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Abstract

This project addressed the problem of creating mo-
saic maps of the seafloor using remotely-operated vehicles
(ROV) or autonomous underwater vehicles (AUV) operated
by the Monterey Bay Aquarium Research Institute (MBARI).
Due to the attenuation of light under water, maps of large
areas must be created by stitching together close-up images
of the sea floor into a self-consistent, spatially accurate
map. In this project, the use of SIFT features to perform
image matching and registration was investigated. Bundle
adjustment was performed to estimate 6-DOF affine trans-
formations to place each image in the global frame. Ad-
ditionally, several concepts for a real-time tool for helping
ROV pilots ensure that they are achieving complete cover-
age were explored.

1. Introduction

1.1. Photomosaic maps

Maps of the sea floor are used widely for everything
from studying coral reef ecology to underwater archeology
and shipwreck documentation.[7] Additionally, these mo-
saics can be used as a navigation aid, even when the map
itself may not be the end goal. GPS signals cannot pene-
trate the ocean to provide localization information. Long-
baseline acoustic localizer arrays can provide accurate po-
sition information, but are expensive, both monetarily and
logistically.[5] Vision can be used to augment inertial-based
dead-reckoning navigation. However, like dead-reckoning,
vision-based navigation is prone to drift without bound.
However, with vision this drift can be handled by flying
self-intersecting trajectories, essentially knocking out accu-
mulated error by matching image features to images taken
before the error had a chance to grow. A good discussion of
this is provided in [2]

1.2. Current Approach

MBARI currently performs mosaic mapping of the
seafloor by running a remotely operated vehicle in a back-
and-forth “lawnmower” path, grabbing frames from a video
camera as it goes. The resulting images are correlated us-
ing Signum Laplacian of Gaussian (SLoG) filtering as de-
scribed by Richmond [7]. This method is not robust to scale
or orientation, and can only be done robustly with the high
frame rate provided by video input. This is acceptable for
performing registration in-line, but performs weakly when
attempting to perform side-to-side correlation between two
swaths. The current system requires offline verification of
swath overlap after each swath, which is slow, and not ro-
bust to scale, orientation and illumination changes.

1.3. SIFT image features

SIFT features, developed by David Lowe [4] are the
state of the art when it comes to detecting and describing
stable image features. They are robust to large changes
in scale and orientation. Also, because each feature has
a unique 128-dimension identifier, correlation can be per-
formed between photos taken far apart, both in time and
space. These are two instances in which SLoG correlation
performs poorly. Once feature correlations are established,
robust algorithms that reject outliers such as RANSAC or
Hough transform can be used to register the images in the
map.

2. Data and Validation
2.1. Experimental Data

For this paper, MBARI provided dive data from Decem-
ber 8, 2009. During this dive, an ROV was driven in a
“lawnmower” path 30 meter squared area at a height of
roughly 2 meters. Navigation metadata is also provided,
giving the ROV’s best estimate of its own pose and velocity
at the time each picture is taken, as based on data from the
inertial measurement unit (IMU) and doppler velocity log-
ger (DVL). These sensors are quite accurate, with drift rates



on the order of 1% of distance traveled or less. However, the
presence of any drift at all makes vision based environment-
relative position measurements desirable.

2.2. Validation

For the reasons stated above, no absolute positioning
data is available. To validate the success of the map, two
metrics will be considered: image feature reprojection er-
ror and qualitative self-consistency as evaluated by human
observer.

With a perfect model, all matching points observed in
separate image frames would map to the same location in
the global reference frame. The mean squared-error of this
reprojection is a good metric of model quality.

Scattered throughout the mosaic area are floats anchored
to the ground with heavy weights. While these floats may
not generate consistent and robust image features, and bob
and sway with the currents, making them useless for image
registration, they do provide a good reference for human
evaluation of the map. Because the anchor point of the float
is fixed to the seafloor, each separate image of a given float
should appear to be anchored at the same point in the final
mosaic. If the different images of the floats do not appear
to share a common root point, this is symptomatic of model
error.

3. Approach

3.1. SIFT-based correlation and registration

In this paper, SIFT features were used to perform corre-
lation between images. SIFTs were detected in each image
using the open-source toolbox vlfeat [8] If an empirically-
determined minimum number of features were observed in
an image (good visual lock), the vlfeat implementation of
Lowe’s feature matching function as described in [4] was
used to match the image frame to other nearby frames. The
matches were then fed to a function that uses a Random
Sample Consensus (RANSAC) algorithm to estimate a pair-
wise transformation between the images. If a model can be
determined successfully, the inliers are assumed to be good
matches and will later be used to estimate global transfor-
mation parameters.

3.2. RANSAC

3.2.1 Implementation

The RANSAC code used in this study to determine whether
point matches are valid was a modified version of code pro-
vided to the author by David Chen, a graduate student in
the Computer Science department at Stanford. Mr. Chen
worked as a course assistant for EE 368, and image process-
ing course, and provided the code in that context. For this

study, the code has been modified to find a variety of differ-
ent models for transforming images into different reference
frames. To generate a model that is robust to outliers, the
RANSAC algorithm selects a subset of matches and solves
for the transformation parameters that best map the features
in one image into the feature locations in the other frames.
If the model is linear, this is done using least-squares. If it
is not linear, an iterative process must be applied. In this
paper, nonlinear least-squares was used to find these itera-
tive solutions. The robustness of the RANSAC algorithm
can be seen in figures 1 and 2. In figure 1, there are “true”
matches and “false” matches, most notably at the top and
bottom of the images. After applying RANSAC to estimate
an 8-DOF perspective transform, these bad matches have
been rejected, as shown in 2.

Figure 1. Though several false matches occurred between images,
the majority of the SIFT matches show consistent frame-to-frame
correlation

Figure 2. The RANSAC algorithm rejected the false positive
matches, yielding a good transformation model between the two
images in figure 1.

3.2.2 Shortcomings

If there are few matches, RANSAC will not to a good job at
coming up with a model that describes the transformation.
Furthermore, if the ratio of false matches to true matches



gets larger than roughly 1:1, RANSAC again will struggle.
A different approach for determining whether good overlap
occurs between frames could be a Hough-like approach, as
put forth in [4]. For further discussion of this, please refer
to the “Future Work” section.

3.3. Model Options

Given a model Hij for transforming image coordinates
between images i and j, the following equation should hold.

 xj

yj

1

 = Hij
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yi1
1

 (1)

If we have an Hij matrix of the following (affine) form
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,
this problem can be rearranged into the form


xj1
yj1
...
xjn
yjn

 =


xj1 yj1 1 0 0 0

0 0 0 xj1 yj1 1
...

...
...

...
...

...
xjn yjn 1 0 0 0
0 0 0 xjn yjn 1




a
b
c
d
e
f

 (3)

Where n is the number of matching points in images
i and j. This is a least squares problem that can then be
solved to find the parameters of the transformation matrix.

A number of different models to register the frames were
investigated. Each has advantages and disadvantages. They
are each described here, in order of increasing complexity.

3.3.1 Translation only

In this model, only two parameters are estimated: x- and
y-offset.

Ht =

 1 0 xo
0 1 yo
0 0 1

 (4)

This is the simplest and fastest model. If the robot is
moving in a lawnmower path while holding a constant head-
ing and altitude, this method can be surprisingly successful.
If the robot does not maintain constant heading or altitude,
but a reliable estimate of both is known, the image can be
predistorted before estimating the two parameters. How-
ever, if there are large unmodeled in-plane rotations or ele-
vation changes, this model will fail miserably.

3.3.2 Translation and scaling

In this model, three parameters are estimated: two transla-
tion parameters and a third for global scale change.

Hts =

 s 0 xo
0 s yo
0 0 1

 (5)

This model can handle unmodeled elevation change,
which causes apparent scale change, but still fails under un-
modeled rotation.

3.3.3 Translation and orientation

This model still only estimates three parameters, xo, yo and
θ. However, the constraint that the rotation matrix be or-
thogonal is nonlinear, and a simple least-squares approach
to solving for the parameters cannot be used. Instead, a
nonlinear least-squares approach was used with good ef-
fect. Starting with an estimate of the nominal θ = 0, the
solution generally converged within ten iterations. Further
discussion of this method can be seen in [1]

Htθ =

 cos θ − sin θ xo
sin θ cos θ yo
0 0 1

 (6)

3.3.4 Translation, orientation, and scale

This model combines the previous two, though now the or-
thogonality constraint is no longer in place, allowing a lin-
ear solution once again.

Hsimilarity =

 a −b xo
b a yo
0 0 1

 (7)

3.3.5 Affine

An affine model is the highest accuracy of the pseudo-linear
models. Since the 3rd (homogeneous) term is guaranteed to
be one, no dividing by the third term is necessary. Hence,
affine models can still be estimated with linear least-squares
methods. This simplifies the math, while still approximat-
ing the accuracy of higher-fidelity perspective models for
small out-of-plane rotations.

Ha =

 a b c
d e f
0 0 1

 (8)



3.3.6 Higher-fidelity models

Using an 8-DOF perspective model assumes, as all the pre-
viously mentioned models, that all features lie in a plane,
but allows for large out-of plane rotations. However, the
nonlinear division by the scale factor, w makes the math
much more complicated.

Hp =

 a b c
d e f
g h 1

 (9)

 wxj

wyj

w

 = Hij
p

 xi1
yi1
1

 (10)

At the time of writing, camera calibration to correct for
any nonlinear distortion parameters due to lens effects had
not been attempted. Augmenting the parameter estimation
to determine these terms could yield a more accurate re-
construction, though at the expense of more sophisticated
optimization techniques.

Even more complicated models, such as structure from
motion [3] model each image feature as existing in 3-D
space, not constrained to a plane. However, these tech-
niques generally require features to be seen very many
times, with some relying on the assumption that all features
can be seen in every image. This assumption is not valid
when translating a camera over large distances while close
to the object being imaged, as with photomosaicking. How-
ever, the mapmaking process may benefit from some of the
ideas set forth in SFM. Please see future work for further
discussion.

4. Results

4.1. Image correlation density improvements

As shown in figure 3, SLoG only produces a few side-
to-side correspondences (red links). Furthermore, these
side-to-side links are expensive to calculate and require a
good starting estimate of translation in order to select sub-
regions of images with which to perform the 2-D correla-
tion. Using SIFT matching, not only can many more cross-
links be detected, but it can be done nearly real-time. This
greater degree of interconnectedness between frames allows
for better accuracy when performing bundle adjustment to
estimate global transformation parameters. The fast speed
with which these links can be detected allows ROV pilots to
monitor the amount of overlap their paths are achieving, so
that they can achieve full coverage in the final map.

Figure 3. Side-to-side links using SLoG (top, Richmond [7]) vs.
SIFT. SIFT has a much higher density of detections between
frames.

4.2. Model selection for online parameter estima-
tion

Choosing a camera model is an important step in build-
ing a mosaic. Thus far, five different image transformation
models have been tried: translation only, translation with
in-plane rotation, translation with scaling, similarity trans-
form, and affine.

While performing batch processing to minimize global
reprojection error is an option for offline map optimization,
it is also desirable to produce a map of reasonable accuracy
in real-time as an ROV pilot aid while acquiring data. This
consideration pushed the use of the above models. Other
methods for image stitching similar to the one proposed
use full perspective camera models, most notably the auto-
stitch algorithm used by Brown and Lowe [1] However, his
method assumes that the camera is not translated, only ro-
tated about its optical center, making it possible to relate the



transformations between successive frames through simple
matrix multiplication. The large translations involved in
mosaic mapmaking violate this assumption, and necessi-
tate another approach. Using the transformations mentioned
above, the global frame transformations can be calculated
simply by multiplying their between-frame transformation
matrices.

Figure 4. The most successful model for online estimation was
the simplest, where only two parameters, x and y translation are
estimated

The results are somewhat surprising. The most success-
ful method for online map building is the one in which only
the x and y translation parameters are estimated. This can
be seen in figure 4. The author believes there is unmodeled
pitch and possibly yaw bias in the camera that causes appar-
ent looming and strafing motion in the field of view that is
not uniform throughout the image. Adding degrees of free-
dom to the model allow it to try to account for this, but since
the error is not zero-mean, it compounds.

Possible solutions for this are to try to estimate these pa-
rameters and predistort each image before extracting SIFT
features and performing correlation, in effect “knocking
out” the error so it cannot propagate. If measurements of
orientation and altitude are available, which is generally
the case, these parameters can be leveraged to extend the
2-DOF estimation to more general trajectories.

The only reason the 2-DOF model works at all is that the

Figure 5. When in-plane rotation ψ is also estimated, the swath
begins to drift. The author suspects that a pan-tilt camera bias is
causing this behavior.

Figure 6. The affine model also falls victim to the distortion seen
in the rotation model, though its manifestation is different. Each
successive frame suffers from a greater degree of skew, rotation,
and scaling.

ROV is flying a constant-heading–constant-altitude path. If
either of these were not the case, the author expects that the
2-DOF model would fail.



Figure 7. This is an abstract tool for visualizing overlap. Green
lines are drawn between nodes on a plot of the vehicle path, show-
ing where enough matches to create a model occur. The shade of
green corrseponds to the number of matches, with darker indicat-
ing more matching features. This is intended for use by ROV pilots
to show them in real time how well they are achieving coverage.

Figure 8. This map was generated in real time using a 2-parameter
model. Areas of overlap were highlighted by boosting the red val-
ues of the pixels by a small amount. The effect is additive, so areas
of multiple frame overlap are more red. This is intended for use by
ROV pilots to show them in real time how well they are achieving
coverage.

4.3. Visualization tool for real-time pilot aid

One goal of this project is to give ROV pilots a tool for
gauging how well they are achieving coverage of a given
section of sea floor in real-time. Figure 8 shows one con-
ception of such a tool. This tool will allow MBARI to create
maps with more confidence and autonomy from the ARL.

Two concepts were explored for overlap visualization.
The first, figure 7, is the more abstract of the two. The x-y
positions of the robot along its path are plotted, and lines
are drawn between frames where many feature matches are
detected. The shade of the connecting line indicates how
many matches are found.

The second concept takes a more intuitive visual ap-
proach, as seen in figure 8. Since fine accuracy is not of
paramount importance for this navigation, frames are laid
down in real-time using the 2-DOF model, and any areas
that overlap with previous slides are highlighted in red. The
effect is additive, so areas of multiple overlaps appear a
brighter red.

As of the time of writing, these are both only concepts
awaiting ROV pilot feedback to determine what information
they prefer to use.

4.4. Global parameter estimation via bundle adjust-
ment

4.4.1 Model selection for bundle adjustment

An affine model was selected for global parameter estima-
tion. This allowed the model to capture more detail than
the simple translation-only model, without complicating the
math too much. Since the out-of-plane rotations were quite
small, moving to a perspective model would have compli-
cated the calculations for determining the parameters with-
out gaining much in terms of reprojection error reduction.
Please refer again to equation 3 for the basic building block
of this optimization. To see how these building blocks com-
bine to produce a least-squares type problem for the pa-
rameter estimation, consider the following small problem,
where parameters for only two images are to be estimated.
We will refer to these global parameters as ai through gi,
where i is the image number. If we write equation 3 as

[
xgij
ygij

]
= Aijpi (11)

Ajipj = Aijpi (12)
(13)

,
which can be written in block matrix form as[

0 0
0 Aji

] [
pi
pj

]
=

[
Aij 0
0 0

] [
pi
pj

]
(14)



The optimization then boils down to a problem of the
form 0 = Ap, where A is a large sparse matrix with an
Aij appearing any time images overlap and p is a tall vector
consisting of all image transformation parameters.

In order to avoid the trivial solution where all images
are mapped to the origin, this problem needs to be con-
strained. A simple but clever constraint proposed in [6] was
used. This constraint penalizes changing the magnitude of
the diagonals of the image, thereby limiting the amount of
scaling and skewing the optimizer will permit, while leav-
ing it free to perform large rotations and translations. Be-
cause the robot is flying a a roughly constant altitude and
nominally pointed normal to the floor, the bias toward unit
scale and small skew introduced by this constraint is of lit-
tle consequence. In practice, this constraint is implemented
by appending equation 15 to the equation 0 = Ap for each
parameter set pi.


xtl−br

yt−br

xtr−bl

ytr−bl

 =


xtl−br ytl−br 0 0 0 0

0 0 0 xtl−br ytl−br 0
xtr−bl ytr−bl) 0 0 0 0

0 0 0 xtr−bl ytr−bl 0

 [pi]

(15)

where xtr−bl is the x component of the top-rightmost
pixel minus the bottom-leftmost.

4.4.2 Validation of bundle adjustment and areas for
improvement

Using bundle adjustment to estimate all image parameters
in a batch process, we were able to produce an affine model
that did not drift or skew excessively. Due to data stor-
age limitations running Matlab on a laptop computer, it was
only possible to for a mosaic for about half of the data avail-
able at a time. Any more and the program tended to crash.
The reprojection mean squared error for the mosaic showin
in figure 9was equal to 64 pixels2. This means that on aver-
age the mapped features were misaligned by about 8 pixels.
For reference, the overall size of this mosaic is 3030×5879
pixels. This is not particularly good, but consistent with
the fact that the images are not in any way transformed to
account for lens distortion or other intrinsic camera imper-
fections.

Using the more qualitative/subjective validation tech-
nique, the map appears to be more self-consistent in some
regions than in others. For instance, floats near the periph-
ery of the mosaic all tend to fan out from a common anchor
point, whereas floats nearer the middle exhibit more mis-
alignment, appearing to be “smeared” across the floor. The
effect can be seen in both figures 9 and 12 At the time of
writing, the cause of these effects remains unknown.

Overall, the self-consistency of the map ranged from
around 2 inches at best to two feet at worst, once outliers

were rejected.

Figure 9. First 828 images in mosaic assembled using affine model
found through bundle adjustment. The inconsistency in registra-
tion accuracy can be seen in the two clusters of floats.

Figure 10. Ground track of the robot trajectory for the first 1000
images. Notice the loop near the top right where the pattern was
broken. This area caused some problems for the optimizer.

At one point during the run, the robot makes a loop out-
side of the 30 m2 survey area (see fig. 10), the start of which
corresponded to an image frame with low feature content.
There was still enough overlap between frames in the loop



to create a self-consistent sub-map, as shown in figure 11.
However, since the loop did not have a good link with the
rest of the map due to the loss of visual lock, the optimizer
lost track of where to put this sub-map with relation to the
rest of the frames. This raises a good question: “What
should we do when visual lock is lost?” This will be dis-
cussed in the future work section.

Figure 11. Loop from errant trajectory

5. Future work

During the course of this project, a number of paths for
future research and improvement were identified.

First and foremost among these problems is the issue
of mis-regsitration of the images. Specifically, we need to
identify the reason why some parts of the map appear to
register better than others. The author believes that doing
this will require estimating intrinsic camera nonlinearities,
as well as improved fault detection and handling when vi-
sual lock is lost.

Building on the idea of fault detection and handling, the
current system for identifying links between image frames
could be improved upon greatly. Under the current frame-
work, much prior information is discarded, leading to prob-
lems like the global misplacement of the errant loop submap
discussed in figure 11. By developing methods to detect

Figure 12. Second half of mapping run

failures and then implement logic to reduce model complex-
ity or omit or omit bad data, the author believes it will be
possible to create maps largely without the need for human
oversight.

As mentioned earlier, switching the criterion for match-
ing images away from RANSAC in favor of a Hough-like
histogram based model for matching, may improve robust-
ness of determining matches between frames. This would
carry the potential of being robust to cases where there are
many false positive matches, as can often occur when look-
ing at a muddy sea floor.

Another technique commonly in practice that could
prove fruitful is to assemble submaps and assemble these
into the larger whole map. When flying a “lawnmower”
pattern, Each swath lends itself to having its parameters
estimated through bundle adjustment, then stitching these
swaths together later.

The author would also like to investigate applying struc-
ture from motion (SfM) techniques to the problem of non-
planar mosaic mapping. As stated before, many SfM tech-
niques rely on assumptions that the mosaicking task clearly
violates.

Lastly, the author hopes to collaborate with ROV pilots
at MBARI to come up with a user-friendly real-time tool to
help them ensure full coverage.
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