
Recognizing Patient Names in Handwritten Clinical Notes

in the Absence of Training Data

Bethany Percha
Stanford University

Biomedical Informatics Training Program
318 Campus Drive, Clark Center S240

Stanford, CA 94305
blpercha@stanford.edu

Abstract

As physicians and hospitals in the United States switch
to electronic forms of record keeping, one of the greatest
challenges they face is how to deal with the thousands of
handwritten clinical notes already in their possession. Cur-
rently the best way to incorporate these notes into elec-
tronic databases is to convert them into digital images via
scan or fax. However, staff must then manually curate these
pages by attaching them to the correct patient files. Optical
character recognition of handwritten text images like these
fails in most cases because of the variety of handwriting
styles involved and the complete lack of labeled, handwrit-
ten training data. Here we investigate an approach that ad-
dresses this problem by manufacturing pseudo-handwritten
training data from multiple computer fonts, which is used
to train hidden Markov models for each of 32 different pos-
sible patient names. The models are then used to classify
handwritten word images of patient names. The handwrit-
ten names are classified correctly 64% of the time using this
method. We discuss future improvements to the method, as
well as the practical details of its implementation within an
EMR system.

Future Distribution Permission

The author(s) of this report give permission
for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

Debate about the future of the U.S. health care
system currently pervades the halls of politics and
the front pages of major newspapers. One thing
almost everyone can agree on, however, is that

medicine in the United States will benefit from
the judicious use of electronic forms of patient
record-keeping, such as electronic medical record
(EMR) and prescription ordering systems. With
the passage of 2009’s HI-TECH Act, physicians
can receive up to $40,000 as an incentive for us-
ing EMR systems that meet certain criteria, and
the use of these systems is on the rise. However,
there are still some major roadblocks to their uni-
versal adoption.

One of the greatest challenges health providers
face when switching to an EMR is how to deal
with the thousands of handwritten clinical notes
already in their possession. All of these records
must somehow be introduced into the system, ei-
ther by scanning or manual data entry. Currently
the easiest way to do this is simply to fax in all
of the old records. Staff must then manually as-
sign individual documents to the appropriate pa-
tient files. Optical character recognition (OCR)
usually fails on handwritten documents because
these algorithms typically need to be trained to
recognize a particular person’s handwriting using
a large volume of handwritten text. In the clini-
cal setting, such training data is unavailable, and
patient documents may also contain handwriting
from many different individuals.

For my CS231A final project, I decided to fo-
cus on the problem of how to build a classifier for
handwritten patient names, under the assumption
that absolutely no handwritten training data was

available. This is not an unrealistic assumption
in the clinical setting, for reasons I discuss below.
I developed the classifier using “morphed” com-
puter fonts and hidden Markov models. In this
paper, I discuss the construction of the classifier,
its accuracy (surprisingly good) when classifying
handwritten patient names, and how it might be
modified in the future to improve its performance.

2. Background

2.1. Keyword Spotting

Recognizing handwritten patient names repre-
sents a subdomain of a larger computer vision
problem called keyword spotting [1]. Keyword
spotting differs from a related field, handwriting
recognition, because it does not attempt to trans-
late entire documents into digital blocks of text. It
only seeks to determine whether a certain word or
phrase is present in a document. Most keyword
spotting algorithms treat keywords as images and
find a set of words in the document whose appear-
ance is most similar to the query word.

There are two main variants of this word spot-
ting technique, which Rodriguez and Perronnin
outline in their 2009 paper [2]. The holistic ap-
proach describes an entire word image with a sin-
gle feature vector and defines a vector distance
measure to quantify word similarity [1, 3, 4]. The
part-based approach describes a word image as
a set of local points of interest, or keypoints,
which are then mapped onto keypoints from an-
other image. The amount of deformation it takes
to map the keypoints provides the similarity mea-
sure. They keypoints can be defined by a va-
riety of classic image recognition metrics such
as gradient angles or corner positions and then
matched using an elastic distance measure simi-
lar to those used in part-based deformable mod-
els [5, 6]. They can also consist of word profiles
[7, 8], contours [9], or other relevant features.

For many years, the state-of-the-art algorithm
in this field was Dynamic Time Warping (DTW)
[7]. More recently, other algorithms have been
found that outperform DTW, both in terms of
classification accuracy and computational effi-

ciency [10]. The most successful of these have
used hidden Markov models (HMMs) [2, 11, 12].
Importantly, HMM-based word spotting algo-
rithms outperform DTW and other vector distance
metrics on handwritten corpuses composed of text
from multiple writers, which is exactly the prob-
lem we face with clinical notes.

However, even within the set of algorithms
that use HMMs, considerable variation exists.
This is because the optimal choice of featuriza-
tion technique and HMM design varies depend-
ing on one’s particular application. For example,
many keyword spotting approaches have sought
to train individual models for handwritten charac-
ters, which are then concatenated into a model for
a keyword of interest [13, 14, 15]. These meth-
ods have the advantage that they only need to
train 26 different character models, as opposed to
thousands of different word-based models. How-
ever, they often choke on cursive text, which is
ubiquitous in clinical notes [10, 16]. In gen-
eral, character-based HMMs are powerful in cases
where one must be able to search for any keyword
(such as when one wishes to index a database of
handwritten historical documents and then allow
users to search for words of interest) but they are
less powerful than word-based models when one
only wishes to search for a limited number of key-
words of interest, as in the case of patient names.
For that reason, I chose to use word-based HMMs
in this project.

2.2. Clinical Text

Clinical text presents a particularly challenging
environment for keyword spotting for three rea-
sons.

1. Traditional keyword spotting algorithms in-
volving DTW or HMMs usually need to be
trained with a huge amount of labeled, hand-
written words and sentences. No such labeled
data exists for our purposes, and it is unlikely
that in the health care environment, anyone
would be willing to create such a resource. In
addition, many patient names are unusual and
would not be found in a large general corpus

of handwritten text.

2. The performance of virtually all keyword
spotting algorithms decreases dramatically
when documents from more than a few au-
thors are involved. Handwritten patient
names found in clinical notes come from a
variety of physician practices and hospitals,
and a single patient chart can include hand-
written text from dozens or even hundreds of
individuals.

3. Most patients do not go to the doctor very of-
ten. As a result, new faxed documents will
often include names that are on the practice’s
patient list, but have never been seen before
in handwritten form.

However, clinical documents also have certain
features that make them particularly tractable for
keyword spotting:

1. A clinical document is guaranteed to contain
exactly one patient name. Both the first and
last name are always included.

2. Clinical documents are often short, contain-
ing fewer than 100 words. Often the patient
name is one of only a few handwritten words
on the document (as with patient information
forms or questionnaires, for example). This
reduces our chances of false positive results
and makes the process of word segmentation
easier.

3. In contrast to scribbled doctor’s notes and
prescriptions, patient names are usually writ-
ten on these forms by administrative staff, and
tend to be relatively neat.

Finally, we do not need to reach a very high
level of success for this method to prove a worth-
while addition to EMR software. Administrative
staff are currently doing 100% of this work on
their own, and there is no penalty if we suggest
an incorrect name. Accuracy of even 40-50% or
so would still save staff a considerable amount of
time, effort, and typing.

2.3. A Note on Word Segmentation

The initial challenge of any keyword spotting
algorithm is word segmentation. However, due
to this project’s limited timeframe and based on
the advice of Prof. Li, I elected to work with a
pre-segmented corpus of word images. I believe
that the word segmentation process may be a bit
easier for clinical notes than for other types of
handwritten text for the reasons outlined in Sec-
tion 2.2. In addition, high-quality word segmenta-
tion algorithms exist that could be applied to these
documents [17, 18, 19]. Other segmentation-free,
text-line-based word matching approaches might
also work for these data [5, 8, 20]. But more
importantly, I felt that the total lack of handwrit-
ten training data was a more serious problem that
needed to be addressed first for the method to
have any chance of success.

3. Approach

3.1. Training Set

The biggest challenge in this project was the
complete lack of handwritten training data. What-
ever training data I needed had to be generated au-
tomatically by a computer. I reasoned that the best
approach to this problem would be to use a variety
of different fonts to represent each name. The ini-
tial training data for each of the 32 patient names,
therefore, consisted of the same name repeated in
40 different fonts (Figure 1). However, 40 repeti-
tions of a name is not sufficient to build a hidden
Markov model with more than a few states.

My solution to this problem was to “morph”
each of the 40 different name representations
slightly several times using randomly generated
sinusoidal transforms. My reasoning was that if
a human being tried to represent a name shown
in a particular font, the name would look similar
to the font except for random sinusoidal motions
caused by the wobbling of the person’s hand. The
results of this “morphing” operation don’t look
exactly like handwriting, but they serve their pur-
pose: to artificially create more training data with
more variation than the original set of typed data
(Figure 2). Using this technique, I was able to

Figure 1. The 40 fonts used to train the classifier.

Figure 2. Three “morphed” versions of the name “Albert”, orig-
inally represented using the font Lucida Handwriting. They are
similar to the original and completely recognizable to a human as
“Albert”, but are variable enough to constitute unique training ex-
amples.

generate 800 training examples for each name, as
opposed to the original 40.

3.2. Local Gradient Histogram (LGH) Features

After generating the training set, the next step
was to extract features from each training ex-
ample that would allow me to build a unique
HMM for each name. When building a HMM
for word recognition, one can use a potentially
limitless number of different features for classi-
fication. One popular set of features frequently
employed in this process was originally proposed
by Marti and Bunke [21] in their 2001 paper that
focused on indexing historical documents. These
nine features are obtained by moving across an
image with a one-pixel-wide window and calcu-
lating (1) the number of black pixels in that col-

umn, (2) the center of gravity of the column, (3)
its second order moment, (4) the upper contour,
(5) the lower contour, (6) the vertical gradient at
the position of the upper contour, (7) the gradi-
ent at the lower contour, (8) the number of black-
white transitions in the column, and (9) the num-
ber of foreground (black) pixels between the up-
per and lower contours. In my early experiments,
I used these features, but they did not perform as
well as the Local Gradient Histogram (LGH) fea-
tures, which I will now describe.

The LGH features were originally proposed by
Rodriguez and Perronnin [22] and were inspired
by David Lowe’s SIFT features [23]. Rodriguez
and Perronnin describe the process again in their
2009 article [2] and provide a useful pictorial il-
lustration of it there. The steps are as follows:

1. Apply a Gaussian filter to the word image
I(x, y) to obtain a smoothed image L(x, y).

2. Compute the horizontal and vertical gradient
components Gx and Gy as:

Gx(x, y) = L(x+ 1, y)− L(x− 1, y)

and

Gy(x, y) = L(x, y + 1)− L(x, y − 1).

3. Compute the magnitude and direction of the
gradient at each pixel as:

m(x, y) =
�
G2

x +G2
y

and
θ(x, y) = atan2(Gy, Gx)

where atan2 is a Matlab function that returns
the direction of the (Gx, Gy) vector in the
range [−π, π].

4. Move a sliding window of fixed width across
the image from left to right, obtaining a se-
quence of overlapping images of sub-word
parts. At each position:

• Subdivide this window into a 4 × 4 grid
of cells.

• From all the pixels in each cell, con-
struct a histogram of gradient orienta-
tions, considering only 8 possible an-
gular orientations. Each pixel con-
tributes to the closest bin with an amount
m(x, y).

• Concatenate the 4 × 4 histograms of
8 bins each into a 128-dimensional fea-
ture vector.

5. Scale each of the feature vectors to have unit
norm.

6. The complete name is now represented as a
set of 128-dimensional feature vectors of unit
length.

When generating these features, I used a fixed
window width of 20 pixels (I tried several differ-
ent window widths and this performed the best).
The initial Gaussian filter I applied to the images
had a size of 10 pixels and used σ = 2.0. Again, I
tried several filter sizes and strengths and this one
led to the best overall performance.

3.3. Hidden Markov Models

Hidden Markov models (HMM) work well
in handwriting recognition primarily because of
their ability to handle sequences of variable length
[2, 11]. HMMs can be used to represent en-
tire words, or they can be used to represent sub-
word entities such as characters. For the purposes
of patient name spotting, I chose to build word-
level HMMs, since the number of patient names
in a given medical practice is limited to several
hundred, and a complete list is always known in
advance. My procedure for building each word
HMM was as follows:

1. Obtain 800 “morphed font” training exam-
ples of the name.

2. For each “morphed font” training example:

• Find the upper and lower baseline (de-
scribed in Section 3.5).

• Remove silence from the image as de-
scribed in Section 3.8.

Figure 3. The anatomy of an English word. The upper and lower
baselines divide the central portion of the word, which is usually
of fairly uniform height, from the ascenders and descenders, which
are not.

• Resize the image. I chose a uniform
bounding box for each word that put ex-
actly 20 pixels between the upper and
lower baselines (see Section 3.5 and Fig-
ure 3) and was 100 pixels wide. Normal-
izing the height to the inter-baseline dis-
tance instead of the overall word height
allowed me to control for the highly vari-
able size of ascenders and descenders.

• Obtain the LGH features for the image as
described in Section 3.2.

3. Use the 800 different morphed font training
images to construct a word HMM for the
name using Matlab’s PMTK toolkit [24]. The
best-performing models contained 10 states
each. Each state produces emissions from
a single 128-dimensional Gaussian. The
Baum-Welch algorithm [25] is used to train
the HMMs.

3.4. Test Set

To create a handwritten test set on which to test
the word HMMs, I began by obtaining a set of
32 patient first names from original clinical doc-
uments. Due to patient privacy issues, I was not
able to use any other words from the original clin-
ical documents; in particular, I was not able to
use both the patient’s first and last names, as this
would have been a clear violation of patient con-
fidentiality.

I obtained 27 additional copies of each pa-
tient first name from friends and colleagues (a

fairly random sample of male and female, young
and old, physician and non-physician). Those
28 copies (the original plus the 27 copied ver-
sions) served as the test set for this project. The
final test set therefore contained 28× 32 different
handwritten names.

3.5. Baseline Detection

For the purposes of both training and test-
ing the HMMs, baseline detection was impor-
tant. To detect the baselines (Figure 3), I used the
method outlined by Blumenstein and colleagues
[26], which was adapted from [27]:

1. The row containing the largest run of black
pixels in the word image is labeled as the
“peak line”.

2. The average number of foreground (black)
pixels in each row is calculated and a vertical
histogram of foreground pixels in each row is
obtained.

3. The row containing the minimum number of
foreground pixels prior to the peak line is
located and marked. Commencing from the
marked row, we find the first row containing
a number of foreground pixels greater than
or equal to the average number. This line is
marked as the upper baseline.

4. Repeat step 4, but start at the row with the
minimum number of foreground pixels after
the peak line and move toward the peak line.
The first row containing a number of fore-
ground pixels greater than or equal to the av-
erage number is marked as the lower base-

line.

3.6. Skew Correction

Figure 4 shows an example of a word that suf-
fers from baseline skew, where the word is written
at an angle relative to the bottom edge of the im-
age box. To fix this problem, I used the method
outlined in [26]:

1. Detect the upper and lower baselines and re-
move the ascenders and descenders.

Figure 4. A name that suffers from baseline skew. The adjusted
version is beneath the original.

2. Locate the center of the word image and di-
vide the image into left and right halves.

3. Calculate the center of mass of each compo-
nent, (xL, yL) and (xR, yR).

4. Calculate the word’s slope as

slope =
yR − yL
xR − xL

.

5. Find angle of skew as

θ = tan−1(slope).

6. Rotate the image about the image center by θ
to correct the skew.

3.7. Slant Correction

Handwritten words also tend to be slanted rel-
ative to the vertical, which is a particular prob-
lem for our application because the training data
are generated using fonts which are mainly not
slanted (though a few are). I used a modified ver-
sion of the method from Vinciarelli et al [28] to
correct the slant of each word in the test set. This
method assumes that a word is deslanted when
most of the vertical lines in the word are contained
in single columns. It works as follows:

1. For each angle α in an interval [−π/4, π/4],
apply a shear transform to the image.

2. Calculate the average vertical stroke thick-
ness using the following technique [26]:

• Starting at the top of each column in the
word image and proceeding to the bot-
tom, sum the number of foreground pix-
els contained in the last continuous run.

• Sum all of the runs from the previous
step and calculate the average.

3. The angle, α, yielding the highest value for
the average stroke thickness is taken as the
slant estimate.

3.8. Silence Removal

Since applying the sinusoidal transformations
to typed words often leads to large regions of
white pixels in between different letters, and since
handwritten words often contain regions of white
space of variable width in between the letters, I
applied a common technique from speech recog-
nition (in both the training and testing phases) and
removed these “silent” portions. Silence removal
simply means progressing horizontally through
the image with a box one pixel wide and remov-
ing those columns that contain only background
(white) pixels.

3.9. Resizing

As in the training procedure described in Sec-
tion 3.3, we resize the test images to a uniform
width and uniform inter-baseline height. The uni-
form bounding box puts exactly 20 pixels be-
tween the upper and lower baselines and is 100
pixels wide.

3.10. Performance Evaluation

I evaluated the performance of the final model
in two ways:

1. Training error. I used each word HMM to
reclassify each of the original typed words.
This was mostly just a sanity check to make
sure I hadn’t morphed the words so far with
the sinusoidal transforms and Gaussian blur-
ring that the original training examples were
unrecognizable.

2. Test error. I tested each model on the test
set of 28 handwritten examples × 32 dif-

ferent patient names. I calculated the pos-
terior probability of each handwritten name
given each word model and ranked the mod-
els based on how likely they were to have pro-
duced the handwritten name.

If this method were really applied to classify-
ing handwritten clinical notes, we would likely
present the user with a list of the “top hits” (prob-
ably about 10) ranked by their posterior probabil-
ities. In addition, we would have trained separate
HMMs for both the patient’s first name and last
name, which would help us narrow down the pool
of names dramatically since a document would
have to have a high likelihood of containing both
the first and last name for that patient to be listed
as a top hit. However, we would also be dealing
with many dozens more word models when mak-
ing these predictions, increasing our chances of
a false positive. Because of all these considera-
tions, I considered a test classification “accurate”
if the correct patient name showed up within the
top 5 hits.

However, there is a nontrivial chance that a
name will end up within the top 5 names entirely
by chance, since there are only 32 possible patient
names. In fact, that probability is given exactly
by the hypergeometric distribution. If I just pull
five names randomly from the list of 32 names,
I should observe that I obtain my name of inter-
est about 15.6% of the time. If we then treat this
probability as the parameter of a binomial distri-
bution which describes the random variable “suc-
cess” (obtaining the correct name within the top 5
names), we see that we need to achieve “success”
on at least 11 tests out of 40 (on the training set) or
8 out of 28 (on the test set) to be doing better than
chance with p < 0.05. So this is our benchmark
for hope, using this method.

4. Experiment

4.1. Parameter Adjustment

The construction of these HMMs is, by its very
nature, somewhat heuristic. In addition, it takes
an hour or so just to extract all of the relevant fea-
tures from each set of 800 training examples and

build the 10-state HMMs, so a full exploration of
the entire parameter space for these models was
impossible. However, I did notice several impor-
tant patterns:

• Test set classification accuracy displayed a
weak positive correlation with word length,
although this association was not quite statis-
tically significant (p = 0.06, Figure 5).

• Fixing the width of the bounding box at
100 pixels during training and testing helped
tremendously with respect to accuracy on
the handwritten test set. It seems that hav-
ing a roughly uniform number of features to
build each HMM helps normalize the poste-
rior probabilities, even though one of the ad-
vantages of using an HMM is that it can han-
dle sequences of variable length.

• The Gaussian filter parameters used to blur
the images prior to extracting the LGH fea-
tures were important in determining test set
accuracy. Insufficient blurring led to a high
degree of noise in the data and lowered the
classification accuracy.

• There is a tradeoff between using a large win-
dow width (e.g. 30 pixels or more) vs. a
small window width (e.g. 12-16 pixels) when
extracting the SIFT features. Larger win-
dows reduce noise in the feature space be-
cause more pixels are incorporated into each
of the 4 × 4 × 8 bins, so fewer of them are
empty. However, using a larger window size
also means that we assign less importance to
fine-grained local changes in the gradient and
we generate fewer features overall, which de-
creases the number of states we can use in our
final HMMs.

4.2. Evaluation of Final Model

The word HMMs performed excellently on the
training data, as expected. Out of 40 repetitions
of each of 32 names, only 6 were classified incor-
rectly (Table 1). If we consider the few names

Figure 5. Test set classification accuracy displayed a weak positive
correlation with word length. Longer words tended to be classified
accurately on more occasions than shorter words.

that did not reach first place on the posterior-
probability ranking, we see some obvious pat-
terns, which can help alert us to likely future is-
sues when we attempt to recognize handwritten
names (Figure 6).

Results on the test set were, as expected, more
mixed. Some names were classified correctly
nearly 100% of the time - “Christopher” and
“Myrna” were both classified perfectly (Figure 8)
- while others barely beat a random assignment
model. Two names, “Min” and “Brian”, were not
classified any better than they would have been by
chance.

Figure 7 shows a set of names that were clas-
sified correctly and another set that were not. On
the surface, it is very difficult to see a difference
between the correctly and incorrectly-classified
names, though I think I notice a few patterns. For
example, if the lower baseline of the word is un-
able to be straightened - if it is wavy, for example
- the word tends to be classified incorrectly. In ad-
dition, if an important letter in the word, such as
the first letter, can be represented multiple ways
in handwriting - the capital letter “A” can be writ-
ten as “A” or as a bigger version of the lower-case
“a”, for example - this obviously causes prob-
lems. And finally, as expected, printed names are
easier to recognize than cursive names, though I

Figure 6. Some typed names that were consistently ranked first
during prediction on the training set (left), next to others that were
often second or third (right). We can see that the HMMs have
difficulty interpreting block capitals or fonts with ornamentation,
as well as highly slanted fonts.

was surprised at the number of cursive names that
were classified correctly.

4.3. Summary and Future Work

The model’s overall accuracy on the test set
was 64%, which is - frankly - much better than
I was expecting. For all names except two, the
classification accuracy is significantly higher than
we would expect by chance (more than 8 assign-
ments correct; p < 0.05). I also think that some
modifications could be made that would improve
these models’ future performance. For example,
the size of ascenders and descenders varied dra-
matically throughout the test set. One could imag-
ine normalizing not only the inter-baseline height
of the word, but also the heights of the ascenders
and descenders. Doing so would put the center
of the LGH window at roughly the same place in

Table 1. Results of best model on test set, ranked in order of test
set accuracy.

Name Training Accuracy (40) Test Accuracy (28)
Christopher 40 28
Myrna 40 28
Maggie 40 27
Roland 40 27
Philip 40 25
Henry 40 24
Kathy 40 24
Rosa 40 24
William 40 24
David 40 23
Eddy 40 23
Thomas 40 23
Carl 40 21
Gerald 40 20
Anne 40 19
Cameron 40 19
Robert 40 19
Benson 40 17
Elisa 40 17
Elizabeth 40 17
Dennis 40 16
Lee 39 14
Kevin 40 12
Albert 40 11
Allen 40 11
Eva 39 11
Sid 40 10
Dan 38 9
Joanne 40 9
June 39 9
Min 39 7
Brian 40 5

the word for each training example, which should
improve accuracy. Unfortunately I did not think
of this strategy until it was too late to implement
it, but I plan to try it in the near future.

One limitation of the current training/test set
was the low resolution of the images involved.
I obtained the test images by scanning pages
of handwritten samples and segmenting out the
words by taking screenshots (and I did the same
thing for the typed fonts, only using screen-
shots from Word), which meant that each train-
ing image was only a few dozen pixels wide.

Figure 7. The names on the left half of this figure were classified correctly, and those on the right were not. It is very difficult to see why
the classifier could correctly assign some of these names and not others!

I could definitely improve this method by crop-
ping and saving high-resolution images from the
scanned documents using Photoshop, but this pro-
cess would be much more time-consuming than
taking screenshots (which already took a long
time). This would increase the number of pixels
in the final images, which could help smooth the
LGH features.

Finally, I will eventually need to perform one
other test of this method, which will be to see if
the posterior probability for a real patient name
- say “Christopher” - is significantly higher than
the posterior probabilities obtained by applying
the “Christopher” HMM to other random words
in the document. In some sense, comparing the

name models to each other does the same thing,
because if the “Christopher” model achieves high
posterior probabilities on all words, we would ex-
pect overall test set accuracy to decrease. But it
would still be good to test the models on a uni-
form set of “filler” words to see how much of a
signal we see when examining the correct name
vs. other words. Some models will perform bet-
ter than others on random words just by chance
[2], and there is a whole literature on score nor-
malization to deal with this problem, but it was
beyond the scope of this project.

Figure 8. One of the best-recognized handwritten names in every
experiment, the name “Christopher” is long, has many distinctive
character patterns, and the individual letters are quite well seg-
mented in most cases.

5. Conclusion

Using artificially-generated training data to
train patient name HMMs leads to a set of models
that can be used to find patient names in handwrit-
ten clinical notes. Although they are built using
“fake” handwriting, these HMM classifiers per-
form surprisingly well, and there are several pos-
sible routes to improvement. In addition, if we
were able to search for both the patient first and
last name in clinical documents, we would expect
accuracy to increase further, since last names are
generally much more unique than first names.

References

[1] Manmatha R, Han C, Riseman EM, 1996. Word spotting: a
new approach to indexing handwriting, in: Proc. Of the 1996
IEEE Conf. on Computer Vision and Pattern Recognition, p.
631.

[2] Rodriguez J, Perronnin F, 2009. Handwritten word-spotting
using Hidden Markov models and universal vocabularies.
Pattern Recognition 42(9), 2106-2116.

[3] Zhang B, Srihari SN, 2003. Binary vector dissimilarity mea-
sures for handwriting identification, in: Document Recogni-
tion and Retrieval X, pp. 28-38.

[4] Zhang B, Srihari SN, Huang C, 2004. Word image retrieval
using binary features, in: Proc. of SPIE-IS&T Electronic
Imaging, SPIE Vol. 5296.

[5] Leydier Y, Bourgeois FL, Emptoz H, 2005. Omnilingual
segmentation-free word spotting for ancient manuscripts in-

dexation, in: Proc. Of the 8th Int. Conf. on Document Anal-
ysis and Recognition, pp. 533-537.

[6] Rothfeder J, Feng S, Rath T, 2003. Using corner feature cor-
respondences to rank word images by similarity, in: Work-
shop on Document Image Analysis and Retrieval.

[7] Rath TM, Manmatha R, 2003. Word image matching using
dynamic time warping, in: Proc. Of the 2003 IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 521-527.

[8] Kolcz A, Alspector J, Augusteijn M, Carlson R, Popescu GV,
2000. A line-oriented approach to word spotting in handwrit-
ten documents. Pattern Analysis and Applications 3(2): 153-
168.

[9] Adamek T, Connor NE, Smeaton AF, 2007. Word matching
using single closed contours for indexing handwritten histor-
ical documents, Int. J. Doc. Anal. Recognit. 9(2):153-165.

[10] Plamondon R, Srihari SN, 2000. On-line and off-line hand-
writing recognition: a comprehensive survey. IEEE Trans
Pattern Anal Mach Intell 22: 63-82.

[11] Rabiner LR, 1989. A tutorial on hidden Markov models
and selected applications in speech recognition, Proc. of the
IEEE 77, pp. 257-286.

[12] Vinciarelli A, Bengio S, Bunke H, 2004. Offline recognition
of unconstrained handwritten texts using HMMs and statisti-
cal language models. IEEE Trans. Pattern Anal. Mach. Intell.
26(6): 709-720.

[13] Edwards J, The YW, Forsyth DA, Bock R, Maire M, Ve-
som G, 2004. Making Latin manuscripts searchable using
gHMMs, in: Neural Information Processing Systems.

[14] Chan J, Ziftci C, Forsyth D, 2006. Searching off-line Ara-
bic documents, in: Proc. Of the 2006 IEEE Computer Soci-
ety Conf. on Computer Vision and Pattern Recognition, pp.
1455-1462.

[15] Cao H, Govindaraju V, 2007. Template-free word spotting in
low-quality manuscripts, in: Sixth Int. Conf. on Advances in
Pattern Recognition.

[16] Bunke H, 2003. Recognition of cursive Roman handwriting
past, present and future, in: Proc. Of the 7th Int. Conf. on
Document Analysis and Recognition, Vol. 1, pp. 448-459.

[17] Huang C, Srihari SN, 2008. Word Segmentation of Off-line
Handwritten Documents. in: Proc. Document Recognition
and Retrieval XV, San Jose, CA, SPIE Vol. 6815, January
2008, pp. 68150E-1-6.

[18] Kim S, Jeong S, Lee G-S, Suen C, 2001. Word segmenta-
tion in handwritten Korean text lines based on gap clustering
techniques, in: Proc. Of the Sixth Int. Conf. on Document
Analysis and Recognition, p. 189.

[19] Mahadevan U, Nagabushnam RC, 1995. Gap metrics for
word separation in handwritten lines, in: Proc of the 3rd Int.
Conf. on Document Analysis and Recognition, Vol. 01, p.
124.

[20] Fischer A, Keller A, Frinken V, Bunke H, 2011. Lexicon-free
handwritten word spotting using character HMMs. Pattern
Recognition Letters Epub ahead of print.

[21] Marti U-V, Bunke H, 2001. Using a statistical language
model to improve the performance of an HMM-based cur-
sive handwriting recognition system. Int. J. Patt. Recog. Art.
Intell. 15, 65-90.

[22] Rodriguez JA, Perronnin F, 2008. Local gradient histogram
features for word spotting in unconstrained handwritten doc-
uments, in: Int. Conf. on Frontiers in Handwriting Recogni-
tion.

[23] Lowe DG, 2004. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision 60(2): 91-110.

[24] Murphy, K., Dunham, M., 2008. PMTK: Probabilistic mod-
eling toolkit. Neural Information Processing Systems (NIPS)
Workshop on Probabilistic Programming.

[25] Baum LE, Petrie T, Soules G, Weiss N, 1970. A maximiza-
tion technique occurring in the statistical analysis of proba-
bilistic functions of Markov chains. Annals of Mathematical
Statistics 41(1): 164-171.

[26] Blumenstein M, Cheng CK, Liu XY, 2002. New Preprocess-
ing techniques for Handwritten Word Recognition, Proc. of
the 2nd IASTED conference on visualization, Imaging and
Image Processing, pp. 480-484.

[27] Bozinovic RM, Srihari SN, 1989. Off-line cursive script
word recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(1): 68-83.

[28] Vinciarelli A, Luettin J, 2001. A new normalization tech-
nique for cursive handwritten words. Pattern Recognition
Letters 22: 1043-1050.

