion is most certainly in the middle of this ballpark. Note

Figure 6: Quasi-successful 3D Reconstruction using 10 camera
frames and LIDAR scans.(upper left) 3D ranged points (red) and
3D vision-SfM points (blue) are projected into one of the sequence
images.(upper right) Front-view of 3D structure solution.(lower
left) Side-view of Hubble target model.(lower right) Side-view of
3D structure solution.

that SBA was not used in this reconstruction – the SBA so-
lution is diverging unexpectedly, and the author suggests
there is an implementation issue in his code leading to this
erratic behavior (SBA is a well-known, well-validated soft-
ware package).

Conversely, the 10-frame 3D reconstruction depicted in
Figure 7 is clearly troubled. It is very difficult to ascertain
the validity of a point cloud solution, especially looking at
Matlab plots, but this reconstruction has some clear signs of
gross inaccuracy. First of all, the projections of the solved
3D structure points do not correlate well with the image in-
formation. This is especially clear in the range projections,
where the contours of the projections do not match those of
the visual imagery at all. Furthermore, it is clear in the 3D
point cloud plot that the range and vision 3D points do not
sit well together.

Toward identification of what is fundamentally different
between these two 10-frame reconstructions, three frame-
to-frame error metrics were calculated for each solution.

εFi =
1

Ni

Ni∑
j=1

‖x̃Ti,jFx̃i+1,j‖2 (7)



Figure 7: Unsuccessful 3D Reconstruction using 10 camera
frames and LIDAR scans.(top) 3D ranged points (red) and 3D
vision-SfM points (blue) are projected into one of the sequence
images.(middle left and right) Two views of 3D structure.bottom
Visualization of epipolar geometry, range projection, and homog-
raphy mapping – note the lack of correspondence between homog-
raphy red point and epipolar line on the right.

εHi =
1

Ni

Ni∑
j=1

‖ ˜xi, j
T
Fx̃i+1,j‖2 (8)

εLi =
1

Ni

Ni∑
j=1

‖d(li+1,j , Hxi,j)‖2 (9)

Here d(l, y) is defined as the minimum distance from a
line l to point y. The last error metric is a mean sum of
distances between the homography mapping of a point and
its closest epipolar line point according to the fundamental
matrix estimate. Each metric is a scalar error value tied to
a particular frame-to-frame pairing. An overall mean and
standard deviation were calculated over all such frame-to-
frame error values for each solution.

Comparison of these error metrics between the two so-
lutions reveals that there is a large disparity in the fit be-
tween the epipolar constraints and the homography map-
ping in the failure case, as presented in Table 1. These data
indicate that while the estimation of the fundamental matrix

Error Metric, in pixels Trial 1(Quasi-success) Trial 2(Failure)
µεFi 0.0065 0.0011
σεFi 0.0059 0.0014
µεHi 0.4087 0.2289
σεHi 0.2558 0.1776
µεLi 0.8085 22.0092
σεLi 0.5907 16.8326

Table 1: Error Metric Mean and Standard Deviations across
Frame-to-Frame Pairs for each Reconstruction Solution

satisfies the epipolar constraint for the points in the esti-
mation, there is wide divergence from the constraint away
from those points. The strange part is that there were very
many feature correspondences found frame-to-frame in the
failure case. It seems unlikely that a degenerate configura-
tion was found, though many of the surfaces of the failure
case hemispherical model are planar. This result remains
somewhat of a puzzle to me yet, and is an exciting area to
investigate as future work.

5. Conclusion
A preliminary framework for 3D tumbling target recon-

struction through fusion of vision and line-scanning LIDAR
data was presented. Early results indicate that the method
holds potential to perform well, though there remains sig-
nificant development hurdles to overcome in order to make
this a viable, robust solution. One key flaw of the system
is its total relience on highly accurate frame-to-frame pose
estimation at the front-end of the estimation chain. This
may not be a limitation given highly accurate range sen-
sors and cameras, but how accurate the sensors need to be
in order to reasonably guarantee satisfactory performance is
unclear to the author. As discussed, one way to potentially
overcome this flaw is to incorporate projective factorization
methods into this solution methodology, whereby structure
and motion is solved simultaneously. However, this intro-
duces different flaws in and of itself, namely that all fea-
tures in the tracking matrix must be present in all frames for
which camera motion is computed. Even if the motion is
broken up into sufficiently small submaps, there still exists
the real possibility on orbit that there will not be enough
concensus across multiple frames.

Projection of line-scanning LIDAR data into images is a
difficult problem. Camera-LIDAR extrinsic calibration is
flawed, no matter how well it is conducted. The author
believes there is opportunity to improve camera-LIDAR
checkerboard methodology by developing auto-calibration
technology for camera-LIDAR extrinsics, much like the
development of auto-calibration procedures in vision-only
SfM. This has been somewhat addressed by works such as



[10], however the author believes that the robust solution for
a simple LIDAR and co-located camera remains unearthed.

Overall, though 3D reconstruction is a well-research
field, there remains great challenges in expanding capabil-
ity for harsh environments, for targets undergoing aggresive
motion, and for simple, low-power and low-weight sensor
suites to do more.
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