
Scaling for Multimodal 3D Object Detection

Andrej Karpathy
Stanford

karpathy@cs.stanford.edu

Abstract

We investigate two methods for scalable 3D object detec-
tion. We base our approach on a recently proposed template
matching algorithm [8] for detecting 3D objects. First, we
demonstrate that it is possible to gain significant increase
in runtime performance of the algorithm at almost no cost
in accuracy by quickly rejecting most regions of the image
with low-resolution templates. Second, we investigate an
implicit part-based model that uses fixed-sized template dic-
tionary and a Generalized Hough Transform framework to
detect objects. We present results on two separate datasets
that we collected using the Kinect sensor.

1. Introduction
Real-time object learning and detection are important

and challenging tasks in Computer Vision. Especially in
the field of robotics, there is a need for algorithms that can
enable autonomous systems to continuously learn to recog-
nize new objects. For such time-critical applications, tem-
plate matching is an attractive solution because new objects
can be easily learned online, in contrast to statistical tech-
niques that often require a time-consuming training stage.

An efficient template-based object detection algorithm
has recently been proposed [8] that works in real-time, does
not require a time consuming training stage, and can handle
untextured objects. It is based on an efficient representation
of templates that capture color, gradient and depth modali-
ties. However, the template-based approach scales linearly
with the number of objects and views, making it difficult
to use in an application that requires detection of many ob-
jects and viewpoints. In this work, we use the same efficient
feature extraction and matching algorithm, but address the
scalability issues in two separate ways, each with its own
trade-offs.

First, we propose a method of speeding up the template
matching procedure by pre-filtering the image with low-
resolution versions of all templates to quickly reject parts
of the image that are unlikely to contain objects of interest.

Second, we show how to use use a fixed-size dictionary

of random templates to detect parts of objects in the image.
This approach is inspired by recent work [20] that suggests
that even random filters can give rise to responses that can
be used in a discriminative setting. We use the General-
ized Hough Transform to accumulate votes for object center
from weakly detected parts to detect whole objects.

The remainder of this report is structured as follows. We
first discuss related work and introduce our approach. We
then present results of experiments on two new datasets.

2. Related Work
Object detection is a widely studied topic in the litera-

ture. Below we briefly summarize the most common ap-
proaches to this problem.

Template Matching This technique is attractive due to
its simplicity and its lack of assumptions about the back-
ground of objects. In general, it tends to work well in sce-
narios where a few rigid objects of fairly distinct appearance
are concerned. However, the approach does not immedi-
ately scale to object detection that involves many classes,
views and deformable objects due to computational con-
cerns. There have been many attempts to addressing this
problem. [8] optimizes the performance of template match-
ing with a design of features and matching algorithm that
can be computed very quickly, and by minimizing the num-
ber of cache misses during computation. Approaches such
as [7] speed up template matching using distance transform
that group templates together to avoid matching all tem-
plates in a brute force manner. Other approaches attempt to
quickly reject parts of the image that are unlikely to contain
objects of interest. [18] uses image segmentation, where
as other approaches utilize relatively cheap root filters in a
cascade detection framework [4, 17]. Our first technique of
speeding up the template matching procedure draws mostly
on these ideas.

Deformable Part-based Models. To address the expo-
nential increase in the number of templates that are required
for objects that can exhibit a large number of distinct ap-
pearances (such as deformable objects) many part-based ap-
proaches have been proposed that combine template match-
ing with a part-based model that enforces soft constraints



Figure 1. Visualization of the features computed from an image. From left to right: color image, depth image, color modality, gradient
orientation modality, and depth orientation modality. A different color is used for every possibly value that a modality can take on (one of
0 to n0. Here n0 = 8 is used.)

on relative locations of parts. Popular approaches include
Constellation models [12, 21], Star-shaped models [1, 13,
24, 26, 22, 19], and flexible part-based models learned in
a latent structural large margin frameworks [5, 27]. In this
work, we do not consider these explicit part-based models
as most require a relatively expensive training stage, or take
a long time to compute on a test image.

Generalized Hough Transform Models. Hough Trans-
form [9] is a classical Computer Vision algorithm that was
originally used for line detection. In recent years, however,
Hough-based methods have been successfully adapted to
problem of part-based object detection, where they consti-
tute an implicit shape model. [3, 6, 11, 14, 16]. The main
idea in these methods is to first detect parts of objects inde-
pendently, and then use the detected parts to cast votes for
the object center in the image. Our second approach is sim-
ilar to these methods, except we use different features and
matching algorithm to detect object parts.

Multimodal Detection. Especially in area of Robotics,
the availability of RGBD sensors such as the Kinect have al-
lowed researchers to utilize depth information and achieve
much higher object detection rates. It has become rela-
tively common, therefore, to see methods that combine mul-
timodal data in a single detection framework [8, 25, 10, 2].

3. Approach
In this section, we first describe the multimodal feature

extraction and matching algorithms. These steps are similar
to those described in [8]. We then discuss two approaches
we’ve investigated that serve to replace the naive, brute-
force template matching scheme in the previous method.

3.1. Feature Extraction and Representation

To compute the feature representation, an RGB image
and a corresponding depth map are converted to a set of
three modalities, {Om}m∈M. Here, m ∈ M denotes
one of three modalities: gradient orientation, depth ori-

entation, and color. Each modality is a discrete-valued
two-dimensional array of the size of the original image.

Gradient Orientation modality is computed from the
image by calculating the orientation of the gradient at every
point in the image. The orientation is computed on all three
color channels separately, and only the orientation that cor-
responds to the channel with the highest gradient magnitude
is retained at each location. To achieve additional invariance
to illumination changes, only the absolute value of the ori-
entation is computed at every point. Locations in the image
that have a very low gradient magnitude are ignored.

Depth Orientation modality is identical to the gradient
modality, except the gradients are computed on the depth
map.

Color modality is computed by first converting the RGB
image into HSV color space, and then keeping only the hue
component. Locations in the image that have a very low
gradient magnitude or very low saturation are ignored.

Finally, all modality maps are discretized into one of n0
values. Examples of computed modalities are visualized in
Figure 1. Throughout this work we set n0 = 8, as this
allows us to store every image as an array of 8-bit values
with a 1-of-n0 encoding for every location.

3.2. Template Matching

Given a set of aligned modalities {Om}m∈M, a template
is defined as T = ({O}m∈M,L). L is a list of pairs (r,m)
where r is a location of a feature in modality m. The sim-
ilarity measure between a template and an image patch is
defined as:

E({I}m∈M, T , c) =
∑

(r,m)∈L

(
max

t∈R(c+r)
fm(Om(r), Im(t))

)

where R(c + r) = [c + r − T
2 , c + r + T

2 ] × [c +

r − T
2 , c + r + T

2 ] defines the neighborhood of size T cen-



Figure 2. Left: Visualization of Hough voting scheme. Every black circle is a weakly-detected part, and green lines indicate votes.
The green lines meeting at the center of the tea cup give rise to a noticeable peak in the response map for that object (Center). Right:
Visualization of the root filter template matching. Proposed locations are shown in green and filtered further. The black rectangle is a true
positive match obtained from subsequent filtering.

tered on location c+ r in the input image Im and the func-
tion fm(Om(r), Im(t)) computes the similarity score for
modality m between the reference image at location r and
the input image at location t. Thus, each feature in a tem-
plate is aligned locally in a small neighborhood to the most
similar feature in the input image. This formulation al-
lows for small changes in the input patch by adding a slight
amount of invariance to the matching algorithm.

The similarity measure is used to perform template
matching with a simple sliding window approach together
with non-maximum suppression.

3.3. Template Matching with Root Filters

In this section, we describe an algorithm to speed up the
template matching approach of the original method. In its
derivation, we draw inspiration from recent approaches that
achieve significant boosts in time complexity without sac-
rificing performance by quickly rejecting most parts of the
image.

Therefore, we re-define the similarity measure as fol-
lows:

Ep,τ ({I}m∈M, T , c) =

{
0, E({Ip}m∈M, T p, pc) < τ

E({I}m∈M, T , c), otherwise

where Ip is the image downsampled by a factor of p, T p
are the templates downsampled by a factor of p, and τ is a
threshold value that must be manually set. Intuitively, the
image is first filtered against all templates on a lower res-
olution and only positions that score above the threshold τ
are further investigated as potential positives using the full-
resolution templates.

While this approach does not reduce the asymptotic
complexity of the original method, it can still significantly
reduce the runtime of the algorithm in practice if one is will-
ing to tolerate a potential decrease in accuracy. A downside
of the approach is that a naive implementation requires ad-
ditional storage devoted to templates of lower resolution for
all objects and views. One way to address this issue is to not
create a new template if an existing template is sufficiently
similar. This can naturally enforce an upper bound on the

number of templates stored and establish a tunable trade-off
between space complexity and accuracy.

3.4. Generalized Hough Transform for Implicit Part
Model

Model. In the Generalized Hough Transform frame-
work, an object is detected through a consensus vote of lo-
cal, independent and weak object part detectors. Each weak
detector maintains a distribution of the location of the ob-
ject center relative to its location. For example, detecting a
part similar to the top of a bottle can be an indicator of a
bottle present below.

More specifically, we maintain a codebook C of size
N , where each element Ci represents an object part. For
every part there is an associated probability distribution
P (On, x|Ci) over all objects On and locations in the im-
age, x that are represented in the local coordinate system of
the part. Assuming that every parts prediction is indepen-
dent and equally important, the probability of P (On, x) can
be obtained by simply adding the probabilities P (On, x|Ci)
for each detected part, offset by its location in the image.

The distribution P (On, x|Ci) can be learned from the
training data by frequency counting. Every time a partOn is
detected on an object, the location of the object center rela-
tive to the part is recorded and stored in memory. Together,
all records for a part represent a non-parametric model of
the distribution that can be stored as a sparse matrix of size
K ×W ×H where K is the number of classes, and W,H
are the size of a receptive field of each part. In this work we
simply set W,H to be the size of the image.

Part Learning. We now describe the mechanism for
learning and detecting object parts in the image. Each part
Ci is a vector of responses for a set of m fixed, random tem-
plates Ti, i = 1..m:

Ci = [E(It, T1, ci), ..., E(It, Tm, ci)]

where It is a training image of one of the objects, and c
is a location inside the mask for that object. For efficiency,
we only learn parts at repeatable locations in the image.
Specifically, we choose to use Harris corner keypoints for
this purpose.



Figure 3. Example images from the collected dataset. Top: Example of the image and its depth from the turntable dataset. Bottom left:
example image from the ”in the wild” dataset. Bottom right: The two bottles we attempt to detect, and an example mask for one of them.
Note that the blue bottle is partially occluded by a yellow marker in the test set.

Detection. Given a location l in an image I , we can simi-
larly form a vector of responses of every one of our random
templates at that location, [E(I, T1, l), ..., E(I, Tm, l)] and
match the responses to those obtained during training using
L2 distance. We consider a part to be detected at some lo-
cation if the minimum L2 distance is below some threshold.

This method has several attractive properties:

• The complexity of the learning stage is very low, as
every image requires us to merely store each detected
part on the object and its offset from the object center.
In practice, it is desirable to only create a new part if
it is not too close to a part that already exists, but this
simply reduces to a nearest neighbor lookup that can
be implemented efficiently using Approximate Near-
est Neighbor techniques, such as kd-trees. Efficient
implementations such as the FLANN [15] library exist
for this purpose. Thus, this approach can be used to
train a new detector online.

• The number of templates, m, stays constant and does
not grow linearly with the number of objects and
views.

• Part detection in the image can be computed efficiently
using Approximate Nearest Neighbor techniques, as
every detection can be reduced to a k-nearest neighbor
search.

• Detection of whole objects during test time given a set
of detected parts reduces to simple addition of votes

for each part. This can be efficiently implemented and
lends itself to parallelization across both object parts
and image regions.

4. Dataset Collection
The data used in our experiments are collected using the

Microsoft Kinect sensor. The raw Kinect depth map is not
complete due to occlusions and often contains holes in spec-
ular objects. In our experiments we address this technicality
by in-painting the holes using the method described in [23].
This results in a smooth depth map with all holes filled, as
can be seen in Figure 3.

4.1. Ten objects on turntable

The ”Ten objects on turntable” dataset is intended to test
the discriminative power of the algorithm. It consists a set
of 11 distinct household objects: book, four bottles, calcula-
tor, can of coke, coffee cup, tea cup, bicycle helmet, and tea
box. These objects were chosen specifically to cover large
variations in color, size, shape, and texture.

Each object is placed on a turntable and rotated 360 de-
grees. The Kinect sensor is placed at the height of the
turntable and captures about 50 pairs of color and depth im-
ages. The ground truth mask for each object view is com-
puted using a manually chosen depth threshold. Examples
of images obtained are shown in Figure 3. As can be seen
in the image, we also place a number of distractor objects in
the background, which can produce false positives for low



Figure 4. top left: Example detection and features. In this example, the threshold is set very low so several false positives appear, as
depicted by the red bounding boxes. Note that the score of the true positive (0.924) is significantly higher than that of the false positives.
Around the image is a visualization of the computed features on a downsampled image: depth (top right), color (bottom left), and gradient
orientation (bottom right). Every one of n0 bins is associated with a distinct color.

detection thresholds.

4.2. Objects "in the wild"

The Objects ”in the wild” dataset is intended to test
the ability of the algorithm to detect objects in a heavily-
cluttered environment from many viewpoints and with some
occlusions.

To collect training images we place two of the objects
on the turntable in turn and move the Kinect freely around
the object to acquire many images from all possible views,
scales, rotations, out of plane rotations, and tilts. On the or-
der of 300 such color, depth, and mask images are obtained
from this procedure for each object. Examples of acquired
images are shown in 3.

The precise mask segmentation is automatically com-
puted as follows. Sheets of paper with a black and white
square calibration pattern are placed on the turntable next
to objects. Next, corners in the calibration pattern are de-
tected using the Harris corner detector. Since the corners
are known to be collinear in the world coordinate frame and
located on the turntable, we use RANSAC to fit an affine
function to the depth of each corner as a function of its lo-
cation in the image. The resulting affine function can be
used to extrapolate the depth of the turntable plane, and ev-
ery pixel that is closer to the camera than the plane obtained
from the fit is defined to belong to the object.

Finally, to collect the test set we place both objects in
a cluttered environment and partially occlude one with a
marker. We move the Kinect freely around the table at dif-

ferent scales, tilts and rotations while saving color and depth
images.

5. Results

We compare the results of the proposed methods on the
two collected datasets discussed above. All experiments
were performed on one processor of an Intel Core 2 Quad
core CPU at 2.66 GHz and 2 GB of RAM. It is important to
note that the exact implementation of the feature computa-
tion and matching algorithm used in this project is different
from the one used in the original work [8]. In particular, our
implementation is not optimized and is slower by more than
an order of magnitude.

5.0.1 Turntable dataset

All images in the dataset are randomly split within each
class such that three quarters are labelled as training set,
and the rest are used for testing. This procedure yields a
total of 410 training images and 143 testing images. Each
image is downsampled by a factor of 4 to size of 160x120
pixels for efficiency. Every image contains exactly one of
11 classes, but this information is not used by the detector
during test time.

The performance is evaluated by changing the detector
threshold during template matching. Non-maximum sup-
pression is performed on raw detection results such that any
detection windows that overlap by more than a fraction of



Figure 5. Detection results on the turntable dataset. The absolute running time for the original method is 0.3 frames per second. I apologize
for the inability of Octave to produce simple plots. From bottom left, clockwise: Recall vs. false positives per image of Hough voting,
original template matching, and Root Filtering. Bottom right: average recall for each method.

0.2 in the intersection over union metric are considered to
be in conflict, and only the detection with higher score is
retained.

For the Hough voting method we use m = 120 random
templates of size 12. For approximate nearest neighbor we
use 4 kd-trees and 100 checks. After all votes are cast, we
smooth the response map using a gaussian with σ = 3.

Per class performance. The results are summarized in
Figure 5. As can be seen in figure, the root filtering ap-
proach can significantly improve the speed (6.3x, to about
2fps) if one is willing to sacrifice a small amount of accu-
racy. We explore this trade-off further below.

The Hough Voting method is seen to achieve a lower per-
formance, but runs relatively quickly (14.3x, about 4fps). It
is also interesting to note that the method yields highly var-
ied outcomes for different objects, performing almost per-
fectly on some, and poorly on others. In particular, the two
objects it performs worst on are tea and can, which are the

two smallest objects in the dataset. This suggests that these
objects had trouble accumulating votes for their centers. In
addition, from manually inspecting the false positives and
negatives it appears that this method performs badly in gen-
eral when relatively few pixels in the image belong to the
object, such as when objects are viewed from the side. Ac-
cordingly, future work could potentially improve on these
results by using a different detection threshold for each ob-
ject or view, or scaling votes based on the size of each ob-
ject. We attempted a few of these changes but were unable
to significantly improve the performance.

Speed vs. Performance. In Figure 6 we explicitly inves-
tigate the speed vs. performance trade-offs for each method
by fixing the rate of false detections per image we are will-
ing to tolerate to 0.1, and plotting the average recall. To
increase speed for the original method, we monotonically
downsample all images and templates. To increase speed
for the root filtering method, we monotonically downsam-



Figure 6. Left: Speed vs accuracy trade-offs. Right: Performance of the root filtering approach on ”in the wild” dataset.

ple both pre-filtering and post-filtering images by lower in-
crements. We only evaluate the Hough voting method a
single time because it is not immediately obvious how one
could go about speeding it up. The figure shows that the
root filtering approach to template matching can retain most
of the recall with significant gains in performance (up to
20x and more). The Hough voting approach is seen to be
comparable with downsampling images and running naive
template matching.

5.0.2 Objects ”in the wild” dataset

The ”in the wild” dataset consists of 400 views for both ob-
jects, and 200 testing images. Template matching is done
over 3 scales because the camera is not always at constant
distance from the object. Results of the root filtering ap-
proach are shown in Figure 6. The 3 scales of the image
can be processed at about 2 frames per second per object.
As can be seen in the figure, both objects can be reliably
detected. The blue bottle is harder to detect because it is
smaller, less distinct from its environment, and partially oc-
cluded. Upon manual inspection, most false negatives can
be attributed to motion blur. Example of these frames can
be seen in Figure 7.

We also investigate the usefulness of modalities towards
the final performance. As can be seen from the figure, in-
cluding depth information significantly improves the perfor-
mance of the detector. However, by itself depth performs
on par with color and gradients. This indicates that depth
captures useful information about the object that is orthog-
onal in nature to an ordinary image. To some degree, this is
merely a quantitative support of an expected result.

6. Conclusion

We presented two extensions of an existing template
matching scheme for 3D object detection. The idea of con-
ducting the template matching procedure on two scales of
the images for quick rejection has proven to be significantly
more efficient without much loss in performance.

The approach that uses detection of parts in a Gener-
alized Hough transform framework was found to perform
comparably to template matching on low-resolution images
in both speed and detection performance. By manual in-
spection of the classification results we speculate that this
is in part because some views of objects (such as a book
viewed from the side) contain too little evidence to reliably
detect object parts. While this is in principle an issue for the
template-based method as well, it was not found to affect
the performance to such a high degree, potentially because
together all pixels belonging to the object provide enough
evidence for a confident match.

Future work could involve applying explicit part based
models to this problem, such as start-shaped models or con-
stellation models, but question remains if these models can
be adapted to compete with the speed of root-based template
matching for rigid objects. An interesting direction would
be to try to obtain additional speedups in the root-based
template matching method by not only rejecting image re-
gions, but also rejecting templates before they get applied.
For example, one could use the similarity of templates to
reason about the correlation in their response values on a
given patch, and potentially choosing to not apply a tem-
plate if the expected score is too low.



Figure 7. Examples of detection on ”in the wild” dataset. Proposed detections by root filter are shown in green, detections in black. Left:
the blue bottle in the back is correctly detected despite the occluding yellow marker. Center: yellow bottle is correctly detected. Right:
Example of an image where the yellow bottle was not correctly detected due to motion blur.

Figure 8. Example detections using the Hough voting scheme. Top: a typical failure case. Most failures occur when only few pixels of
the object are visible, such as in this case of a book viewed from the side. When the objects are extended and clearly visible, maxima are
usually easily found.

References

[1] M. Arie-Nachimson and R. Basri. Constructing implicit 3d
shape models for pose estimation. In Computer Vision, 2009
IEEE 12th International Conference on, pages 1341–1348.
IEEE, 2009.

[2] L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with
hierarchical kernel descriptors. In IEEE International Con-

ference on Computer Vision and Pattern Recognition, June
2011.

[3] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In Computer Vi-
sion, 2009 IEEE 12th International Conference on, pages
1365–1372. IEEE, 2009.

[4] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In Computer



vision and pattern recognition (CVPR), 2010 IEEE confer-
ence on, pages 2241–2248. IEEE, 2010.

[5] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://www.cs.brown.edu/ pff/latent-release4/.

[6] J. Gall and V. Lempitsky. Class-specific hough forests for ob-
ject detection. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 1022–1029.
Ieee, 2009.

[7] D. Gavrila. Multi-feature hierarchical template matching us-
ing distance transforms. In Pattern Recognition, 1998. Pro-
ceedings. Fourteenth International Conference on, volume 1,
pages 439 –444 vol.1, aug 1998.

[8] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit. Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes.
2011.

[9] P. Hough. Machine analysis of bubble chamber pictures. In
International Conference on High Energy Accelerators and
Instrumentation, volume 73, 1959.

[10] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages
1817–1824. IEEE, 2011.

[11] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In Workshop on Statistical Learning in Computer Vision,
ECCV, pages 17–32, 2004.

[12] B. Leibe, A. Leonardis, and B. Schiele. Robust object detec-
tion with interleaved categorization and segmentation. Inter-
national Journal of Computer Vision, 77(1-3):259–289, May
2008.

[13] J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-
independent object class detection using 3d feature maps.
In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[14] S. Maji and J. Malik. Object detection using a max-margin
hough transform. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 1038–
1045. IEEE, 2009.

[15] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Applica-
tion VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[16] A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-
model for object detection. Computer Vision–ECCV 2006,
pages 575–588, 2006.

[17] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine
approach for fast deformable object detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2011.

[18] O. Russakovsky and A. Ng. A steiner tree approach to ef-
ficient object detection. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 1070
–1077, june 2010.

[19] S. Savarese and L. Fei-Fei. Multi-view object categorization
and pose estimation. Studies in Computational Intelligence-
Computer Vision, pages 205–231, 2010.

[20] A. Saxe, P. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng.
On random weights and unsupervised feature learning. In
Workshop: Deep Learning and Unsupervised Feature Learn-
ing (NIPS), 2010.

[21] M. Stark, M. Goesele, and B. Schiele. Back to the future:
Learning shape models from 3d cad data. In British Machine
Vision Conference, pages 106–1. Citeseer, 2010.

[22] M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A multi-view
probabilistic model for 3d object classes. In Proc. Computer
Vision and Pattern Recognition, 2009.

[23] A. Telea. An image inpainting technique based on the fast
marching method. journal of graphics, gpu, and game tools,
9(1):23–34, 2004.

[24] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and
L. Van Gool. Towards multi-view object class detection. In
Computer Vision and Pattern Recognition, 2006 IEEE Com-
puter Society Conference on, volume 2, pages 1589–1596.
IEEE, 2006.

[25] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedes-
trian detection. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 794–
801. IEEE, 2009.

[26] P. Yan, S. Khan, and M. Shah. 3d model based object class
detection in an arbitrary view. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on, pages
1–6. IEEE, 2007.

[27] Y. Yang and D. Ramanan. Articulated pose estimation using
flexible mixtures of parts. 2011.


