
ViFaI: A trained video face indexing scheme

Harsh Nayyar
hnayyar@stanford.edu

Audrey Wei
awei1001@stanford.edu

Abstract

In this work, we implement face identification of cap-
tured videos by first training a set of face images using the
Principal Component Analysis in addition to the Fisher-
faces Linear Discriminant. This set of face images are ac-
quired from Facebook tagged photos, stored after perform-
ing a Haar feature-based cascade classifier, which detects
and only keeps good matches. Once the training phase is
performed, we execute two classification algorithms: the
nearest-neighbour (NN) and one-against-one multi-class
Support Vector Machine (SVM). Our results demonstrate
that the SVM outperforms NN by computing the accuracy
of each schemes performance. Although our classification
accuracy on our test images is over 70%, we do not observe
such performance on our video input. In fact, the misclas-
sification error prevents the expected system operation. We
hope to address this issue in future work.

1. Introduction
With the increasing prominence of inexpensive video

recording devices (e.g., digital camcorders and video
recording smartphones), the average user’s video collection
today is increasing rapidly. With this development, there
arises a natural desire to efficiently access a subset of one’s
collection of videos. The solution to this problem requires
an effective video indexing scheme. In particular, we must
be able to easily process a video to extract such indices.

Today, there also exist large sets of labeled (tagged) face
images. One important example is an individual’s Facebook
profile. Such a set of of tagged images of one’s self, fam-
ily, friends, and colleagues represents an extremely valuable
potential training set.

In this work, we explore how to leverage the aforemen-
tioned training set to solve the video indexing problem.

2. Problem Statement
Use a labeled (tagged) training set of face images to ex-

tract relevant indices from a collection of videos, and use
these indices to answer boolean queries of the form: “videos

with ‘Person 1’OP1 ‘Person 2’OP2 ... OPN−1 ‘Person N’
”, where ‘Person N’ corresponds to a training label (tag) and
OPN is a boolean operand such as AND, OR, NOT, XOR,
and so on.

3. Relevant Works
There are multiple approaches that exist in the literature

for video indexing. In [5], the authors use multimodal anal-
ysis, exploring visual, auditory, and textual modality. In
relevance to our research, they perform people detection in
video documents by using the neural network-based system
[6]. This algorithm detects 90% of all upright and frontal
faces and only mistakes a minimal number of non-face ar-
eas for faces.

This source also detects people by identifying whole
human bodies and applying detectors for heads, legs, and
arms. Each individual detector is based on the Haar wavelet
transform and utilizes a second example-based classifier.
For identification, the authors compute eigenfaces and Fish-
erfaces, covered in section 4.2, which achieve better results
when both variations in lighting and expression are present.
However, one downfall is that face recognition only works
well in constrained environments, such that frontal faces are
captured closely to the camera.

Eigenfaces and Fisherfaces are strong algorithmic ap-
proaches for our application. With Facebook tagged images
as our training set, we experience various lighting settings
and facial expressions. We also exploit the Haar wavelets
[4] for face detection with the calculation speed being its
great advantage.

In [7], the authors use Independent Component Anal-
ysis (ICA) as a generalized Principal Component Analy-
sis (PCA) procedure. The ICA linearly transforms data
into components that are maximally independent from each
other. Following this, the Discrete Wavelet Transform
(DWT), due to its excellent energy compaction for highly
correlated data, is used to rid high-frequency components,
since high-frequency information is unneeded information
for detection. Lastly, the authors perform a particular Sup-
port Vector Machine (SVM) classifier, known as SVM light,
which is a fast optimization algorithm for pattern recog-
nition. Using the DWT and SVM classifier, the authors

are able to detect with 100% accuracy a subject in a video
database composed of 40 videos, 10 for each 4 subjects.

For our implementation, we executed a non-linear SVM
as one form of classifiers. We chose not to deploy the neural
network-based system presented in [5], since SVM is found
to be less computationally expensive and performs com-
parably well. Additionally, we also executed the nearest-
neighbours, because of its simplicity and adequate perfor-
mance. These algorithms will be presented in detail in sec-
tion 4.

4. Background
4.1. Face Detection

4.1.1 Haar Feature-Based Cascade Classifier

A Haar classifier is trained with hundreds of sample views
of a certain object, e.g. a face, called positive examples,
and views of arbitrary objects, called negative examples. It
is then applied to a region of interest (ROI) of a particular
input image. The classifier will output a “1” if the ROI is
likely to contain the desired object, e.g. face, or “0” oth-
erwise. This procedure is repeated, scanning every loca-
tion and varying its window size, until the entire image is
searched. The features used in these classifiers are as de-
picted in Figure 1.

Figure 1. Haar-like features

4.2. Training

Two proposed methods of representing data for appli-
cations in the computer vision and machine learning world
are the Principal Component Analysis (PCA) and the Linear
Discriminant Analysis (LDA).

4.2.1 Principal Component Analysis

When applied to face images, the PCA computes a set of
eigenfaces that characterizes most of the data variance; it
consists of eigenvectors that correspond to the largest eigen-
values of the training datas covariance matrix. This is equiv-
alent to a least squares solution and eliminates unnecessary

existing correlations among original features, and thus sig-
nificantly reduces the dimensions of the feature space. [1]

To formally present this algorithm, consider a set of N
sample images, {x1, x2, ..., xN}, which belongs to one of
c classes, {X1, X2, ..., Xc}. The projection matrix Wopt,
with a total scatter matrix ST , is computed such that:

Wopt = arg maxW |WTSTW |

= [w1w2...wm]

ST =
∑N
k=1 (xk − µ)(xk − µ)T

where µ εRn represents the mean image of all samples, and
W ε Rnxm represents the transposed linear transformation
matrix with orthonormal columns. The columns ofWopt are
the n-dimensional eigenvectors of ST corresponding to the
m largest eigenvalues. After mapping the n-dimensional
image space into a reduced m-dimensional feature space,
the new linearly transformed feature vectors yk ε Rm , are
computed as follows:

yk = WTxk, with k = 1, 2, ..., N

For classification, the main objective is to maximize the
between-class scatter in order to categorize specific faces
to its correct match. The PCA is able to obtain this goal.
However, variations between images of the same face due
to illumination and viewing directions are generally much
higher than changes in face identity. Hence, the projec-
tion matrix Wopt, will contain principal components that
retain the undesired variation due to lighting. Moreover,
this method maximizes the within-class scatter, which in-
creases the probability of having different classes smeared
together. As a result, PCA projections do not perform well
in classification problems. [1]

4.2.2 Linear Discriminant Analysis

Similarly to PCA, LDA projections map sample vectors of
different classes as far apart from each other as possible in
the feature space. Unlike PCA, it minimizes within-class
distances, which places LDA as a much stronger classifica-
tion algorithm than PCA.

Let the between-class and within-class scatter matrices
be defined as:

SB =
∑c
i=1Ni(µi − µ)(µi − µ)T

SW =
∑c
i=1

∑
xkεXi

Ni(xk − µi)(xk − µi)T

where µi is the mean image of class Xi, and Ni is the
number of samples in class Xi. The optimal projection
Wopt is computed such that the ratio of the determinant of
the between-class scatter matrix to the determinant of the
within-class scatter matrix is maximized.

Wopt = arg maxW
|WTSBW |
|WTSWW |

= [w1w2...wm]

The columns ofWopt are the generalized eigenvectors of
SB and SW corresponding to the m largest eigenvalues, λi,
such that:

SBwi = λiSWwi, with i = 1, 2, ...,m

Since the number of images N , is usually much smaller
than the n number of pixels in each image, this algorithm
faces the issue of having Sw as a singular matrix. This po-
tentially leads to a projection matrix that causes the within-
class scatter to become zero, which is undesirable.

4.2.3 Fisherfaces Linear Discriminant

The proposed solution in [1], called Fisherfaces Linear Dis-
criminant (FLD), is to utilize PCA to reduce the dimensions
of Sw to N − c, making it non-singular, before applying
LDA, which reduces the dimensions further down to c− 1.
The equations of these steps are as follows:

Wopt = WpcaWfld

Wpca = arg maxW |WTSTW |

Wfld = arg maxW
|WTWT

pcaSBWpcaW |
|WTWT

pcaSWWpcaW |

The new linearly transformed feature images ykεRm, are
computed as follows:

yk = WT
optx

′
k, with k = 1, 2, ..., N

where x′k = xk − µ and µ is the global mean of all training
images.

4.3. Classification

4.3.1 Nearest-Neighbour

Our first approach of performing classification on a single
test image I , is the nearest-neighbour method. This tech-
nique is one of the simplest algorithms for predicting the
class of a test sample [9]. The Euclidean distance of the
newly transformed images yk, and I ′, such that I ′ = I − µ,
is computed as follows:

d(y, I ′) = ||y − I ′|| =
√∑N

k=1 (yk − I ′)2

After d(y, I) is computed for each class c, the class
which gives the minimum error d(y, I) is considered the
match for the test image if d(y, I) falls within a threshold
value of some τ .

A major disadvantage of the NN is the computational
cost of O(Nm) time for a single test example [9]. Thus,
another classifier, known as the Support Vector Machine, is
introduced in the next section.

4.3.2 Support Vector Machine

The standard SVM takes a set of data inputs and for each
given input predicts which of two possible classes it falls
under. Firstly, the SVM takes in a set of training samples,
each indicating which of the two categories it belongs to,
and builds a model such that samples of different categories
are separated as far as possible. Test inputs are then mapped
into the same space and predicted to belong in a category
based on which region they fall in.

Assuming that each data point is a p-dimensional vec-
tor, our goal is to maximally separate the data points from
different classes with a (p-1)-dimensional hyperplane. This
represents a linear classifier. The training data D is defined
below:

D = {(xi, yi)|xiεRp, yiε{−1, 1}}ni=1

where yi indicates the class to which the point xi belongs.
In our algorithm, we implement a one-against-one SVM

with a non-linear classifier. The one-against-one method is
constructed using training samples belonging to two classes
only, e.g. classes p and q.

yi = +1, if ci = p

yi = −1, if ci = q

The classifier used is computed by applying kernels to max-
imize the margin between hyperplanes. We utilize a com-
mon kernel, known as the Gaussian radial basis function
(RBF), k(xi, xj) = exp(−γ||xi − xj ||2), for γ = 1

2σ2 [8].
We can predict which class the input falls under by com-

puting the sign of f(x), the value of the discriminant func-
tion, provided below:

fpq(x) =
∑Ns

i=1 αiyiK(si, x) + b

where Ns = # of centers, si = centers, αi = weights, and b =
threshold.

These parameters are automatically produced by the
trained SVM model. Thus, the only unknown parameter
is σ, the RBF width. Based on [8], setting σ2 = 200 is an
optimal choice, provided that it is less prone to errors and
generally produces good kernels.

If fpq(x) > 0, class p wins a vote.

otherwise, class q wins a vote

The class with the maximum number of votes is assigned
to the test image. [10]

5. System Overview
In this section, we outline our proposed scheme to ad-

dress the problem we postulate in section 2 and will provide
further details about the system implementation in section
6.

At a high level, we subdivide the problem into two key
phases: the first ”off-line” phase executed once, and the sec-
ond ”on-line” phase instantiated upon each query.

For the purposes of this work, we define an index as fol-
lows: <video id, tag, frame #>.

A visual layout of the system implementation is pre-
sented in Figure 2.

Figure 2. System Overview

5.1. The training phase

We first outline Phase 1 (the training or “off-line” phase):

1. Detect faces from acquired Facebook images using the
Haar feature-based cascade classifier, presented in sec-
tion 4.1.1. Store correctly detected faces in a labeled
training set.

2. Use the labeled training set plus an additional set of
‘other’ faces to compute the Fisher Linear Discrimi-
nant (FLD) [1].

3. Project the training data onto the space defined by the
eigenvectors returned by the FLD, and train a classifier
(first nearest-neighbour, then SVM) using the training
features.

4. Iterate through each frame of each video, detecting
faces [2], classifying detected results, and adding an
index if the detected face corresponds to one of the la-
beled classes from the previous step.

5.2. The query phase

Now, we outline Phase 2 (the query or “on-line” phase):

1. Key the indices on their video id.

2. For each video, evaluate the boolean query for the set
of corresponding indices.

3. Keep videos for which the boolean query evaluates
true, and discard those for which it evaluates false.

6. Implementation Details
We are implementing the project in C++, leveraging the

OpenCV v2.2 framework [4]. In this section, we will high-
light some of the critical implementation details of our pro-
posed system.

6.1. Detection and Training Set Acquisition

In order to obtain the training faces, we must extract
faces from tagged Facebook data. This requires parsing
through Facebook’s Graph API. Essentially, for our pur-
poses we have images, each with a set of tags. We first
retrieve these images (using the wget utility), and then pro-
ceed to extract the tagged faces.

At this stage, we perform some outlier removal. Specif-
ically, we run the OpenCV Viola-Jones based face detector,
specifically the Haar feature-based cascade classifier, in or-
der to detect faces. If the detected faces correspond to tags,
we accept the face. In our system, we reject regions with
tags but no detected faces. We use a Haar classifier that
focuses on frontal views of faces.

During the acquisition phase, we also resize all training
samples to a standard size of 40px by 40px, and store the
grayscale representation of the samples.

6.2. Computing the Fisher Linear Discriminant

For this stage of the training pipeline, we first perform
PCA to reduce the dimensionality of our data to N − c
where N is the number of images in our training set, and
c is the number of classes. We then perform the Fisher Lin-
ear Discriminant, minimizing the within-class scatter and
maximizing the between-class scatter.

We utilize the OpenCV implementation of singular value
decomposition (SVD) to perform the above tasks.

6.3. Classification

Having determined the optimal projection from the pre-
vious stage, we are left with a set of features for each train-
ing sample. We investigate two approaches for classifica-
tion: nearest-neighbour (NN) and support vector machine
(SVM).

First, we implement a nearest-neighbour approach.
Here, we simply store the training features. For a query
sample, we compute the euclidean distance to the near-
est neighbour, and assign the closest class within a certain
threshold, τ . This threshold will be learned through training
and cross-validation.

We expect that the two nearest-neighbour approaches are
unlikely to provide robust performances when testing on
general test data. For this reason, we also implement a non-
linear SVM-based classification scheme.

We will begin using the one-against-one scheme, and
train a set of two-class SVM classifiers able to discriminate
between a particular class and the rest of the training set.
Based on the set of results, we infer the winning class.

6.4. Indexing

In this stage, for each supplied test video, we iterate
through each frame and perform face detection to extract
faces. We resize the faces to 40px by 40px, project the sam-
ple to obtain a feature vector, and this then serves as the
input to our classifiers.

If our classification output determines that the query
sample is one of our learned classes, we have an index and
record it in the form of the index we presented above.

6.5. Query evaluation

Based on the previous progression of tasks, our problem
setup makes the query evaluation relatively trivial. For a
given query, we simply evaluate the boolean expression for
each video. This is based on the recorded indices for that
video, which are obtained according to the previous section.

7. Results and Evaluation
In this section, we evaluate the key components of our

proposed system. Specifically, we evaluate our detection
performance, our classification performance, and our final
aggregate system performance.

7.1. Face Detection

Our first requirement in this work is a labeled (tagged)
set of face images. We have obtained this using the data
of five Facebook users. After parsing the Facebook Open-
Graph API results, we present the following summary
statistics, which are based on a user’s 25 most recent tagged
photos:

• Average number of tags per photo: 5.384

• Average number of detections per photo: 1.752

Immediately, we observe that we only actually detect ap-
proximately 33% of the potential detections.

There is a three-fold explanation for this observation.
First, our detector performs poorly on large group photos.
Such photos have many tags and very few detections. For
reference, one such example is depicted below in Figure 3.
As we can see, of the approximately 30 (tagged) individu-
als, only a small subset of individuals (e.g. 5) are actually
detected.

Figure 3. Poor performance for large group photos

It is important to note that this phenomena is only ob-
served for large groups, as in this scenario. For smaller,
more typical sized groups (approximately 5-8 individuals),
the performance is far better. For reference, we provide a
representative sample in Figure 4.

Figure 4. Improved performance for average sized group photos

The second factor contributing to the relatively low face
detection rate can potentially be attributed to false tags. Our
implementation only accepts a detection if and only if there
is a corresponding tag at a detection hit. We have observed
that on Facebook; it is often the case that users will tag
non-faces as individuals. Obviously, such a scenario will
yield in a missed detection. One application of such a sce-
nario would be to ignore the clear false positives in the large
group example (e.g. the wall).

The third and final factor that we believe contributes to
these results is the presence of non-frontal views of faces.
Although this scenario is prevalent in natural scenes, it is a
known problem that side-face detection does not yet have a
robust solution.

Finally, we present another important metric when eval-
uating our face detection stage: the false positive rate. In
our system, across our five test subjects, we do not observe
a single false positive. Specifically, what this result means
is that we get a final result that is either of the following:

• not a face

• or, a mis-labeled face

Both of these results validate our implementation deci-
sion to only accept detections that correspond to a tagged lo-
cation. It is important our aforementioned successive clas-
sification and indexing stages behaviours hold true.

7.2. Classification Performance

In this section, we evaluate our two candidate classifica-
tion schemes: the simple NN scheme, as well as our one-
against-one multi-class SVM classification scheme. We in-
vestigate the classification performance.

7.2.1 Training Set Description

In this evaluation, our training set is comprised of 5 individ-
uals in their mid-twenties, two females and three males. We
have anonymized the identities for this report as Subjects A,
B, C, D, and E. Moreover, for reference, Subjects B and E
are female, while A, C, and D are male.

We have selected such a group because we feel it accu-
rately represents a typical use case. We expect our system to
be used to index videos recorded on a circle of friends that
are likely similar in age and roughly balanced in gender.

In this section, we reference a ‘5-sample’ training set and
frequently compare this to a ‘10-sample’ training set. What
this represents is that in the former case, each constituent
class of the corresponding classifier is trained based on five
samples. In the latter case, this is ten samples. Moreover,
we always measure the classification accuracy based on an
independent set of five samples for each class. That is, the
test set is independent of the training set.

7.2.2 NN Performance

In this section, we present the classification performance of
our nearest-neighbour classifier. We further analyze the per-
formance improvement as we increase the size of the train-
ing set.

7.2.3 Base case: pair-wise classification

We first examine the performance of the classifier in distin-
guishing any pair of individuals from our training set. This
is the base case.

This table is read as the classification accuracy of the
row heading with respect to the pair defined by the row and
column intersection. For example, the performance of A in
the (A,C) classifier is 80%, while the performance of C in
the (A,C) classifier is 40%.

From the Table 1 above, we conclude that the average
classification accuracy is 70% when distinguishing two in-
dividuals.

A B C D E
A X 100% 80% 60% 80%
B 100% X 100% 100% 80%
C 40% 60% X 20% 20%
D 40% 80% 60% X 40%
E 80% 80% 80% 100% X

Table 1. NN classification accuracy for 5 training samples

A B C D E
A X 100% 80% 80% 80%
B 100% X 100% 100% 80%
C 80% 100% X 80% 40%
D 60% 80% 60% X 60%
E 100% 80% 100% 100% X

Table 2. NN classification accuracy for 10 training samples

In Table 2 above, we conclude that the average classifica-
tion accuracy is 83% when distinguishing two individuals.

Comparing Tables 1 and 2, it becomes obvious that us-
ing a larger number of samples increases the classification
accuracy. Specifically, we were able to obtain an improve-
ment of 13%, on average in classification accuracy when we
increased the number of training samples from 5 samples to
10 samples.

7.2.4 Increasing the classes to four classes

In order to quantify the generalization performance of our
nearest-neighbour classifier, we increase the number of
classes from 2 to 4. We evaluated the classification per-
formance of all possible subsets of 4 subjects from our 5-
subject training set.

Figure 5 depicts the classification performance. In this
figure, we show the performance of each possible subset as
well as the average performance over all subsets. Moreover,
for each subset, we show two bars. These bars compare the
classification accuracy of the five-sample training set and
the ten-sample training set.

The most important conclusion we make from Figure 5
is that on average, classification performance improves as
we increase the training set size. Specifically, on average,
the NN classifier achieves a classification accuracy of 73%.

7.2.5 The entire training set

Finally, we investigated the generalized performance on the
complete training set. Again, we have comparative results
for the 5-sample training set and the 10-sample training set.

Again, we observe that the larger training set improves
the classification accuracy. Moreover, for the 10-sample

Figure 5. Performance generally increases as the size of the train-
ing set is increased.

5-sample 10-sample
A 60% 40%
B 100% 80%
C 40% 60%
D 60% 100%
E 80% 80%

AVG 68% 72%

Table 3. NN classification accuracy for all 5 classes

training set, we observe that the performance drops negligi-
bly with respect to the average 4-class results we presented
in the previous section.

7.2.6 One vs. One SVM Performance

Next, we analyze the performance of our one-against-one
multi-class SVM classifier. One parameter we have is the
number of votes we require to admit a class. We set it to
50%. This means the winning class must have greater than
50% of the votes, otherwise the classifier outputs “none”.

As with the NN performance evaluation, we again eval-
uate the SVM performance based on the 5-sample training
set as well as the 10 sample training set.

Again, as with the nearest-neighbour classification
scheme, we see that as we increase the size of the train-
ing set, we observe an increase in classification accuracy
as well. Moreover, in contrast to the nearest-neighbour
scheme, this figure suggests that the SVM approach ben-
efits more from a larger training set. On average, with the
10-sample training set, the SVM classifier achieves a clas-
sification accuracy of 74%.

Finally, we investigate the generalized performance on
the complete training set. Again, we have comparative re-
sults for the 5-sample training set and the 10-sample train-
ing set.

We observe that increasing the training set size improves

Figure 6. Performance generally increases as the size of the train-
ing set is increased.

5-sample 10-sample
A 60% 60%
B 100% 80%
C 20% 80%
D 80% 60%
E 80% 100%

AVG 68% 76%

Table 4. One vs. one SVM classifier accuracy for all 5 classes

the classification performance. Moreover, we see that the
10-sample SVM outperforms the 10-sample NN classifier
presented in the previous section (76% vs. 72%).

7.3. Overall System Performance

At this point, our overall system performance is unsat-
isfactory. We have a set of 8 training videos consisting of
varied lighting conditions as well as different subsets of our
five training set subjects. Although we have an integrated
system, we get an overwhelming number of misclassifica-
tions that is not consistent with our classification perfor-
mance results as outlined in the previous section.

Due to the extremely poor classification results on the
video, we were unable to evaluate our final indexing perfor-
mance. We address these shortcomings in future work.

8. Conclusion
In this work, we conduct an evaluation of two main

schemes for classifying the detected faces acquired from
Facebook videos: nearest-neighbours and one-against-one
SVM classifiers. Our analysis shows that the one-against-
one SVM classifier outperforms NN.

Although we had some poor performances in cases such
as images of large groups or non-frontal face images, we
were still able to capture and detect a majority of the faces
accurately with an average of over 70% for both NN and
SVM. Not only does this confirm that both classifiers work

reasonably well, it also shows that PCA and FLD character-
ize the evaluated face images well. Moreover, an important
outcome of our work is that this approach works well for
natural images acquired through Facebook.

Some additional reasons for the poor performances is
that our training set needs to be more diverse. We con-
structed a training set using 5 Facebook users’ photos and
only kept faces that were accurately detected from the Haar
feature-based cascade classifier.

Additionally, we found the following statistics for face
detection on Facebook images. Based on a user’s 25 most
recently tagged photos, the average number of tags per
photo is 5.384 and the average number of detections per
photo is 1.752.

All in all, this work represents a positive start towards
our ambitious goal of delivering a video indexing scheme
trained on tagged Facebook images. We have resolved the
entire acquisition pipeline, and need to work further to re-
fine the classifiers and tune them for the wide variation that
is a defining characteristic of our problem statement.

9. Future Work

When implementing the Haar feature-based cascade
classifier, we could incorporate multiple classifiers such as
one that focuses on side-profile faces. This could help us
become more robust against the variations that are present
in video that are simply not present in images.

Our current results suggest that we ought to also inves-
tigate acquiring a larger training set. Specifically, we need
to ensure that all subjects have a variety of training samples
from varying illuminations and scenes.

Finally, although our classification performance is rea-
sonable, we might investigate the one-versus-all multi-class
SVM. This could help us generalize better as we will be able
to categorically rule out queries as belonging to a particular
class, instead of relying on votes. Now it is possible that we
get a positive result for multiple classes and in that scenario
we could resort to breaking ties based on the actual margin
of the classifier.

References
[1] P.N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. “Eigen-

faces vs. Fisherfaces: Recognition using class specic linear
projection,” IEEE Trans. Patt. Anal. Mach. Intell 19, 711 720,
1997

[2] P. Viola and M. Jones, “Robust Real Time Object Detection,”
IEEE ICCV Workshop Statistical and Computational Theories
of Vision, July 2001.

[3] Face Recognition Homepage. http://www.face-
rec.org/databases/

[4] OpenCV. http://opencv.willowgarage.com/

[5] C. Snoek, M. Worring. “Multimodal Video Indexing: A Re-
view of the State-of-the-art,” Intelligent Sensory Information
Systems. Univ. of Amsterdam.

[6] H. A. Rowley, S. Baluja, T. Kanade. “Neural Network-Based
Face Detection,” IEEE Pattern Analysis and Machine Intelli-
gence, January 1998.

[7] M. del Pozo-Banos, C. M. Travieso, J.B. Alonso, M. A. Ferrer.
“Face Identification based on TV videos,” IEEE ICCV Secu-
rity Technology, October 2009.

[8] Y. Chen, X. Zhou, T. Huang. “One-class SVM for Learning in
Image Retrieval,” IEEE ICCV Image Processing, 2001.

[9] C. Elkan. “Nearest Neighbor Classification,” Uni-
versity of California, San Diego, January 2011.
http://cseweb.ucsd.edu/ elkan/151/nearestn.pdf

[10] N. Seo. “A Comparison of Multi-class Support Vector Ma-
chine Methods for Face Recognition,” University of Mary-
land, December 2007.

