
Tracking-Based Semi-Supervised Learning using Stationary Video

Andrew Chou
Stanford University
akchou@stanford.edu

Alex Teichman
Stanford University

Project Mentor
teichman@cs.stanford.edu

Abstract

This paper deal addresses the semi-supervised problem
of tracking and recognizing objects in videos taken with
stationary cameras. Building on work on Stanford’s au-
tonomous vehicle using laser range finders to solve the
same problem, this paper aim to develop accurate methods
for classifying objects without the additional benefit of 3D
laser scans. We set out with three main goals, each build-
ing on the previous ones. The first is to perform background
subtraction to remove all background objects (those objects
that are stationary in the frame of the camera). The second
is to track the foreground objects through every frame of
the video. Finally, the third goal is to use semi-supervised
methods to classify tracked foreground objects. A successful
semi-supervised approach will greatly reduce the amount of
training data needed for many classification problems.

1. Introduction

The objective of this paper has three subgoals:
(1) Remove background objects.
(2) Track foreground objects.
(3) Classify foreground objects using
semi-supervised learning. The combination of these

three goals will allow us to train a complex classifier with
very little manually labelled data. Each of the three steps
in our Semi-Supervised learning method build on previous
work as described below.

1.1. Removal of Background Objects

The background removal stage requires a video, or se-
quence of images, as input and outputs a binary mask for
each frame or image. The ones in a mask (displayed as
white in this paper) represent foreground pixels in that
mask, while the zeros in a mask (displayed as black in this
paper) represent background pixels in the mask. In this
context foreground objects have the property that they are
capable of movement outside of some fixed region that is

roughly the size of the object. For example, humans, bi-
cylists, automatic vehicles, and animals are some of the
things that are considered to be foreground objects. Con-
versely, most inanimate objects such as buildings, plants,
benches, and poles should ideally be classified as back-
ground. More subtle objects obejcts that should be clas-
sified as background are bodies of water, fans, fountains,
and trees swaying in the wind. Distinguishing these mov-
ing background objects from real foreground objects is at
the heart of the problem.

1.2. Foreground Object Tracking

The goal of the foreground object tracking step is to take
the foreground masks from the background removal step
and determine which foreground objects in each mask cor-
respond to objects in other masks. The output should con-
tain labels for each object as well as an outline for the object
at each frame. Ideally the foreground object tracking step
should be robust to overlap of objects, false positives (La-
belling part of a fountain as foreground, for example.), false
negatives (failure to detect a foreground object for a few
frames), extrance and exit of objects during the sequence,
as well as total number of objects needing to be tracked.

1.3. Semi-Supervised Classification

Classification is done in a semi-supervised way using
methods already developed in a previous paper by Teichman
and Thrun [7]. Results and classification accuracy will be
quantitatively evaluated using a data set provided by Alex
Teichman.

1.4. Background Subtraction

Standard methods for modelling the background include
a Mixture of Gaussians method. OpenCV’s implementation
of Mixture of Gaussians for background subtraction does
reasonably well when tested on a scene with swaying trees
and fountains [3]. However there are a significant number
of spurious points in the tree and fountain that are not ade-
quately modelled by the Mixture of Gaussians. Sheikh and



Figure 1. A sample frame from one of our test videos.

Figure 2. (left): A foreground mask using the Mixture of Gaussians method from OpenCV. (right): The equivalent foreground mask using
Shah et al.

Shah use a Bayesian Modelling method to reduce the error
in the subtraction [6].

1.5. Competing Bayesian Models Method

Shah et al.’s method handles cases, such as the one with
trees fountains, with non-stationary backgrounds. They use
competing Bayesian foreground and background models at
each pixel to determine which pixels are foreground and
which are background. The models are discretized in the
five dimensional RBGXY space. Thus pixelwise similarity
is determined by both appearance and location in the image.
Each model starts with a uniform prior distribution across
the RGBXY feature space. The background distribution is
favored slightly in the assumption that the majority of pix-
els are part of the background. At each frame the pixels
are classified as either foreground or background depend-
ing upon the likelihoods of the models. Pixels classified as
background are added to the background model, and pixels
classified as foreground are added to both models. This al-
lows mistakenly classified foreground pixels to slowly fade
into the background.

Each model has a specified history length to make them
more robust so that the background and foreground become

relatively stable over time. This is a key advantage of Com-
peting Bayesian Models over other methods because the
foreground detections are dependent upon past frames and
are thus more consistent from frame to frame. This allows
pixels that look similar to the background to still be clas-
sified as foreground if there have been similar foreground
pixels nearby in the recent past. For example, this could
be useful if a person wearing a green shirt is tracked across
pavement, but then walks in front of trees. Without the fore-
ground model the person would be lost. It is also important
that the foreground history be shorter than the background
history so that when foreground pixels are added to both the
foreground and background models they will have a larger
effect upon the foreground model.

The histories that used in this paper were fairly short
(100 frames for the background and just 5 frames for the
foreground) in order to make the algorithm robust to slowly
changing backgrounds. This feature turns out to be very im-
portant to compensate for lighting changes such as a those
caused by passing clouds on outdoor scenes. The histories
associated with each model also allow the foreground dete-
tections to be consistent over time.

The most significant improvement of Shah et al.’s



Figure 3. (top left): A frame from a test video in which one biker is occluded by another biker. (bottom left): The output of a variant
on Berclaz et al.’s k-paths algorithm overlaid on top of the output from Shah et al.’s background subtraction. Unfortunately the two
overlapping bikers are detected as a single object using a connected regions algorithm. (top right): Another frame from a slightly later
point in the test video. (right): The combined output of kpaths and background subtraction. Note that while the bikers could not be
distinguished while one was occluded by the other, they are immediately split into two separate detections once they are separated. This is
a result of a modification to the kpaths algorithm that allows an object to appear anywhere in a scene and at any time, but at a very high
cost. However, resolving this issue in its entirety is beyond the scope of this project.

method of other similar methods is its secondary graph cut
step. In this step each pixel represents a node in a weighted
graph, with the addition of two extra nodes; one represent-
ing the background and one representing the foreground.
The graph has weighted edges between each pixel node and
the foreground and background nodes, with weights depen-
dent upon the probabilty of each pixel being in the fore-
ground or background based on the competing models in
the first step. Finally, each pixel node has weighted edges
to each of its four neighboring pixel nodes. Then a mini-
mum graph cut is performed to determine which nodes are
connected to the background node and which are connected
to the foreground node. This approach ensures that neigh-
boring pixels will be grouped together unless there is very
strong counter-evidence.

1.6. Comparison with Other Methods

A qualitative evaluation of the results of both the Mix-
ture of Gaussians approach and Shah’s Bayesian Modelling
method showed that Shah’s approach yields many fewer

spurious foreground points. Furthermore, Shah’s approach
has segmentation built into the algorithm because the min-
cut algorithm that it uses tends to group spatially proximal
pixels. In contrast, Mixture of Gaussians detects differences
generally along object edges, so a secondary method would
be needed in order to cluster the points detected as fore-
ground. We tried low-pass filtering the Mixture of Gaussian
output with a square kernel in conjunction with threshold-
ing, however the results were qualitatively not as clean as
the results from Shah et al. We also tried dilation but had
similarly poor results. Thus Shah’s method was chosen as
the background subtraction step for the method described in
this paper.

2. Computational Challenges of Background
Subtraction

When computing the competing foreground and back-
ground models, it is computationally too expensive to cal-
culate a Gaussian distribution around each point the 5 di-
mensional space and for each pixel. Instead, this paper uses



an approximation that gives the bucket that the pixel is in
a high likelihood, while the 80 neighboring buckets in the
five-dimensional space get slightly lower likelihoods. All
other buckets are unnaffected by that particular pixel. Also,
Shah’s original paper used frames that were 240x360 pix-
els. They were able to process 11 frames per second using
a 3.06 GHz Intel Pentium 4 processor with 1 GB RAM.
The frames that used in this project are 960x544 pixels, so
in order to achieve a comparable level of performance the
competing models portion of the algorithm was parallelized
with up to 18 threads. Ultimately this method is able to pro-
cess roughly 5 frames per second using a 2.7GHz dual core
i7 with 4GB of RAM.

3. Foreground Object Tracking

In our foreground object tracking phase we would ide-
ally be able to distinguish each object from every other ob-
ject as well as retain knowledge about the identity of each
object as we move from frame to frame of the video. Given
just the foreground mask for each frame and the original
frames themselves it is difficult to separate overlapping ob-
jects without a class model. This separation process is be-
yond the scope of this paper, so for now we assume that the
objects we are tracking are non-overlapping.

3.1. K-Shortest Paths Object Tracking

Since we need to be able to track an arbitrary and con-
stantly changing number of objects, we use a variant on the
K-Shortest Paths foreground object tracking method devel-
oped by Berclaz et al. [2]. Most similar methods require a
fixed number of objects. Berclaz et al. assume the use of an
appearance model to help track objects. As we do not have
such a model, and are in fact trying to train a similar classi-
fier, we will use our background subtraction method to give
us probabilities of a foreground object at each location and
time.

The Berclaz method discretizes the image into buckets
(we use buckets of 10x10 pixels) each of which represent
a node in a directed acyclic graph (DAG). Each frame is a
layer of the DAG and there are two extra nodes; a source
and a sink node. Directed edges are connected from each
bucket to its 9 neighboring bucket (including itself) in the
next frame. The source node has an edge going to each
node in the first frame and to every node on the border of
every frame. Similarly, the sink has edges coming in from
the borders and the last frame. Each edge (u,v) is weighted
according to the probability of occupancy at node u.

Some edges (the edges that have an occupancy proba-
bility of greater than one half) have negative weights, so
Bellman-Ford is used (at least in our implementation) to
find a minimum cost path from source to sink [1]. When a
minimum cost path is found then all of its nodes and edges

are removed from the graph and the next minimum cost path
is found. This process is repeated in order to find an arbi-
trary number of paths. Once no more paths have a cost be-
low some predetermined threshold then the algorithm stops.
See [2] for more details.

3.2. Occlusion

In an attempt to solve the overlap problem we used a low
pass filter on the location so that two intersecting paths can
still be made continuous by linking them through a lower
probability region. However this lowered the probability of
many single tracks and resulted in too many lost paths to be
useful.

This paper instead focuses on making sure the objects are
tracked in separate bounding boxes once they are no longer
detected as part of the same connected region. In this vein
a partial solution to the occlusion problem can be achieved
by allowing objects to appear and disappear anywhere in
the kpaths DAG at anytime. This is achieved by connecting
both the source and sink nodes to every other node in the
kpaths graph.

However, since it is unrealistic for objects to continually
pop into and out of existence a very high cost is placed on
the extra edges to the sink node. This ensures that the al-
gorithm must have extremely high confidence in an object’s
existence from the surrounding frames before allowing an
object to spontaneously appear or disappear. Of course
there is still no cost associated with the appearance or dis-
appearance of an object along the border of a frame or at
the start of end of a video sequence. There are no extra
openings in the video sequences tested in this project. How-
ever if a video sequence were to have known doors or other
openings that objects could realistically appear and disap-
pear from then it would be important to allow nearby nodes
to connect to the source and sink nodes at little or no cost.

3.3. Object Tracking Performance

In practice it is too expensive to encode a long video as
a single graph, so this paper uses video segments with 100
frames each and then links the paths between segments. De-
tections at the start of each segment are only allowed to ap-
pear for free near the endpoints of objects tracked in the
previous segment. When segments of 100 frames are used
then kpaths can run in near real time speeds on a 2.7GHz
dual core i7 with 4GB of RAM. Of course this doesn’t in-
clude the 100 frame lag needed to allow the frames to accu-
mulate.

4. Semi-Supervised Classification
As mentioned above, classification is done in a semi-

supervised way using methods already developed in a pre-
vious paper by Teichman and Thrun [7]. This method starts



Figure 4. (left): A sample frame from one of our test videos. (right): The output of a variant of Berclaz et al.’s k-paths algorithm overlaid
on top of the output from Shah et al.’s background subtraction.

Figure 5. These are frames from the output of Shah et al.’s background subtraction overlaid with the handlabelled bounding boxes (red)
and K-Shortest Paths tracked objects (blue). The boxes appear purple where they overlap.

with a small number of hand labelled video sequences and
a large set of randomly sampled background images. It then
learns a base classifier and uses it to classify new images in-
dividually. Each new image is itself part of a video sequence
enabling us to calculate an overall confidence of classifying
the sequence as a whole. Confidently classified positive se-
quences are then added to the set of positive training exam-
ples. In this way a few new diverse training examples can
be pulled in during each iteration by association with confi-
dently classified frames in the same sequence.

Our base classification method needs to be able to be
able to learn to identify object classes only using bound-
ing boxes. We could feasibly use slightly more informative
bounding polygons, but their use is beyond the scope of this
paper. With such limited information about each object it
seems difficult to train a complex model to perform clas-
sifications. However, Felzenszwalb et al. use a part based
method that can be trained using only bounding boxes [5].

4.1. Felzenszwalb’s Part Based Model

Felzenszwalb et al.’s part based model classifier uses
histogram of gradient (HoG) features at multiple levels of

an image pyramid to represent each potential detection. In
the initial stages of the algorithm a set of root filters (each
representing the overall shape of the object when the ob-
ject is viewed from a different orientation) are trained using
stochastic gradient descent on the results of a SVM to give
high responses to foreground instances and low responses
to background instances. Then a set of part filters for each
root filter are learned at a finer level of detail of the image
pyramid. Each part filter has a default position relative to
its associated root filter. Thus the final score of a detection
is a combination of the root filter response, the part filters
responses, and a negative term for how far each part filter
needs to be shifted away from its default position in order to
get a good response. The robustness of the algorithm comes
from the multiple root filters that can each give a confidence
of detecting the object in a different pose. For details see [5]
and [4].

Felzenszwalb’s part based model is used here as the base
classifier for Teichman et al.’s semi-supervised algorithm
[7].



Figure 6. These are frames of the tracks that were added using Felzenszwalb et al.’s part based model. On the left you can see that the
people were not recognized, but because they were part of a track they were able to be added to the set of positive training examples.

Kpaths Test 1 Test 2
Detections 3934 2614
Used 3249 2614
Overlap 5339 2614
Missed 285 2197
Accuracy 82.6% 100%
Recall 94.9% 54.3%

Table 1. K-Shortest Paths Results. Detections is the number of to-
tal number of objects detected in each test (an object detected in
multiple frames is counted multiple times). Used is the number of
detections that were matched with hand labelled objects. Overlap
is the number of hand labelled objects that matched with a detec-
tion. Here a ”match” is only declared when the bounding box of
the detected object covered greater than 50% of the bounding box
of the hand labelled object and the bounding box of the hand la-
belled object covered greater than 50% of the bounding box of the
detected object. Missed is the number of hand labelled objects that
were not matched. Accuracy is the percentage of detected objects
that were matched and recall is the percentage of hand labelled
objects that were matched.

5. Results

We do not have a qualitative method for evaluating
Shah’s Bayesian Modelling method, but it looks good qual-
itatively and it works well as the input to our variant on
Berclaz et al.’s K-Shortest Paths algorithm.

K-Shortest Paths did a good job overall as can be seen in
Table 1 and in in figure 5. Felzenszwalb’s Classifier worked
well adding tracks, but the average precision did not im-
prove. If we had more time we would do more iterations
and hopefully the results would improve. However it is no-
table that the tracks the classifier was able to add contained
frames that were initially classified as background. Perfor-
mance is also an bottleneck in Felzenszwalb’s Classifier as

Original Test Second Test
Frames 4000 5300
Tracks 22 24
AP 22.6 22.6

Table 2. Felzenszwalb’s Part Based Classifier. The original test
consisted of 22 hand labelled tracks over 4000 frames. Note that
this took about 5 minutes to do because of the tracks. Two new
tracks were identified over 1300 frames. However, when they were
added they did not increase the average precision (AP) of classi-
fications measured over the 11 recall points from 0%-100% with
10% intervals.

one iteration takes nearly nine hours to run on a modern
cluster computer such as Stanford University’s Corn Clus-
ter.

References
[1] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics, 16(1).
[2] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object

tracking using k-shortest paths optimization. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, PP(99):1,
2011.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[4] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.

[5] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Ob-
ject detection with discriminatively trained part based models.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(9), September 2010.

[6] Y. Sheikh and M. Shah. Bayesian modeling of dynamic scenes
for object detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27:1778–1792, 2005.



[7] A. Teichman and S. Thrun. Tracking-based semi-supervised
learning. In Robotics: Science and Systems, Los Angeles, CA,
USA, 2011.

6. Appendix
The work in this project builds Alex Teichman’s work

(advised by Sebastian Thrun) that performs the the same ob-
ject tracking and semi-supervised classification, but while
using a laser range finder. This project aims to perform both
steps with only video input.


