
Image Segmentation via Total Variation and Hypothesis Testing Methods

Dennis Sun
Stanford University
Dept. of Statistics

dlsun@stanford.edu

Matthew Ho
Stanford University

Dept. of Electrical Engineering
matthew.ho@stanford.edu

Abstract

We introduce a novel algorithm for image segmentation
by revisiting a traditional method, the watershed algorithm,
and introducing a hypothesis testing framework to solve the
problem of oversegmentation. The hypothesis tests are used
to determine whether or not to split a region or merge two
neighboring regions. We also introduce a new nonlinear fil-
ter which appears to be useful for image segmentation. We
show that our methods achieve comparable and even su-
perior performance to many established methods for image
segmentation, such as normalized cuts.

1. Introduction

Image segmentation is a fundamental task in computer
vision. It is a prerequisite for many higher-order tasks, such
as object detection and recognition. Despite this, segmen-
tation is still very much an open problem. In this paper, we
begin by describing total variation denoising as an alterna-
tive to traditional nonlinear edge-preserving filters, such as
median filters. Then we describe our algorithm for succes-
sively merging and splitting regions, starting from an over-
segmentation, such as one obtained from the watershed al-
gorithm. Our results on the Berkeley Segmentation Dataset
follow, and we conclude by discussing potential for future
work.

Figure 1 shows some

2. A New Nonlinear Filter for Image Segmen-
tation

Total variation denoising (TVD) is a robust algorithm
for reconstructing noisy images.[9] The most famous form
of total variation denoising, anisotropic TVD, finds a
smoothed image J which solves the criterion:

minimize
J

||I−J ||22+λ
∑
x,y

|Jx+1,y−Jx,y|+ |Jx,y+1−Jx,y|

Figure 1. Buffalo image from the Berkeley Segmentation Dataset,
original and smoothed using total variation denoising.

where I is the original image. The L1 penalty on the dif-
ferences between adjacent pixels encourages sparsity and
hence total variation denoising tends to result in images
which are piecewise constant. The particular algorithm used
in this paper relies on the Split Bregman Method, described
in [4]. Figure 1 shows the visual effect of TVD smoothing
on an image.

One way to obtain segmentations from the TVD-
smoothed image is to take each piecewise constant region
as a segment. However, because of imprecision in the op-
timization algorithm (first-order iterative methods are typi-
cally used to solve such problems), the piecewise constant
regions may not appear as such. Also, if the intensity varies
gradually across the image, then TVD smoothing will not
in general return constant regions.

Nevertheless, TVD is useful as a nonlinear filter which
preserves edges, a feature of obvious importance in image
segmentation[2]. Since linear filters such as the Gaussian
are completely characterized by their frequency response,
they cannot filter away noise while preserving edges, since
both correspond to the high frequency components of an
image. Thus, some form of a nonlinear filter is necessary.
The computer vision community has traditionally used me-
dian filters for this purpose[11]. However, we found that the
median filter tended to produce slightly less smooth seg-
mentations as compared with TVD, when combined with
our merging and splitting algorithm. Figure 2 compares the
two.

We decided to exploit the edge-preserving property of
TVD to obtain a preliminary segmentation from the TVD-

Figure 2. The result of segmenting after smoothing the buffalo us-
ing TVD (left) and using median filtering (right). The results are
similar, although the TVD result is slightly smoother. This may be
because there is less numerical instability with TVD since it does
not have the tendency to set adjacent values exactly equal to zero.
This causes problems when we compute, for example, t-statistics
and divide by the variance within each region, as discussed in Sec-
tion 3.

Figure 3. The top two images show the resulting segmentation
after applying k-means directly to the original image and to the
TVD smoothed image. The latter is much more visually appeal-
ing. To show that arbitrary smoothing will not necessarily solve
the problem, the bottom left image depicts the results from apply-
ing a Gaussian filter to the image. Finally, the bottom right image
depicts the ground truth (24 segments) as labeled by a human.

smoothed image. We first took the gradient of the TVD-
smoothed image, then applied the watershed algorithm to
the gradient. The watershed algorithm groups together all
pixels which would fall into the same “basin”. One can
imagine flooding the plane of the image and taking each
“pool” of water thus obtained as a segment. The intuition
for applying watershed to the gradient is that high points in
the gradient correspond to edges (since the noise has been
filtered away), thus the basins correspond to the segments
between edges.

It is important to note that TVD is useful not only in
conjunction with the algorithm we are about to propose but
with any segmentation algorithm. Figure 3 shows how TVD
smoothing can improve the results of k-means clustering as
applied to image segmentation.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

Figure 4. The watershed algorithm as applied to the original and
to the TVD smoothed buffalo image. The smoothing helps reduce
the number of segments, but the image is still oversegmented.

3. A Hypothesis Testing Approach to Region
Merging and Splitting

The watershed algorithm associates one segment with
each local minimum in the gradient, and although smooth-
ing helps, the watershed algorithm still produces an over-
segmentation, as the image processing community has long
been aware. The traditional approach to overcome this
problem is to preprocess the image before applying the wa-
tershed algorithm. One popular approach is to use region
markers, but the downside is that these markers often need
to be specified by a human, although algorithms exist to au-
tomate the marker selection process.[5]

We focused on postprocessing the watershed segmenta-
tion. The first approach we tried was to reduce the number
of segmentations by flattening all local minima that were
not at least a certain depth (as measured by the difference in
intensity between the minimum and the nearest local max-
imum). However, we found that although flattening shal-
low minima did initially improve the segmentation, it was
not possible to continue the procedure until only the desired
number of clusters remained.

We ultimately devised a merging and splitting algorithm
for reducing the number of segmentations. Although the
name is inspired by region merging and splitting, a clas-
sic segmentation algorithm, our algorithm is similar only
in spirit. Classical splitting and merging refers specifically
to an algorithm whereby an image is successively divided
into four quadrants, then successively merged when no fur-
ther segmentations are possible. By contrast, our algorithm
is bottom-up, starting with a fine segmentation and succes-
sively merging regions and splitting as necessary. The two
components of this process are described below.

3.1. Merging

We iterate over each watershed region and compute the
“distance” between the region and its neighbors. We then
successively merge the two neighboring regions in the im-
age that are the “closest,” as measured by this metric. The
distance between all relevant regions are recomputed after
each merger.

The most obvious metric is the difference in mean inten-
sity between the two regions. The “hypothesis testing” in
the title of this section refers to the fact that the t-statistic
can also be a useful metric:

tij =
X̄i − X̄j√

s2i
ni

+
s2j
nj

where X̄i and si refer to the mean and standard deviation of
the pixel intensities in region i and ni refers to the number
of pixels. Intuitively, the t-statistic compares the between
region difference with the within region difference. The t-
statistic will be small if: (1) the difference between the re-
gions is small, (2) the variance within region is large, and
(3) the regions are small. In all three cases, it makes sense
to favor merging, and the t-statistic takes this into account.
A comparison of difference in means and the t-statistic is
provided in Section 4.

In our implementation, we used the t-statistic only as a
metric, without taking advantage of the hypothesis testing
framework. This is because the evaluation benchmarks that
we used required us to prespecify a certain number of seg-
mentations, so it makes sense to continue taking the mini-
mum t-statistic and merging until only the desired number
of regions remained, regardless of whether the t statistics
were statistically significant. However, our method can eas-
ily be extended to a real-world situation in which the num-
ber of segments is not known in advance. In such cases, we
could simply set a significance threshold and stop once the
t-statistics all exceed this threshold.

Lastly, it is worth mentioning that we applied our seg-
mentations to multichannel images. Thus, for each region,
there are actually a set of (three) means and standard de-
viations. For the sake of computation, we simply took
the root-mean-square of the individual t-statistics for each
channel (i.e. the 2-norm of the vector of t-statistics). We
found no considerable advantage to using other norms (1-
norm,∞-norm). However, a gain in performance might be
achieved by taking into account the multivariate structure of
the data. The multivariate generalization of the t-statistic is
the Hotelling’s two-sample T -squared statistic, given by:

T 2
ij =

ninj
ni + nj

(x̄i − x̄j)
T Σ̂−1(x̄i − x̄j)

Our approach of taking the 2-norm of the marginal t-
statistics is essentially equivalent to assuming that the chan-
nels are uncorrelated, an assumption which is clearly vio-
lated. However, it remains to be seen whether we could
achieve a gain in performance by taking correlations into
account.

3.2. Splitting

Merging yields satisfactory results, as we show in the
following section, but it is a greedy algorithm, so it will in-

Figure 5. The left image shows the result of applying merging
without splitting. The buffalo near the top of the image are joined
in one segment with the grass along a very narrow strip. Such
connections form because of the greedy nature of the merging al-
gorithm and are broken when we apply a splitting step as well, as
the right image shows.

evitably make mergers that make sense locally but not glob-
ally. Therefore, it is desirable to have some mechanism for
backtracking so that we are not stuck with a merger once it
has been made. Figure 5 shows how splitting can improve a
segmentation.

We handle the problem of splitting regions by checking
the existing regions every couple of iterations to see if any
splits should be made. As with merging, splitting is binary:
we only split regions into two at a time. To decide whether
a region should be split, we perform k-means clustering on
the features of the component watershed segments (from the
original watershed segmentation) that make up the region.
The reason for using watershed segments as observations
rather than the pixels themselves is that individual pixels
are noisy and result in oversegmentation. (See Figure 6.)
We lose very little by grouping the pixels into watershed
segments, since the initial oversegmentation captures every
edge in the original image.

We used 5 features: the pixel coordinates (x,y) and the
average intensity in each channel (r,g,b). Then we compare
the squared error from the model which assumes only a sin-
gle cluster, with the squared error from the model which
assumes two clusters, i.e.

RSS1 =
∑
i∈R
||xi − x̄||22

RSS2 =
∑
i∈R1

||xi − x̄1||22 +
∑
j∈R2

||xj − x̄2||22

where the mean is over the three channels and the sum is
over the pixels in a given region. Note that RSS2 will
always be less than RSS1. In order to compare whether
RSS2 is sufficiently smaller than RSS1 to justify the two
clusters, we appeal to the equivalence between k-means
clustering and the EM algorithm for the Gaussian mix-
ture model. We assume that the data come from a Gaus-
sian mixture with two components with means µ1 and µ2

and equal variances, and we are testing the hypothesis that
H0 : µ1 = µ2 (in which case the data essentially come from
one cluster).

Figure 6. Two segmentations of the buffalo image: on the left,
the k-means clustering in the splitting step is performed at a pixel
level; on the right, it is performed on watershed regions from the
initial segmentation. The latter leads to more contiguous regions
because there is less noise in groups of pixels than in individual
pixels.

The conventional method for testing whether a more
general model (i.e. mixture of two Gaussians) offers a sig-
nificant improvement over a nested model (i.e. one Gaus-
sian, which is just a mixture of two Gaussians with the same
mean) is the F -test. The F statistic is:

F =
RSS1 −RSS2

RSS2/(n− 2)

which has the F -distribution with (1, n − 2) degrees of
freedom if xi ∼ N(µi,Σ) and µi is estimated by least
squares.[6] In the case of the Gaussian mixtures, µi is in-
deed estimated by least squares to be either x̄1 or x̄2, but in
order for the statistic to follow theF -distribution, the cluster
memberships must be known in advance (i.e. we must know
whether µ̂i = x̄1 or x̄2). In reality, we estimate the cluster
memberships from the data itself, so the statistic does not
follow an F -distribution. The literature on the exact and
asymptotic distribution is voluminous.[3]

For our purposes, however, a heuristic will suffice. We
calculate a psuedo p-value from theF -distribution and com-
pare it with α/(# of regions). In our experiments we have
taken α = .05. The number of regions in the above formula
can be thought of as a Bonferroni-type correction which ad-
justs for the number of tests we conduct at each iteration
(we test whether each of the regions needs to be split). The
effect of this correction is to gradually relax the criteria for
significance as the number of regions decreases, thereby in-
creasing the number of splits during the later stages.

Once we decide to split a region, we scan the image for
the smallest region (in terms of number of pixels), delete
this region, and set the index of the newly created region
to the index of the deleted region. Thus, the splitting step
does not change the total number of regions. This rule of
thumb has the added benefit of pruning the segmentation of
any small, isolated segments that might appear.

3.3. Summary

Our algorithm interweaves the two processes of merging
and splitting. The algorithm is summarized in Table 1.

while nRegionsLeft > k do
{Merging}
(i, j)← arg mini,j(tij)
merge regions i and j
delete tjk, tkj for all k and update tik, tki for all i
{Splitting}
if nRegionsLeft mod 5 == 0 then

for each region do
Cluster (x, y, r, g, b) in region into two clusters
F ← RSS1−RSS2

RSS2/(n−2)
if 1 − fcdf(F, 1, n − 2) > α/nRegionsLeft
then

find smallest region r in image
merge r with closest region
assign label r to cluster 2

end if
end for

end if
end while

Table 1. Merging and splitting algorithm

Although we apply the merging and splitting algorithm
to a watershed segmentation, our algorithm will work just
as well for any preliminary oversegmentation. If an image
is undersegmented, then this algorithm can be adapted by
reversing the merging and splitting steps.

4. Results
As described in Arbelàez et. al. [1], contour detection

and image segmentation are two similar, but different prob-
lems, each with their own set of evaluation metrics. The
former involves specifying the salient contours of an im-
age and does not guarantee closed regions, while the latter
explicity partitions an image into non-overlapping labeled
regions.

Our project falls into the latter category. Although we
can evaluate a proposed segmentation visually based on per-
ception, it is also desirable to come up with quantitative
measures of evaluation.

4.1. GCE and LCE

GCE and LCE, introduced in Martin et. al.[8], are two
metrics for quantifying how closely a generated segmenta-
tion S1 matches a ground truth segmentation S2. Intuitively,
they measure how consistent overlapping regions are be-
tween S1 and S2.

We calculate local refinement error for each pixel:

E(S1, S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|

then compute two quantities, GCE (Global Consistency Er-

ror) and LCE (Local Consistency Error).

GCE(S1, S2) =
1

N
min

{∑
i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)

}

LCE(S1, S2) =
1

N

∑
i

min

{
E(S1, S2, pi), E(S2, S1, pi)

}

where N is the number of pixels in the image.
Notice that the LCE score is necessarily at least as good

as the GCE score, as LCE allows for refinement in both
directions. In addition, they are only meaningful when the
number of segments for S1 and S2 are approximately the
same.

For this project, we take LCE as the descriptive feature.

4.2. Segmentation Covering

Segmentation Covering is another performance metric
used to evaluate segmentations [1] [7]. As in GCE and LCE,
we are comparing two segmentations of an image, S1 and
S2

Define the overlap between two arbitrary regions R1 ∈
S1 and R2 ∈ S2 to be:

O(R1, R2) =
|R1 ∩R2|
|R1 ∪R2|

Then the Covering of S1 by S2 is given by:

C(S2 → S1) =
1

N

∑
R1∈S1

|R1| · max
R2∈S2

O(R1, R2)

where N is the number of pixels in the image.
Thus when comparing a machine based segmentationM

with a ground truth human segmentation H , we can return
two metrics: C(M → H) and C(H →M). For this project
we take as the descriptive feature the better of the two, i.e.

C = max

{
C(M → H), C(H →M)

}

4.3. Evaluation Scheme

We make use of images from the Berkeley Segmentation
Data Set [1]. The Data Set consists of 500 images, sepa-
rated into training (200 images), validation (100 images),
and test (200 images) sets. As we do not do any training
these distinctions are irrelevant; however, we made the ar-
bitrary decision of running our algorithm and benchmark
code on the training and validation sets.

Each image in the Data Set has associated with it a set
H of ”ground truth” human generated segmentations. We

GCE LCE Covering
NCuts 0.289

(0.108)
0.216
(0.096)

0.336
(0.096)

diff of means 0.177
(0.120)

0.113
(0.082)

0.504
(0.175)

t test 0.3003
(0.119)

0.198
(0.090)

0.421
(0.119)

Table 2. Summary of scores obtained by the different segmenta-
tion methods on the 300 images. Format: mean score (standard
deviation)

chose to compare our algorithm against the human gener-
ated segmentation with the greatest number of segments. In
another words, we specify the nSeg input parameter to be
maxi |Hi|.

After all 300 images were processed, we used the bench-
marks described in sections 4.1 and 4.2 for quantitative
evaluation. We also ran the standard NCuts algorithm [10]
on the same set of images for comparison.

4.4. Results and Examples

A summary of the results is shown in Table 2; we provide
the mean score as well as the standard deviation in paren-
theses. As a reminder, we desire a lower LCE score and a
higher Covering score.

We noticed that Ncuts tended to yield smooth, ”blocky”
regions, especially in Figures 7, 8, and 9, due to its ten-
dency to ”need” to make cuts, even when unnecessary. We
see this most clearly in Figures 8 and 10.

The images do support the relatively high scores that the
difference of means achieves. It is the only method that is
able to pick out the cow in Figure 7 and the wolf in 9, and
is at the same time very good at differentiating foreground
from background, as seen in Figures 8 and 10; the skies in
both images are clearly one segment. This makes sense: by
only taking into account the mean intensity (and color) of
a region, it is that much more willing to merge regions that
are closer in RGB space, and that much more unwilling to
merge regions that are further away, with no regard to the
sizes of the regions.

However, difference of means did also fail egregiously
for some images, i.e. Figures 11 and 12. We surmise that
the eagle’s wings in Figure 11 were not different enough
from the sky, causing a merge. It is more clear in Figure
12; the woman’s white dress and the man’s shirt is too close
in color space to the white gates in the background, two
unncessary merges.

The t statistic metric does particularly well on images
like Figure 12, with a high amount of detail and color, as it
normalizes out the intensity by the size of the regions. Thus
it is reluctant to merge big regions together. This is desir-
able for some images and undesirable for others; like Ncuts

Figure 7. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

Figure 8. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

Figure 9. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

it has difficulty seeing sky and water as one contiguous re-
gion.

Figure 10. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

Figure 11. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

Figure 12. From left to right, top to bottom. Original image, Ncuts,
Merging with mean intensity, Merging with t test

4.5. Performance

We also collected running time information on the dif-
ferent algorithms. The timing data shown in Table 3 is for
total processing time: including running the algorithm and
benchmark code.

Time
(secs)

Ncuts 139.7
diff of means 132.8
t test 140.6
Table 3. Algorithm Runtimes

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

time in seconds

fr
e
q
u
e
n
c
y

Running Time for Ncuts

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

time in seconds

fr
e
q
u
e
n
c
y

Running Time for Difference of Means

Figure 13. Running Time for Ncuts and Difference of Means

In particular, it was interesting to note the distribution
of times for running the Ncuts algorithm. While the times
for difference of means and t test metrics followed a normal
distribution, the Ncuts distribution is heavily skewed to the
right, with a handful of images taking well over 8 minutes.
This happens as the Ncuts algorithm involves calculating
eigenvalues of matrices the size of the image. This does not
scale as well as our algorithm which involves only simple
vector manipulations.

5. Further Directions and Conclusion
In summary, this paper makes two contributions to the

problem of image segmentation. First, we have demon-
strated that total variation denoising can be useful as a non-
linear filter that smooths an image while preserving edges.
Second, we have introduced a method for reducing the over-
segmentation problem of the watershed algorithm, by suc-
cessively merging and splitting regions based on hypothesis
tests. We have shown that this approach in its naivest form
can achieve comparable performance to many established
segmentation algorithms, such as normalized cuts.

There is much scope, both theoretical and experimental,
to extend this algorithm further. In terms of theory, we can
look at more nuanced versions of the hypothesis tests that
we used in our implementation. As mentioned in Section
3, Hotelling’s T -squared statistic could be used to account
for correlations between channels, and a more formal test
could be conducted to test for the number of clusters in the
Gaussian mixture model. Perhaps k-means may not be op-
timal for determining splitting at all. Our preliminary re-
sults using normalized cuts to determine splitting were not
promising, although this may be because we did not have a
principled way of deciding whether or not to accept a split.

Also, we performed all our analysis in an unsupervised
setting. A few parameters were chosen by hand and tested.
This can easily be extended to a supervised setting, whereby

parameters are chosen by cross-validation. There are many
parameters to tune: the smoothing parameter and the tol-
erance for total variation denoising, the threshold for de-
ciding a split, number of neighbors to consider (we used
8-connected neighborhoods), etc. The parameters that we
chose as a result of our experimentation are almost cer-
tainly suboptimal; we could gain performance simply by
choosing parameters that are ideal for image processing by
cross-validation. To take this one step further, we could also
determine different optimal parameters for different types
of images by correlating image features with performance
given certain parameters.

Finally, we processed most of our images in RGB color
space. Our preliminary experiments with HSV and L*a*b*
color space were disappointing, but ultimately, working in
RGB space makes our algorithm sensitive to changes in il-
lumination. It is important to continue to explore alternative
color spaces that more closely model human perception.

References
[1] P. Arbelà andez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
33(5):898 –916, May 2011.

[2] T. F. Chan, S. Osher, and J. Shen. The digital tv filter and
nonlinear denoising. IEEE Trans. Image Process, 10:231–
241, 2001.

[3] J. Chen and P. Li. Hypothesis test for normal mixture mod-
els: The em approach. Vol., (arXiv:0908.3428. IMS-AOS-
AOS651), Aug 2009.

[4] T. Goldstein and S. Osher. The split bregman method for l1-
regularized problems. SIAM J. Img. Sci., 2:323–343, April
2009.

[5] R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital
Image Processing Using MATLAB 2nd Ed.”. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2009.

[6] E. L. Lehmann and J. P. Romano. Testing statistical hypothe-
ses. Springer Texts in Statistics. Springer, New York, third
edition, 2005.

[7] M. R. Maire. Contour Detection and Image Segmentation.
PhD thesis, EECS Department, University of California,
Berkeley, Sep 2009.

[8] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001.

[9] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60(3):259–268,
1992.

[10] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22:888–905, 1997.

[11] R. Szeliski. Computer vision : Algorithms and applications.
Computer, 5:832, 2010.

