
CS231A Project Report: Real-Time Interactive Airbending

Mridul Aanjaneya
Stanford University

aanjneya@stanford.edu

Michael Lentine
Stanford University

mlentine@stanford.edu

Abstract

We propose a framework for real-time interactive
physics-based simulation using state of the art motion sens-
ing devices such as the Microsoft Kinect. The user is able to
interact with the system using simple hand gestures, where
each gesture has a predefined action associated with it. Our
gesture recognition algorithm employs multiclass SVM’s,
and is both rotation invariant as well as robust to noise.
To achieve real-time interactive rates, our physics simula-
tion engine has been parallelized and draws upon recent
algorithms that reduce the cost of individual steps and help
take large time steps while still preserving visual fidelity.
We present several qualitative and quantitative evaluation
results to demonstrate the robustness of our method.

1. Introduction
Numerical simulation has been an extremely important

computational method used for understanding natural phe-
nomena which are not directly amenable to theoretical anal-
ysis. Unfortunately, current simulation algorithms suffer
from the curse of dimensionality, and the computational
overhead incurred by running these algorithms is substan-
tial. Moreover, the processes of debugging, evaluation,
and verification are exacerbated in three spatial dimensions.
Thus, new algorithms are required which can accelerate the
speed of these intensive simulations and also allow for di-
rect interaction. An interactive platform would not only in-
crease a simulation programmer’s understanding of a partic-
ular algorithm but also ease the process of simulating com-
plex test cases and facilitate more thorough testing. Moti-
vated along these lines, we propose a framework for real-
time interactive physics-based simulation which expands
the domain of possible inputs to hand gestures using state
of the art motion sensing devices such as the Microsoft
Kinect [2]. Figure 1 shows an example result from our sys-
tem and Figure 2 shows some gestures it currently supports.
Our framework leads to a more intuitive real-time interac-
tive physics engine since gestures are perhaps the most nat-
ural form of interaction.

To design such an interactive framework, fast algorithms

Figure 1. Gesture matching of a shooting motion and the resulting
simulation.

are required for both gesture recognition and physics-based
simulation. While gesture recognition has been an active
area of research, most available systems are constrained to
recognizing two input gestures which are free from noise. A
naı̈ve approach towards gesture recognition, which we call
the norm of distances, is to first rescale the two input ges-
tures to be of the same length using linear interpolation and
compute a similarity measure as the sum of all pairwise dis-
tances between corresponding poses, where the poses are
normalized to have zero mean. Although such an approach
could provide reasonable results, it has a few caveats. First,
by rescaling the two gestures, the algorithm implicitly as-
sumes that they are uniformly sampled in time, which is
typically not a valid assumption. Secondly, it is not rotation
invariant, since it does not align corresponding poses before
computing pairwise distances. Hence, if the user performs
the same gesture in two different directions, norm of dis-
tances will incorrectly label them as two distinct gestures.

For gesture recognition, we require our system to be able
to recognize logically similar gestures. This requires that
the underlying metric encodes the semantic meaning of an
action, as opposed to just the extrinsic 3D embedding. For
example, if one wants to shoot a fireball to the right and
to the left, the performed action remains the same, but the

Figure 2. Key poses for some gestures recognized by our sys-
tem. From top to bottom, gestures are: up, left, back, ball, shoot.
The up, left and back gestures have their corresponding analogues
down, right and front gestures as well. The ball gesture is for cre-
ating a ball of smoke, and the shoot gesture fires this ball.

user shoots in two different directions. To achieve this,
many authors use either dynamic timewarping [8, 23, 24]
or Hidden Markov Models [12, 39]. The latter class of
methods learn a transition probability between gestures. In
a real-time simulation system, there typically is no corre-
lation between consecutive gestures, and hence, we chose
the dynamic timewarping approach. An advantage of this
approach is that it does not assume that the two input ges-

tures are uniformly sampled in time. The rotation invari-
ance of gestures is achieved by using the distance function
proposed by Kovar et al. [25] which first computes an opti-
mal alignment between input poses before computing pair-
wise distances between corresponding points. Since we re-
quire our framework to recognize gestures interactively, we
need a candidate descriptor for each given gesture to be able
to compare it against the input data. One way to compute
this candidate descriptor is to pre-record an instance of the
given gesture. However, such descriptors can be noisy and
perform poorly when considering multiple users where in-
put skeletons have variable dimensions. Also in a realistic
setting, several users may be interacting with a particular
physics simulation, such as while training new recruits in
the army, or when a teacher is explaining a theoretical con-
cept to her student. Hence, both the candidate descriptor for
a given gesture as well as the recognition algorithm must
take into account the variance in the input skeletons. One
way to alleviate these issues is to average a number of input
gestures from various users. However, manually labeling a
big set of gestures can be quite tedious. Hence, we employ
K-means clustering with our training data which automat-
ically detects dominant clusters. Each cluster then repre-
sents a candidate gesture, and the descriptor is computed as
the average of all the gestures within a cluster, where each
gesture is rescaled to be of the same length using linear in-
terpolation.

While dynamic timewarping performs well when ges-
tures are fairly distinct, in a real-time scenario where mo-
tion data comes in as a continuous input stream it becomes
difficult for the recognition algorithm to pick starting and
ending frames for a given gesture accurately. Hence, ges-
ture matches are often missed. For example, most users per-
form the up gesture followed by the down gesture, and if the
recognition algorithm does not accurately locate the bound-
ary, one of them will be missed. One way to resolve this
issue would be to choose some threshold value δ, and if the
similarity measure between the closest gesture matching the
input stream is less than δ then the corresponding action is
peformed and the input stream is cleared out, otherwise the
closest gesture is ignored. In practice, since users have their
own idiosyncracies while performing gestures, we found it
difficult to pick a reasonable threshold value. If the thresh-
old was too high then the recognition algorithm would not
match gestures at all, and if the threshold was too low, every
gesture would be a match (mostly incorrect) and the input
stream would be cleared out with a very high frequency.
Instead, we employ a multiclass Support Vector Machine
(SVM) based method for gesture recognition which can ro-
bustly identify corresponding gestures even when input data
has a large variance. Although this approach works well for
real-time recognition with noisy motion data, we do note
that it requires a significantly larger training set than that

required by dynamic timewarping for gesture recognition.
For designing an interactive physics engine, we consid-

ered smoke simulations. Methods for simulating smoke are
either grid-based (Eulerian) [17, 37, 16] or particle-based
(Lagrangian) [32, 14]. Smoke solvers typically have two
main phases: advection, which moves around smoke den-
sity from one part of the domain to another, and projec-
tion, which makes the underlying velocity field divergence-
free. Typically when designing a real-time smoke solver,
the computational limits force the resulting simulation to be
visually unappealing because of low resolutions. To allevi-
ate this issue, we designed an interactive grid-based smoke
solver which draws upon recent algorithms that speed up
both the projection [27] and the advection phase [26] of a
typical smoke simulation by orders of magnitude. More-
over, to achieve high levels of realism at real-time interac-
tive rates, we parallelized our implementation using thread-
ing. Using a method similar to Yoon et al. [42] we added
details for increased visual fidelity.

Apart from its obvious advantage in facilitating soft-
ware development, we believe our framework can be use-
ful for educational purposes, since virtual classroom envi-
ronments, facilitated by the infrastructure of the Internet,
can undoubtedly provide new and unique learning experi-
ences. Moreover, special effects industries can benefit from
our system as well, since effects and animation artists often
try to get the correct look in a scene by ‘tweaking’ physical
simulations of cloth, water, fire, and more. The proposed
framework can also be utilized for national defense pur-
poses. The United States Army has developed a video game
called America’s Army [1], which aims to provide informa-
tion and a realistic virtual setting to potential new recruits,
and as such can clearly benefit from a real-time interactive
high quality physics engine to increase visual realism.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 discusses our approach
towards gesture recognition and real-time physics simula-
tion. We present our experimental results and evaluations
in Section 4. We conclude in Section 5 discussing avenues
for future work.

2. Related Work
Our work lies in the intersection of Computer Vision and

Computer Graphics, and hence, draws upon existing work
from both these communities. Gesture recognition has been
an active area of research in computer vision for more than
a decade, and we briefly review the two most related ap-
proaches to our problem. The first approach treats a ges-
ture as a temporal sequence of poses. Hence, the prob-
lem of gesture recognition reduces to the problem of string
matching where each element of the string is a pose descrip-
tor [25, 23, 24]. The second approach encodes an entire
gesture which is achieved by treating a gesture as a motion

curve in a high-dimensional space and using dimensionality
reduction techniques [33, 4] such as Principal Component
Analysis (PCA) or Multidimensional Scaling (MDS). Indi-
vidual gestures are then matched using state of the art curve
matching algorithms [41, 19].

Both the above approaches have their advantages and
disadvantages. For example, dynamic timewarping meth-
ods explicitly encode more geometric information since
they use pose descriptors, while removing noise from such
representations becomes more challenging. In contrast,
motion curve approaches handle noise quite easily since
it manifests itself as high frequency oscillations along the
curve which can be removed by using fourier analysis tech-
niques. However, a lot of geometric information often gets
lost when dimensionality reduction techniques are used to
embed these curves in lower dimensions.

There has been a plethora of work on simulating smoke,
and more generally incompressible fluids, in the graphics
community. As mentioned previously, methods for simulat-
ing smoke are either grid-based (Eulerian) or particle-based
(Lagrangian). Eulerian methods, being limited by the size
of the grid, often add noise to produce details [38, 31, 7, 22,
34]. These techniques, although successful at adding de-
tails, can still be somewhat expensive and are nonphysical.
Higher order accurate methods have been proposed for im-
proving the baseline simulation on the existing grid [15, 35].
However, they are significantly more expensive than tradi-
tional fluid simulation and are limited by the Nyquist fre-
quency of the grid. To increase the grid resolution with
minimal computational overhead, adaptive grid techniques
were introduced [5, 28]. Lagrangian methods, on the other
hand, are not limited by the resolution of the grid. How-
ever, these approaches do not store the connectivity of the
surface and require additional computation to keep track of
the surface and to re-mesh. There has also been work on
combining particle and grid-based approaches [36, 18, 30],
using reduced order models [40] and creating higher resolu-
tion results from lower resolution simulations [29, 21, 42].

3. Technical Approach
Using Microsoft’s Kinect is central to our problem. We

used the openni device drivers to read data, which has color
and depth information, and the NITE skeleton tracker to ob-
tain a set of joint angles, as shown in Figure 3 (Left). Once
the joint angles were available, we converted them into an
appropriate skeleton which is better suited as input data for
our gesture recognition algorithm. To compute the skeleton,
we constructed a set of cylinders for each bone by calculat-
ing the averages between positions of each joint and then
using the relative joint positions to compute bone orienta-
tions. We use OpenGL to display the results of our skele-
ton tracking algorithm (see Figure 3 (Right)). We collected
training data by using our skeleton tracking algorithm and

Figure 3. (Left) capture of joint angles using Kinect data and
(Right) a skeleton created from cylinders.

manually cropping frames containing relevant gestures.
We adopted two different approaches to gesture recog-

nition. Our first approach computes a similarity metric be-
tween two gestures, while the second approach performs
classification among the set of candidate gestures. In the
following sections we explain both these approaches.

3.1. Distance-based Gesture Recognition

For recognition, each gesture needs to be described by a
set of parameters. We adopted a data-driven approach for
computing these parameters by clustering our training data.
We used K-means clustering for this purpose, where K is
the number of gestures we wish to recognize. The parame-
ters for each candidate gesture were computed as the aver-
age of all the gestures within a cluster, where each gesture
was normalized to be of the same length through linear in-
terpolation. Since the input gestures are inherently noisy,
we applied smoothing before clustering by convolving each
gesture with a Gaussian filter. This was done for each joint
independently in a dimension by dimension manner.

When comparing similarity between two poses, an opti-
mal alignment first needs to be computed to ensure direc-
tion and viewpoint invariance. For this purpose, we used
the distance function introduced by Kovar et al. [25]. Each
pose is represented as a point cloud derived from the input
skeleton. Distance between two poses is computed as the
weghted sum of squared distances between corresponding
points pi and p′i in the two point clouds P1 and P2, i.e.,

d(P1,P2) = min
θ,x0,y0

∑
i

||pi − Tθ,x0,y0p′i||2 (1)

The transformation Tθ,x0,y0 rotates a point p about the Z
(vertical) axis by θ degrees and then translates it by (x0, y0).
Hence, equation (1) computes the minimal weighted sum
of squared distances, given that an arbitrary rigid 2D trans-
formation may be applied to the second point cloud. This
optimization problem has a closed-form solution [25] given

Figure 4. (Left) Original point clouds are shown in red and blue,
green is the result of aligning blue to red. (Right) Comparing time
alignments (red). Darker pixels show smaller frame distances.

by

θ = arctan

∑
i wi(xiy

′
i − x′iyi) − 1P

i wi
(x̄ȳ′ − x̄′ȳ)∑

i wi(xix′i + yiy′i) − 1P
i wi

(x̄x̄′ + ȳȳ′)

x0 =
1∑
i wi

(x̄ − x̄′ cos θ − ȳ′ sin θ)

y0 =
1∑
i wi

(ȳ + x̄′ sin θ − ȳ′ cos θ)

where x̄ =
∑

i wixi and the other terms x̄′, ȳ′ and ȳ are de-
fined similarly. Figure 4 (Left) shows a sample result of the
point cloud alignment on our input skeleton. For comput-
ing the given alignment, we assumed all points to have the
same weight wi equal to 1. However, since we only con-
sider hand gestures in our experiments, we assigned a large
weight to all points on the hands.

Given a distance metric between any two poses, a mea-
sure of similarity between the two corresponding gestures
can be computed by aligning them in time. Note that rescal-
ing the two gestures to be of the same length, as done by
the norm of distances approach, is not a good solution for
this problem since the two gestures might have been per-
formed with varying speeds. Dynamic timewarping, which
is closely related to the edit-distance computation problem
between two input strings [13], is a well-known algorithm
for computing an optimal time alignment between two ges-
tures. Several dynamic programming algorithms exist for
this problem [8, 23]. If the two input gestures are of lengths
m and n, we use the distance function defined in equation
(1) to compute an m × n cost matrix C. Each entry C(i, j)
in the matrix contains the distance between frame i in the
first gesture and frame j in the second gesture. Given such
a cost matrix C, dynamic timewarping computes the path
with minimum cost connecting the bottom left corner (1, 1)
and the top right corner (m,n). This is done by solving the

optimization problem

D(m,n) =
min{D(m − 1, n − 1) + C(m,n),

D(m,n − 1) + ε,
D(m − 1, n) + ε}

where the cost of a path is defined as the sum of the costs
of each of its cells, ε is the cost of skipping a frame and
D(i, j) is the optimal cost of aligning the first i frames of
the first gesture with the first j frames of the second gesture
(see [8, 23] for details). Figure 4 (Right) shows the cost ma-
trix C for two gestures of hands rising in the air performed
by the same user. An optimal time alignment between the
two gestures computed using the dynamic timewarping al-
gorithm is shown in red. Note that the first few frames in
the second gesture are skipped since the two gestures are of
slightly different lengths.

3.2. SVM-based Gesture Classification

In the presence of a multitude of data, SVM-based meth-
ods lend themselves well as they adopt a more learning
based approach. Typically SVM methods are broken up into
two categories: one-vs-all and one-vs-one which have been
extensively studied [6, 20]. In one-vs-all methods, n classi-
fiers are found. Using these classifiers a new data point can
be categorized by using the classifier that produces the high-
est score value. In contast, one-vs-one SVM methods find
classifiers between every pair. When a data point is catego-
rized, each classifier votes for the correct category for that
particular classifier and the category with the largest number
of votes wins. Following the recommendations presented
by Hsu and Lin [20], we use one-vs-one SVM’s.

We use the implementation provided in LibSVM [11].
Features vectors are defined as the set of positions and ve-
locities of each bone in the input skeleton. The velocities
are computed using a standard central difference convolu-
tion operator on the set of positions. We use C-SVC with
cost equal to 10, and radial basis functions for the kernel
where γ is inversely proportional to the number of data
points within a single gesture in the training set. The train-
ing set we used contained the input gestures themselves as
well as many combinations. This was done to find correct
gestures even when other gestures were in the live stream
before this gesture was performed.

3.3. Real-time Interactivity

Our method uses the framework proposed by Fedkiw
et al. [16] for smoke simulation. For additional perfor-
mance we use the algorithm recently proposed by Lentine
et al. [27] for simulating fluids on high resolution grids by
using a coarse grid for enforcing incompressibility. This
allows for fast implicit updates while still maintaining the
high quality results obtained with the large grid. In a typi-
cal fluid simulation, the bottleneck is the cost of enforcing

Figure 5. (Left) output of the thread associated with the left side of
the domain and (Right) a thread on the right side of the domain.

incompressibility, since it involves a global Poisson solve
to compute a pressure which makes the underlying velocity
field divergence-free. The novelty of this method lies in sig-
nificantly decreasing the cost of this global projection. Ad-
ditionally, because the projection step needs to be solved at
each time step, larger time steps would require fewer projec-
tion solves, speeding up the overall simulation. To achieve
this, we use the algorithm recently proposed by Lentine et
al. [26] which allows one time step to be taken per frame
by accurately conserving mass and momentum of the fluid.
Because of these techniques we can run low resolution grid-
based simulations with real-time performance.

We further improve this performance and achieve signif-
icantly higher resolution simulations while maintaining the
real-time constraint by using two methods. Firstly, we add
parallelism to these simulations using threading by breaking
down the underlying grid into a number of smaller pieces.
Each thread then independently simulates it’s own piece and
only communicates boundary data between the pieces when
needed for simulation (as shown in Figure 5). The second
step is to increase the visual fidelity after the simulation is
done by convolving the density field with an upsampling
filter that increases visual details. We achieve this by break-
ing up our problem by dimension and applying the filter g
on each dimension given by

g(x) =


1
2

[
f(bx

2 c) 0 f(dx
2 e)

]
: x is odd[

0 f(x
2) 0

]
: x is even.

4. Experimental Results
We tested our system on a data set of 155 gestures per-

formed by a number of different users, where each user
performed the same gesture multiple times, but not all ges-
tures were performed by every user. The users had varying
heights and each user had a different way of performing a
given gesture. These variances are amply reflected in our
dataset. Relevant gestures from each user were manually
cropped. In what follows, we use the following terminol-
ogy. Each candidate gesture computed using Gaussian fil-
tering and K-means clustering (see Section 3.1 for details)
are simply referred to as candidate gestures. Gestures per-
formed by the user in real-time are referred to as instances.
The candidate gesture corresponding to a given instance is

Figure 6. Matching scores for the norm of distances approach.

called a canonical gesture. For example, if the user per-
formed the ‘up’ gesture, then the candidate gesture for the
upward motion is the corresponding canonical gesture. Two
instances are called similar if they have the same canonical
gesture. Candidate gestures which do not correspond to a
given instance are called non-canonical gestures. We used
the following metrics for evaluating the performance of a
given recognition algorithm:

• Matching Score: For each user, we compute the av-
erage similarity scores between instances and canoni-
cal gestures. For good recognition, these score values
should ideally be low for all users.

• Difference Score: For each user, we compute the av-
erage similarity scores between similar instances and
non-canonical gestures. In our dataset there are eight
candidate gestures, and so each instance has seven
non-canonical gestures. For good recognition, these
score values should ideally be high for all users.

• Matching Accuracy: For each user, we compute the
percentage of canonical gestures which also had the
smallest similarity score when comparing an instance
to the set of candidate gestures. Ideally, each instance
should give the smallest similarity score to the canoni-
cal gesture among the set of candidate gestures.

For each recognition algorithm, we computed the match-
ing accuracy in two different ways: one approach used all
the testing data for training, and the other approach used 4-
fold cross-validation, where the data for one user was used
for testing, while those for others was used as training data.
The matching accuracy for cross-validation was computed
as the average of all the matching accuracies where each
user was left out exactly once in the training set.

Figure 7. Difference scores for the norm of distances approach.

4.1. Norm of Distances

Figure 6 shows the matching scores and Figure 7 shows
the difference scores for the norm of distances approach.
Although this approach is naı̈ve in the sense that it neither
computes pose distances by aligning corresponding point
together, nor does it optimally align the two gestures in
time, it is still able to reasonably distinguish non-matching
gestures. However, as can be seen, there are inconsisten-
cies where this approach gets confused. For example, the
matching score for user 5 for gestures 2 and 4 are almost
the same as the difference score for user 1 for gesture 1.
Hence, using this approach makes it difficult to pick a global
threshold which holds for all users and serves as a separator
for when an instance matches a candidate gesture. Figure
9 (red) shows the matching accuracy when all the testing
data was used for training, and Figure 11 (red) shows the
matching accuracy with 4-fold cross-validation.

4.2. Dynamic Timewarping

Figure 8 shows the matching scores and Figure 10 shows
the difference scores for the dynamic timewarping ap-
proach. As can be seen, this approach performs quanti-
tatively much better than the norm of distances approach.
It might appear that thresholding is possible using this ap-
proach, but to increase the robustness with a high variability
of gestures, we avoid this and pick the closest match in-
stead. For each gesture, the matching and difference scores
are also closer to each other for all users than those for norm
of distances. Figure 9 (green) shows the matching accuracy
when all the testing data was used for training, and Figure
11 (green) shows the matching accuracy with 4-fold cross-
validation. As can be seen, this approach is more accurate
than norm of distances.

Figure 8. Matching scores for dynamic timewarping.

4.3. Multiclass SVM

We trained two multiclass SVM’s, one on a small train-
ing data set and the other on a big training set. The
small training set consisted of a subset of captured gestures
whereas the big set contained not only the captured data but
also numerous combinations of the input data where the last
performed gesture was used for labeling. Figure 13 shows
the matching scores for the bigger SVM and Figure 14
shows the difference scores for the bigger SVM. Note that
the score values here correspond to probabilities of a given
instance matching a particular candidate gesture. Also note
in Figure 14 that the scale of the difference scores is differ-
ent from that of the matching scores in Figure 13 because
of the high accuracy of the bigger SVM. Figure 9 (blue and
magenta) show the matching accuracies of the two SVM’s
when all the testing data was used for training, and Figure
11 (blue and magenta) show the matching accuracies of the

Figure 9. Matching accuracy for norm of distances, multiclass
SVM’s (trained with small and big training data sets) and dynamic
timewarping when all testing data is used for training.

Figure 10. Difference scores for dynamic timewarping.

two SVM’s with 4-fold cross-validation. We notice that per-
formance of the smaller SVM is comparable to that of the
dynamic timewarping approach. Note that in Figure 11 the
accuracy of the bigger SVM is smaller than that of dynamic
timewarping for user 1 with 4-fold cross-validation because
when a gesture is not in the training set the SVM fails to
properly label it, while dynamic timewarping is more ro-
bust to unique gestures because of the pose alignment.

4.4. Real-time Interactivity

To demonstrate the viability of our method, we recorded
a number of interactions with our real-time interactive
physics simulation system. Figure 1 shows an example of
a captured gesture along with a rendering of the real-time
smoke simulation that results from matching this gesture to
our training data. Figure 12 shows similar results for a num-
ber of frames of both smoke moving upwards and smoke

Figure 11. Matching accuracy for norm of distances, multiclass
SVM’s (trained with small and big training data sets) and dynamic
timewarping with 4-fold cross-validation.

Figure 12. Two different gesture matches. (Left) shows the rising gesture which when matched will produce smoke rising as shown below.
(Right) shows the forward gesture which when matched will push smoke forward through the domain as shown below.

moving forwards. Figure 15 demontrates the ability of our
method to not only recognize gestures but use the smoke to
track the hand motion. In this particular figure, the tracking
algorithm was activated via a gesture. After the activation,
the hand motion of the streaming skeletal motion data is
used to move the smoke through the domain. In our simu-
lations, the resolution is 40× 80× 40, upsampled by a fac-
tor of 8 and with a framerate of 24 fps. Note the realtistic
look that we are able to achieve using threading and upsam-
pling despite the real-time nature of these simulations. Also
note the accurate gesture matching and tracking achieved
through our system (see video). In these figures, while the
simulation is performed in real-time, the rendered smoke
was added as a postprocess for visualization purposes and
was not done in real-time. Also, in the video, the gestures
are frozen after they are recognized by the system with the
exception of the tracking gesture.

Figure 13. Matching scores for multiclass SVM.

5. Conclusion and Future Work

We presented a number of algorithms for gesture recog-
nition including norm of distances, dynamic timewarping
and mutliclass SVM’s. We demonstrated the effectiveness
of these algorithms using a variety of evaluation statistics.
We also presented a real-time simulation system which im-
proves upon previous methods by adding parallelism as well
as upsampling. Using these algorithms, we have been able
to generate a real-time interactive system using Microsoft’s
Kinect. We envision that our system will have wide ap-
plicability, from special effects industries to education and
software development. A number of directions are open for
future work. Multiclass SVM’s only work well when the
training data accurately represents all possible gestures in
the testing set. In contrast, dynamic timewarping is robust
because of the pose alignment. An approach that combines
the benefits of both these methods would need less training

Figure 14. Difference scores for multiclass SVM. Note that the
scale is different from that of the matching scores.

Figure 15. Tracking hand motion with kinect and the resulting simulation. Note that the hand motions are accurately tracked using our
system.

data and would handle unique test cases, and is an avenue
for future work. Moreover, gesture recognition can be made
more robust to noise and outliers by using a motion curve
approach [33, 4]. For computing similarity between two
gestures, partial curve matching algorithms can be used [9].
Our current framework only supports the OpenGL visual-
ization in real-time, and we plan to integrate our system
with a real-time renderer such as the NVIDIA OptiX ray-
tracer [3]. The performance improvements to our simula-
tion systems can also be combined with higher resolutions
simulations to create more realistic simulations with sim-
ilar CPU run times. In the future, we would also like to
integrate our system with other simulation solvers, such as
water, cloth or fire.

References

[1] America’s Army. http://www.americasarmy.
com/.

[2] Microsoft Xbox Kinect. http://www.xbox.
com/kinect/.

[3] NVIDIA PhysX. http://www.geforce.com/
Hardware/Technologies/physx.

[4] J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis:
pose selection and illustration. ACM Trans. Graph.,
24:667–676, July 2005.

[5] M. Berger and J. Oliger. Adaptive mesh refinement for
hyperbolic partial differential equations. J. Comput.
Phys., 53:484–512, 1984.

[6] K. bo Duan and S. S. Keerthi. Which is the best multi-
class svm method? an empirical study. In Proceedings
of the Sixth International Workshop on Multiple Clas-
sifier Systems, pages 278–285, 2005.

[7] R. Bridson, J. Houriham, and M. Nordenstam. Curl-
noise for procedural fluid flow. ACM Trans. Graph.,
26(3):46, 2007.

[8] A. Bruderlin and L. Williams. Motion signal process-
ing. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’95, pages 97–104, 1995.

[9] K. Buchin, M. Buchin, and Y. Wang. Exact algorithms
for partial curve matching via the fréchet distance. In
SODA 2009, pages 645–654.

[10] M. Buhmann. Radial Basis Functions: Theory and
Implementations. Cambridge University Press, 2009.

[11] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[12] F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand ges-
ture recognition using a real-time tracking method and
hidden markov models. Image and Vision Computing,
21(8):745 – 758, 2003.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiser-
son. Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition, 2001.

[14] M. Desbrun and M.-P. Cani. Smoothed particles: A
new paradigm for animating highly deformable bod-
ies. In R. Boulic and G. Hegron, editors, Comput.
Anim. and Sim. ’96 (Proc. of EG Wrkshp. on Anim.
and Sim.), pages 61–76. Springer-Verlag, Aug 1996.

[15] T. Dupont and Y. Liu. Back and forth error compen-
sation and correction methods for removing errors in-
duced by uneven gradients of the level set function. J.
Comput. Phys., 190/1:311–324, 2003.

[16] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation
of smoke. In SIGGRAPH 2001, 2001.

[17] N. Foster and D. Metaxas. Controlling fluid anima-
tion. In Comput. Graph. Int., pages 178–188, 1997.

[18] Y. Gao, C.-F. Li, S.-M. Hu, and B. A. Barsky. Simulat-
ing gaseous fluids with low and high speeds. Comput.
Graph. Forum, 28(7):1845–1852, 2009.

[19] A. Gruen and D. Akca. Least squares 3d surface and
curve matching. ISPRS Journal of Photogrammetry
and Remote Sensing, 59(3):151 – 174, 2005.

[20] C.-W. Hsu and C.-J. Lin. A comparison of methods
for multiclass support vector machines, 2002.

[21] D. Kim, O.-y. Song, and H.-S. Ko. Stretching and
wiggling liquids. In SIGGRAPH Asia ’09: ACM SIG-
GRAPH Asia 2009 papers, pages 1–7, New York, NY,
USA, 2009. ACM.

[22] T. Kim, N. Thürey, D. James, and M. Gross. Wavelet
turbulence for fluid simulation. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, pages 1–6, 2008.

[23] L. Kovar and M. Gleicher. Flexible automatic mo-
tion blending with registration curves. In ACM SIG-
GRAPH/Eurographics symposium on Computer ani-
mation, SCA ’03, pages 214–224, 2003.

[24] L. Kovar and M. Gleicher. Automated extraction and
parameterization of motions in large data sets. In SIG-
GRAPH 2004, pages 559–568, 2004.

[25] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs.
ACM Trans. Graph., 21:473–482, July 2002.

[26] M. Lentine, M. Aanjaneya, and R. Fedkiw. Mass and
momentum conservation for fluid simulation. In Pro-
ceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’11, 2011.

[27] M. Lentine, W. Zheng, and R. Fedkiw. A novel algo-
rithm for incompressible flow using only a coarse grid
projection. ACM Trans. on Graphics, July 2010.

[28] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water
and smoke with an octree data structure. ACM Trans.
Graph. (SIGGRAPH Proc.), 23:457–462, 2004.

[29] M. B. Nielsen, B. B. Christensen, N. B. Zafar,
D. Roble, and K. Museth. Guiding of smoke ani-
mations through variational coupling of simulations
at different resolutions. In SCA ’09: Proc. of the
2009 ACM SIGGRAPH/Eurographics Symp. on Com-
put. Anim., pages 217–226, 2009.

[30] T. Pfaff, N. Thuerey, A. Selle, and M. Gross. Syn-
thetic turbulence using artificial boundary layers. In
SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009
papers, pages 1–10, 2009.

[31] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw.
Smoke simulation for large scale phenomena. ACM
Trans. Graph. (SIGGRAPH Proc.), 22:703–707, 2003.

[32] W. Reeves. Particle systems - a technique for model-
ing a class of fuzzy objects. In Comput. Graph. (Proc.
of SIGGRAPH 83), volume 17, pages 359–376, 1983.

[33] A. Safonova, J. K. Hodgins, and N. S. Pollard. Syn-
thesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. In SIGGRAPH
2004, pages 514–521, 2004.

[34] H. Schechter and R. Bridson. Evolving sub-grid tur-
bulence for smoke animation. In SCA ’08: Proc. of the
2008 ACM SIGGRAPH/Eurographics Symp. on Com-
put. Anim., pages 1–7, 2008.

[35] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac.
An Unconditionally Stable MacCormack Method. J.
of Sci. Comp., 35(2):350–371, 2008.

[36] A. Selle, N. Rasmussen, and R. Fedkiw. A vor-
tex particle method for smoke, water and explosions.
ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):910–
914, 2005.

[37] J. Stam. Stable fluids. In Proc. of SIGGRAPH 99,
pages 121–128, 1999.

[38] J. Stam and E. Fiume. Turbulent wind fields for
gaseous phenomena. In Proc. of SIGGRAPH 1993,
pages 369–376, 1993.

[39] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demird-
jian, and T. Darrell. Hidden conditional random fields
for gesture recognition. In Computer Vision and Pat-
tern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 2, pages 1521 – 1527, 2006.

[40] M. Wicke, M. Stanton, and A. Treuille. Modular
bases for fluid dynamics. In SIGGRAPH ’09: ACM
SIGGRAPH 2009 papers, pages 1–8, New York, NY,
USA, 2009. ACM.

[41] H. Wolfson. On curve matching. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
12(5):483 –489, may 1990.

[42] J.-C. Yoon, H. R. Kam, J.-M. Hong, S.-J. Kang, and
C.-H. Kim. Procedural synthesis using vortex particle
method for fluid simulation. Comput. Graph. Forum,
28(7):1853–1859, 2009.

