
Hearing Sheet Music: Towards Visual Recognition of Printed Scores

Stephen Miller
554 Salvatierra Walk
Stanford, CA 94305

sdmiller@stanford.edu

Abstract

We consider the task of visual score comprehension.
Given an image which primarily consists of printed sheet
music, we wish to output the audio. In this work, we first
consider the task of unconstrained sheet music and motivate
the unique challenges it presents. We then show a first step
towards a solution, by building a system to solve a more
constrained version: one in which only distinct notes are
present. This pipeline consists of synthetically generating
labeled training examples, finding measure bounds and es-
timating the perspective via a Hough Transform, and train-
ing sliding window detectors to infer the pitch and type of
each note.

Future Distribution Permission
The author(s) of this report give permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

At the moment, I know nothing Schopen-
hauer’s philosophy. Nor, as far as I can tell, do
any of my friends. In a world without written lan-
guage, we’d be at an impasse. If I were serious
about learning it, I’d need to go to the Philosophy
department, schedule a meeting with a professor,
and ask for an explanation. Fortunately, we don’t
live in that world. I can pick up a copy of The
World as Will and Representation and get a rough
idea of the concepts. No one spoke: the writing
silently communicated everything.

Music, like speech, can be written. But to
many of us--particularly amateurs--written notes
don’t directly convey music in the same way that
written words convey ideas. Instead, we need to

first sit in front of our instrument of choice and
play it note by note, mechanically, listening as we
play. Eventually, after some awkward stumbling,
there’s a moment where the individual notes be-
come a melody and everything clicks. Once the
click happens, each note becomes a necessary part
of a logical whole, and the learning process snow-
balls.

This work is the beginning of a project which
attempts to automate that click. Namely, I wish
to develop an iPhone or Android application in
which a user can point at never-before-seen piece
of sheet music in standard lighting conditions, and
hear the song. As a first step, I here consider the
task of reading sheet music from a single image,
and playing it in audio.

The remainder of the paper is laid out as fol-
lows: in Section 2 we discuss relevant prior work.
In Section 3 we formalize the general problem,
and characterize the variety found in real-world
sheet music and subtleties inherent to the task. In
Section 4 we present a first step towards the gen-
eral problem, by building an end-to-end pipeline
to solve a simplified version of this task. We eval-
uate our results in Section 5.

2. Prior Work

To my knowledge, the problem of sheet music
recognition had only been considered in the realm
of scanned sheet music (see [6] and [5]).1

Additionally, the task of sheet music recogni-
tion does have many similarities to Optical Char-

1This paper ([1]) has recently come to my attention. It may well be that
this has been done before, although not in a mobile phone setting.

acter Recognition [7], in that it attempts to read
from a discrete set of characters printed on a page.
However, while the meaning of characters in OCR
is given solely by their shape, the meaning of
notes is dictated in part by their shape, and in
part by their position and location relative to other
symbols.

3. Problem Statement

The task of this work is as follows: given a
single image containing one or more measures of
printed music (or “score”) output a song: a po-
tentially overlapping collection of pitches, start
times, and durations (in relative units of “beats”).
While there are many minor points and subtle de-
viations, nearly all sheet music consists of the fol-
lowing components:

• The staff: a set of 5 evenly spaced horizontal
lines, over which all notation must lie. Sym-
bols present at the start of the staff determine
how notes will be interpreted in subsequent
measures.

• Note: a particular symbol whose shape, com-
bined with its relation to neighboring sym-
bols, dictates its duration. Its vertical place-
ment dictates its pitch. We consider the oc-
tave which is fully contained within the staff
lines, and thus the pitches referred to are enu-
merated: E,F,G,a,b,c,d,e.

• Accidental: a symbol (sharp, flat, natural)
which, when placed to the left of a note, mod-
ifies its pitch.

• Rest: a symbol whose shape dictates the
amount of time no note will be played.

The following are terms used to throughout this
paper:

• Beat: The fundamental unit of time in music.
Assuming 4/4 time, it is represented by a dis-
tance of bx = mw

bpm
where mw is the width of a

measure and bpm is the number of “beats per
measure”—assumed 4 throughout the paper.

Figure 1. Example groups from user-submitted sheet music

• Step: The fundamental unit of pitch, corre-
sponding to 1

8
an octave. Although musically

incorrect given the presence of accidentals,
in this work I refer to a “step” as a change
in pitch by a single letter value, signified in
sheet music by a vertical traversal of py = mh

8
where mh is the height of a measure. Staff
lines are separated by a distance of 2py.

3.1. Difficulties

Despite the rigid structure of sheet music, it
presents a number of surprisingly difficult chal-
lenges. For instance, while an individual note
may be fully understood by its appearance, it
is frequently the case that notes are grouped to-
gether or stacked atop each other (see Figure 3.1).
While the latter case poses a great challenge to
precise localization, the former case proves even
more difficult: the duration of a grouped note
can only be determined by the way in which it is
connected to its neighbors. Furthermore, because
notes may be arbitrarily grouped or stacked, it is
infeasible to simply enumerate all possible sym-
bols and treat them as different detections: they
must be, in a sense, understood.

4. Our Pipeline

The above problems proved extremely interest-
ing: far too interesting, unfortunately, for time
constraints to allow. After many unsuccessful at-
tempts, I chose instead to begin with a proof of
concept. To do so, I first greatly simplify the prob-
lem by removing the challenges presented by lo-
cal context. Namely, I consider only sheet music
comprised of a single melody line with physically
disconnected notes and no accidentals. In what

follows, I detail my pipeline. What pieces of this
pipeline may generalize, and what was learned in
the process, will be discussed in Section 6.

4.1. Overview

In both training and testing, we begin with an
image of sheet music, taken by a camera phone.
To efficiently generate labeled training examples,
I generated my own dataset of synthetic sheet mu-
sic. I then photograph this sheet music, and at-
tempt to warp it back into its canonical reference
frame. Note detectors are then trained and run on
these warped images on a per-measure basis, and
used to predict the type and pitch of each note. Fi-
nally, these are strung together into a song, which
may be played through speakers.

4.2. Implementation Details

As I intend to deploy the working system on
a phone in the future, I implemented this on a
platform which is portable to both Android and
iPhones: OpenCV [2], particularly its Python
bindings.

Much functionality—image processing and
finding lines via a Hough Transform, for
instance—is built into this library. Support Vector
Machine training was done with both LIBSVM
[3] and PyML[?].

To organize pieces, allow for ease in open
sourcing, and ideally port this to the PR2 upon
completion, this work was developed as a pack-
age in the Robot Operating System (ROS).

4.3. Dataset Generation

One great challenge in the initially-proposed
general problem was the issue of scalability.
Namely, for every user-submitted image, gener-
ating training data required meticulously labelling
potentially-skewed bounding boxes. After a num-
ber of attempts (see Fig. 2) it became painfully
clear that this would not scale to the large number
of images I would like the end-result to handle.

To automate this procedure, as well as to ensure
that we are only given music which follows our
simplifying assumptions, I implemented my own

Figure 3. When a perspective is inferred from lines on another part
of the image, other measures are skewed.

sheet music generator. It first generates a random
song of desired length, assuming a uniform distri-
bution of note types and pitches. It then renders
this visually on a score, such that the rules of our
domain (such as the number of beats per measure)
remains consistent. The layout (e.g. measures per
row, staff height) may be varied, to ensure we do
not overfit to a particular scale. The note symbols
themselves were taken from online sheet music.
In these experiments, only a single typeface was
used.

This rendered sheet music was then printed out
and photographed under real-world lighting, per-
spective, and blur. Each photograph was paired
with metadata about the song which generated it,
so that the bounding boxes and note labels in the
original score would be known, both for use in
supervised training, and ground truth in testing.

4.4. Perspective Estimation

As the vertical location of a note on its page
uniquely determines its pitch, precise localization
of the note in the page’s reference frame is neces-
sary. Thus, to aquire this information and reduce
noise in the classification task, we first wish to
warp each note into a canonical reference frame.

As there is often curveature in the paper’s sur-
face (as is the case when held and, particularly,
near the spine of a booklet), no global perspective
projection is sufficient to project onto the paper’s
reference frame (see Fig. 4.4). However, empiri-
cal results show that within a single measure, the
perspective is well-approximated by an affine pro-
jection (see Fig. 4.4). Thus, for each measure, we
wish to infer an affine projection matrix P which
will make its staff lines horizontal, and its width
and height that of an arbitrarily sized canonical
measure. This can be uniquely determined from
3 points.

Figure 2. An example of labeled bounding boxes in a small region of a user-submitted score

Figure 4. In the local measure regime, however, they are fairly well
normalized.

We thus look for the bounding corners of each
measure, located at the intersection of the top and
bottom staff lines with the left and right measure
bars. More precisely, we wish to locate cross-
ings in the image: those points in which the verti-
cal measure bars and horizontal lines of the staff
intersect. A number of attempts were tried: the
most effective was to use a Hough Transform on
a dilated Canny image to locate predominantly
vertical and horizontal lines in the image, and
compute their intersection. An example result is
shown in Fig. 5.

While this proved somewhat promising,
the predicted intersections were quite noisy—
particularly due to the fact that the tail of notes
strongly resemble vertical measure bars, and also
intersect the staff. Unfortunately, imprecision in
this step proves disasterous in future iterations.
Thus, while a solution certainly may be found,
I chose to experiment the success of the detec-
tors using hand-annotated crossings, and leave
fine-tuning this step for future work.

4.5. Note Detection

Given a measure in a canonical reference
frame, the next step is to detect, and precisely lo-

cate, notes in the image. To do so, I use a patch-
based sliding window classification scheme.

In particular, at train time, patches are are sam-
pled both at the ground-truth location of each
note. To avoid overfitting to our automated
bounding boxes (which capture no translation in-
variance in the note), we additionally sample from
shifted versions of each, given random noise.
Negative training examples are drawn from loca-
tions in which there is guaranteed to be no note
given the structure of music—namely, in the beats
directly following a half or whole note. As we
generated this particular training data, all bound-
ing boxes were known explicitly, so there was no
risk of sampling unlabeled positives: however, it
is interesting to note that this method would be
robust, even when not all positives are labeled.

Given a patch classifier, the note detection se-
quence proceeds as follows:

• Pass through the image measure by measure

• The measure is traversed beat-by-beat (dx =
bx).

• For each beat location, the staff is traversed
step-by-step (dy = sy).

• For each candidate pitch location,
patches are sampled from a small
(|dx| < fracbx2, |dy| < fracsy/2) neigh-
borhood around this location.

• Each patch in the neighborhood is classified
as “whole”, “half”, “quarter”, or “none.” If

Figure 5. Left: The canny image. Right: Hough lines which are found. Note the noise.

any positive note labels are predicted, the one
with the highest confidence is selected as the
candidate at that pitch.

• The pitch with the maximally responding
candidate is chosen, and the note is labelled
accordingly.

To compensate for lighting effects, the image
was first made to have a consistent local mean, by
convolving it with the filter:

K =

 −1
k

. . . −1
k

. . . −1
k−1

k
. . . 1− 1

k
. . . −1

k−1
k

. . . −1
k

. . . −1
k

Im = K ? I + 128

To extract features, patches were normalized to
a size of 26x26. I then tried a number of features,
including the gradient image, Canny edge image,
and HOG [4] (as implemented in OpenCV). In the
end, however, raw grayscale pixel values proved
to be sufficient for the task, and enabled faster
computation.

Two classification techniques were considered:

• K-nearest neighbors and SVMs. The K-
nearest neighbors were computed using the
FLANN library [8], and their “confidence
metric” was given by the the negative dis-
tance from the nearest neighbor of the same
label.

• Linear Multiclass SVMs were trained using
the PyML library, with leave-one-out cross
validation. Their confidence was given by

the distance from the feature to the decision
boundary.

• Gaussian RBF Kernel SVRs were trained us-
ing LIBSVM, with a grid search used to se-
lect the parameters, and their confidence val-
ues explicitly given.

4.6. Audio Generation

The above details the end of the vision parts
of this task, converting an input image to an out-
put sequence of notes with corresponding pitches
and durations. As a simple proof of concept, I
wrote a script which takes input notes of the same
pitch/type format and outputs the audio of a song,
using the tkSnack library to generate waveforms.
However, due to time constraints, this piece has
not yet been integrated into the end-to-end sys-
tem.

5. Results

The above system was run on a dataset of im-
ages, collected by Android and iPhone cameras,
under multiple lighting conditions: indoor light-
ing, sunlight, and camera flash. They were taken
such that the entire width of the score was in view
and reasonably focused, lying on a planar surface,
subject to reasonable perspective effects but re-
maining generally upright.

I trained on a set of 23 images and tested on a
set of 5, where the test images had noticably more
visible notes than the training. These yielded
roughly 150 and 80 instances per class, respec-
tively.

LIBSVM KNN PyML
w h q w h q w h q

w 77 2 1 70 10 0 35 26 19
h 0 88 0 0 84 4 30 44 14
q 0 5 98 0 8 95 37 35 31
misses 0 0 0 0 0 0 0 0 0
falsep 5 1 0 40 159 3 89 98 18

Figure 6. Confusion matrices and precision recall for the detectors.

The results of the 3 classifiers are shown in
Fig. 5. The three classifiers yielded absolute pitch
errors of 0.22 steps, 0.51 steps, and 0.69 steps re-
spectively.

As can be shown form the provided results, the
LIBSVM detector does quite well at inferring the
music, even given only raw black and white fea-
tures. However, KNN, which is much simpler and
faster to train and test on, does not suffer much,
despite having no analog to the cross validation of
the SVM detector. The performance of the PyML
detector is notably poor, although it may be that,
without proper regularization, it is simply fitting
to a great deal of noise: this is most evident by
the high number of false positives, in which notes
were detected in empty space.

6. Conclusion

In this work, I attempted to use Computer Vi-
sion techniques to autonomously play sheet music
from a single image. So doing, I quickly learned
that the world of sheet music is much more varied
than I’d originally believed, and that the problems
inherent to it were quite difficult. I chose, instead,
to consider a limited, toy subset of possible sheet
music instances.

I proposed a mechanism for generating arbi-
trary amounts of labeled training data on the fly.
I then used this data to get real-world photos of
sheet music on standard camera phones. By us-
ing correspondences (currently hand-labeled) be-
tween measures, I transformed the sheet music to
its approximate reference frame. I then trained
discriminative classifiers to detect notes and, from
their detections, infer their pitch. These detec-
tions were combined to create a song, which can
be played on a computer’s speakers.

That said, there were many issues with this
work, largely due to time constraints. For one,
this could have easily been extended to recog-
nizing more note types, even without solving the
problem of local context. Further, the lack of vari-
ation in the training and test data means this may
be overfitting to the typefaces used: although the
variation in typefaces appears to be quite minimal
across all scores.

In the future, I am excited to port many of these
ideas to a more scalable system. In particular, the
ability to generate arbitrary training data may be
of great use in a scalable system. Furthermore,
the idea of using partially labeled data (such as
ground truth in the music’s reference frame) can
be extended to user submissions, by requesting
that some metadata be provided with each score,
such that the ground truth can be looked up au-
tonomously.

References
[1] P. Bellini, I. Bruno, and P. Nesi. Optical music sheet segmen-

tation. In Web Delivering of Music, 2001. Proceedings. First
International Conference on, pages 183–190. IEEE, 2001.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. Ieee, 2005.

[5] C. Fremerey, M. Müller, F. Kurth, and M. Clausen. Auto-
matic mapping of scanned sheet music to audio recordings.
Proceedings of the ISMIR, Philadelphia, USA, pages 413–8,
2008.

[6] F. Kurth, M. Müller, C. Fremerey, Y. Chang, and M. Clausen.
Automated synchronization of scanned sheet music with au-
dio recordings. Proc. ISMIR, Vienna, AT, pages 261–266,
2007.

[7] S. Mori, C. Suen, and K. Yamamoto. Historical review of
ocr research and development. Proceedings of the IEEE,
80(7):1029–1058, 1992.

[8] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Int. Conf. on
Computer Vision Theory and Application (VISSAPP), 2009.

Figure 7. The original measure (left) and the correctly labeled bounding boxes (right)

