

Abstract

As humans we are able to understand the structure of a

scene without the need for a precisely calibrated camera
system. We are able to employ a number of cues such as an
approximate understanding of our height and field of view
as well as the knowledge that we have accumulated about
the world such as expected dimensions of objects in the
world, their color and texture, their shape, and their
expected location in a scene. Using these cues humans are
able to get an approximate yet precise and detailed
understanding of the scene including identification of
various objects as well as their depth and height etc. In this
project we explore the possibility of using a similar
approach in our computer vision task of interpreting a 2D
image to extract 3D information. In particular we
implement a system which considers just a subset of these
parameters, and identifies objects in the image purely by
comparing geometric constraints on image elements with
constraints on possible objects in 3D world.. Using some
knowledge about visual system parameters and 3D
geometry we compute constraints on possible dimensions
and locations of each image ‘element’ in the 3D world and
compare that against an ‘object database’ to find plausible
matches. Moreover the system also attempts to use
feedback from the scene geometry to improve our estimate
of visual system parameters. Our particular case study
defines a world with 5 distinct object classes and interprets
an image containing some of these objects to reconstruct
the 3D scene structure from a single 2D image. Our results
show that in our limited universe we get a fairly accurate
reconstruction of our target image even with a very rough
estimate of visual system parameters.

1. Introduction
Human beings rely on a number of cues, which come

together to aid in our understanding of this world. One big
tool is off course our built-in stereovision using two eyes.
However our visual system is not just a sophisticated and
well-calibrated stereo system employing object
correspondences and 3d geometry to extract depth at each
point in the scene in front of our eyes. In fact from our

everyday experience we know that even if we close one
eye and shut down the stereo engine, our ‘3D’
understanding of the world is still fairly complete. So what
are some other helping aids we use in addition to the
stereo engine? These could include, but are not limited to,
the following:

1. An implicit understanding of how our height relates
to height of other objects in the world

2. Implicit understanding of field of view captured by
our eyes

3. Approximate understanding of our viewing angle (are
we looking up or down and by what extent)

4. Are our eyes focused at a close distance or far?
5. What are the properties of objects in our world:

a. Height and width
b. Texture and color (sky is typically blue)
c. Location in the world (cars don’t fly)

6. Cues from the geometry e.g. vanishing points
7. Depth of field, etc.
Lets look at some images to for further elaboration. As

first example consider the two images of the same cottage
in Figure 1. Even though in one of the images the cottage
occupies a much smaller part of the image, still we
roughly get the same idea about its scale from both
images. There are two important helping aids, which guide
us here - the horizon line and the ground plane. The fact
that the cottage top rises above the horizon line tells us
that the object in question is taller than the viewer height.
Also by comparing the distance from ground plane to
horizon line and from horizon line to top of the cottage,
we get a fair idea of its height. Combining this with an
understanding of field of view captured in the image, our
brain calculates that the smaller cottage is very far.

To extend this further let’s look at the third cottage
image where the horizon line as well as most of the
ground has been taken away. Even though we no longer
have an explicit reference, the sense of scale is still there
though perhaps less precise. From a purely geometric
perspective it can be anything from a huge structure really
far away to a tiny box right in front of us. But our
knowledge about his object is enough to still give us a
sense of its scale. In other words only one interpretation
“makes sense” out of all possibilities from 3D geometry.

Interpreting 3D Scenes Using Object-level Constraints

Rehan Hameed

Stanford University
353 Serra Mall, Stanford CA

rhameed@stanford.edu

As a second example lets consider the street image next
to this cottage. Again we know right away that anything
above the middle of the image must be above our eye
level. Which tells us that the structures that we are looking
at in the image must be high things like walls and
buildings. Moreover by the relationship between the
ground plane, horizon line and the white pole, we can say
that the white pole is just over 1.5 times the viewer height.
Moreover we can see that if we were to try a find a car in

this scene, we would only be looking in the lower half of
the image, as we don’t expect the cars to be up in the air.

We also note that even though we can’t see an explicit
horizon line in this image, the edge of the ground plane
and the slanting lines at top and bottom of the walls give
us a clear cue about where the horizon line lies. So in
some sense it is a cyclic process where we use elements of
the scene to calibrate our viewing system and then use that
knowledge to interpret the same scene.

Figure 0 – Example images from the world

For next image (street sign) we have none of the cues
like previous cases but we derive the sense of scale from
the object itself because we know what we expect the size
of this object to be.

As a last example lets look at a picture with so called
miniature-model effect – i.e. a picture where we are
tricked into believing that the picture is depicting
miniature models of real-life objects, when in reality the
picture has full-size real objects. The blurred areas trick us
into believing that those areas are out-of-focus, as we
would expect when we are focusing close. Moreover the
downward angle is consistent with our belief where we
expect to typically have only small objects in our field of
view when we are looking downwards.

As last example shows, human visual system does not
always get it right. However it works extremely well in so
many cases because typically objects in the world remain
consistent with how we expect objects in the world to be.

The motivation for this paper is to come up with an
algorithm modeled around the same principles combining
some knowledge about our visual system with an
understanding of scene geometry and object knowledge to
reconstruct 3D information for a 2D image. Of course it is
beyond the scope of this project to have an object database
anywhere as comprehensive and complex as employed by
humans so our little universe consists of a very small set
of objects which are characterized as consisting of
horizontal or vertical ‘planes’ of various sizes. Figure 2
shows some planes associated with objects in test image.

The task of the algorithm is to match each ‘plane’ in the
image to best possible candidate object that exists in our
database of objects. These objects include “Buildings”,
“Cars”, Boxes”, “Street Signs” and “Ground”. No explicit
features such as SIFT etc are used for object identification
and instead the matching is purely based on the
“plausibility” that a plane could belong to a particular
object class. This plausibility is derived from the
constraints that we have on the size and location of each
object class in the 3D world, as well as the information
that we have about the visual system. In a nutshell the
algorithm tries to find object-plain pairs which
simultaneously satisfy the geometric constraints placed on
the size and location of the plane as well as the size and
location constraints on the object as specified by database.

The information about the visual system that is input to
this system includes the following:

1. Approximate height
2. Approximate field of view
3. Range of possible vertical viewing angles.
The approximate values of first two parameters should

be trivially obtainable in most visual systems. For the
viewing angle a broad range can be specified as an input
(such as +-20 degrees) and the algorithm tries to refine it
as much as possible using feedback from the object
matching process. So the algorithm again tries to mimic
human visual system which can use cues from the scene to
calibrate its understanding of current orientation.

The major tasks in the project then include:
1. Segmenting the image to extract the planes
2. First pass plane to object matching
3. Refinement of viewing angle using matching

feedback and final match using this value.
Section 3 will discussed each of these in detail followed

by evaluation in section 4. But before that next section
looks at background work in related areas.

2. Related work
There has been a number of works in past which dealt

the problem of recovering 3D information from a single
2D images. Work of Criminisi, et al. [1] for example looks
for vanishing lines and vanishing points in a scene and
uses that to measure distances between parallel image
planes as well as distance between objects (up to a
common scale factor), which lie on a given plane. They
also use this information to estimate camera positions and

Object Class Plane Type(s) Vertical Location Height Range Width Range Aspect Range
Building Vertical 0m 2m-10m 0.25 - 4
Car Vertical 0.25m – 1m 0.25m-0.4m 1.25m-2m 0.2 - 0.4
Box Vertical 0m 0.5m – 1m 0.5 – 1.5
Street Sign Vertical 4m-6m 0.2m-0.25m 0.2 – 0.3
Ground Horizontal 0m
Table 1 - Objects in our object database

Figure 2 – Algorithm works on planes like the
ones marked here with green boundaries

orientation. Overall the work is based purely on
perspective geometry of parallel lines and does not use
any object-level knowledge. Our work also uses similar
information if available. However we do not rely on the
existence of vanishing lines and points and if they do
exist, we primarily use them as one of many mechanisms
built in the system to detect viewing direction with respect
to ground plane.

Work by Hoiem et al.[4][5] is based on very similar
considerations to what drove our work. Even though our
work was initially conceived independently of work done
by Hoiem et. Al, the similarities in underlying thinking
nevertheless are very clear. Like us they strive to use
knowledge about scene geometry to constrain where
various subjects can live and in parallel use information
about objects to constrain possible viewing direction for
the camera. However their approach is fairly different
from ours. Their algorithm uses a training based statistical
approach to match the scene to some known templates of
scene structures in the process identifying important scene
elements like ground and sky. This then gives approximate
information about 3D structure of the scene, which then
works as a prior for feature-based detection of a known
object in the 2D image. However unlike their work we
actually do a full projecting of each image plane into the
3D world without assuming any specific structure to the
scene and then use constraints on objects to find object
matches in 3D and also to refine our knowledge of the 3D
world. We do feel however that elements of their work can
be combined with ours to create a more powerful system.

Other works such as that by Huang and Cowan [6], and
Delage et al.[2], target scenes with known structure
(specifically indoor scenes with walls, floor and ceilings in
a well-composed structure).

Another interesting related work is done by sexana et al.
[7] which is also based on the idea of using cues from the
scene to understand its 3D structure in a manner analogous
to how humans use such cues. However their approach is
based on a statistical learning system which can ‘learn’
depth cues by using a set of test images and as such they
don’t make any explicit use of object level knowledge.

3. Approach
We first look at overall algorithm and then discus each

component in detail. The inputs to the system include:
Input image
Visual system parameters including an estimate of the

viewing direction
Object database
The output consists of the following:
Identification of any objects from the DB which exist in

the scene
3D Location and orientation of the object
Dimensions of the object in the 3D world

A refined estimate of the viewing direction

 The matching algorithm consists of the following steps:
Identify major edges and lines in the image
Segment the image
Find horizontal and vertical planes using 1 and 2
Find constrains on possible 3D locations of these planes

in the 3D world
Attempt to match these planes with DB objects across

the range of possible viewing directions
Use the feedback from matching process to refine the

estimate of viewing direction
Find the final plane-to-object matching based on our

best guess of the viewing direction

3.1. Objects Database
As discussed earlier, all objects in our world are

characterized in terms of vertical and horizontal planes,
and constraints on their potential location and size in the
3D world. Table 1 lists all 5 objects and their attributes.

The vertical location specifies the possible vertical
position of the object in the 3D world. For example a
building is not expected to exist up in the air so its only
possible vertical location is at a height of. A street sign on
the other hand can only be found at a height of 4-6m
above ground as per our database. The height column
gives the expected vertical dimensions of the objects. Fir
example a street sign can be 0.2-0.3m high. As we can see
most parameters span a range of possible values. Note that
all of these values are ‘loose’ and are just based on
‘eyeballing’ by the author.

Lets also consider the object car further. While a car is
not a planar object, for the purpose of our work we can
characterize it in terms of its components such as
windshield, which can be considered as planes.

Ground is the special object in the sense that it is the
only object expected to be a horizontal plane. Note that
this somewhat preferential treatment for the ground plane
is purely for simplicity and does not significantly impact
the matching process - we don’t use the knowledge about
ground plane as a factor in locating other objects.

3.2. Visual system input parameters
The visual parameters used as input include:
1. Approximate height (defaults to 5.5ft)
2. A measure of field of view. Currently this is specified

in terms of camera sensor size and lens focal
length. Can be replaced by FOV measured in
degrees and does not need to be very exact.

3. An estimate of vertical viewing direction specified as
a range. E.g a range of 0-15 degrees would
specify that the camera / viewer is looking up by
an angle somewhere in the range of 0-15 degrees.

Nest we look at each of the algorithmic steps.

3.3. Detecting major edges
The first step in the algorithm is to detect major edges

in the image. The edge information is used in two ways.
First the slanted and vertical lines in the image are used to
form an estimate of the viewing angle. Second the edge
information is used in combination with image
segmentation output to determine plane boundaries.

For this purpose we use a canny edge detector built into
matlab with some enhancements. Canny is a good detector
for our purposes since it implements edge linking to create
well-connected edge lines, which is helpful when trying to
find object boundaries. Also it allows control over the
scale at which we want to detect the edges which is great
since we only want to detect major edges along object
boundaries and ignore the spurious edges within the
objects. However Canny considers edge strength as the
only criterion when deciding which edges to keep at a
given scale. This gives rise to a large number of isolated
small edge segments, which do not correspond to object
boundaries and instead only represent isolated edges
within objects. Increasing the threshold removes these but
also eliminates some true object boundaries. To fix that we
used a relatively low threshold to preserve all major edges
and then added a post-processing step which iterates over
all edges in the output and removes all edges smaller than
a threshold (75 pixels).

Figure 3 shows an example output, which shows that
this approach works very well. In fact we observed that
once this post-processing step was added, the final output
did not depend too heavily on the exact threshold used
during the canny stage. The supplemental section at the
end includes a couple more example outputs before and
after the post-processing step.
3.3.1 Isolating Straight Edges

We use edges primarily to find lines leading to

vanishing point and to help find plane boundaries, both of
which only rely on straight edges. So we add a second
post-processing step, which looks at all edge segments
remaining after refinement and retains only those edges,
which correspond to straight-line segments. In the canny
output a single stretch of connected edge pixels might
cover multiple straight and curved lines segments. Thus
we need to run a window over each edge line looking for
local straight segments and cataloging the whole set.
During this process we also bin these straight edges into
“horizontal”, “vertical” and “slanted” edges.

3.4. Image segmentation
The next step is to perform image segmentation. The

particular scheme that we used is a graph based scheme
the developed by Felzenszwalb and Huttenlocher [3]. The
algorithm can automatically decide the number of
segments and also considers color and texture instead of
relying only on intensity. Thus it can effectively
distinguish the variability within a ‘textured’ object like a
tree from the variability between two different objects
such as a tree versus sky.

We used the freely available public domain code for
this algorithm. The algorithm has only 3 parameters – we
used a blur sigma of 1.0, left the threshold at a default
value of 500 but set the minimum component size to a
high value of 1200 to again eliminate small segments and
retain only large object level segments. By trying it across
different images, this consistently gave good results.

Figure 3 shows the output from this step. The overall
segmentation quality is very good. However we note that
the algorithm often creates a number of thin segments on
the boundary between two objects. This is apparently
because the boundary region between some objects is a
blurred combination of both objects and the algorithm is
unable to associate this to any one of the two objects. Like

Figure 3 – Edges (after pros processing) & segments

edge detection we added a post-processing step to try and
remove any thin segments, distributing the pixels to
neighboring objects on both sides. Nevertheless we did not
invest a lot of time on this and thus the resulting algorithm
is not very effective at removing all thin segments. Mostly
this is not a problem because these segments are not
expected to match any objects in our database and get
eliminated during matching step. Nevertheless we still
‘manually’ remove some of these segments by passing an
‘segments-to-ignore’ list to the system to simplify matters.
Given more time it should be fairly easy to automatically
eliminate most such segments.

3.5. Extracting planes
This step now uses the segmentation and edge data to

extract planes in the scene. We assume that the scene can
contain three types of planes – horizontal planes, vertical
planes that are front-facing and vertical planes which are
side facing. Looking back at picture 2 the large plane on
the right marked by a green boundary is a side facing
vertical plane, the plane on left again marked by a green
boundary is a front-facing vertical plane and the ground
plane is a horizontal plane. Note that the distinction
between front-facing versus side-facing vertical planes is
arbitrary and only a result of how we process these planes.
The object descriptions of Table 1 do not distinguish
between these two vertical plane types.

We use relatively simple criteria to categorize each
segment as either one of these three plane types or as type
“no-plane”. First we isolate the boundary points of each
segment and then fit horizontal, vertical and slanted lines
through these segment boundaries. For slanted lines we
use the set of slanted lines that we have already identified
during edge detection as the candidates. In some cases not
all edges of a plane are visible so we require that each
segment is bounded by at least two straight lines to declare

it as a plane. For categorization we use a simple system
where each segment, which is bounded by at least one
vertical, and one horizontal segment is considered a
front-facing vertical segment. A plane bounded by at least
one vertical and one slanted line is considered a
side-facing vertical plane, and a plane having at least one
slanted and one horizontal boundary line is considered a
horizontal plane. This is not comprehensive and ignores
some cases but can be improved easily.

3.6. Plane-to-Object Matching
Once planes have been isolated we come to the core

task of matching these to objects in the database. The task
consists of two parts – first we use our knowledge about
visual system parameters and location of planes in the
image to derive constraints on possible location,
orientations and dimensions of each plane in the 3D world.
Then the matching tasks become finding for each plane
one or more object-plane pairs which simultaneously
satisfy these geometric constraints placed on the planes as
well as the size and location constraints on the object as
specified by the object database of Table 1

For this discussion we initially assume that the viewing
angle is known (within a small error margin). Later we
will extend this to the case when the knowledge about the
viewing angle is not precise.
3.6.1 Finding 3D constraints on the planes

To derive constraints in the planes, lets first study the
constraints placed on a single image point as depicted in
figure 4. For now we assume a 1D vertical imaging sensor
and vertical viewing direction of 0 degrees. Our camera’s
‘eye point’ sits at a height of H and at a depth of 0 (y = H,
z = 0). The imaging sensor is approximately a focal length
away at (H, FL) (actual distance is not quite equal to focal
length unless we are focused infinity but we are looking
for approximate measures only). We consider the

Figure 4 – Deriving constraints on image points

constraints on the actual 3D locations of two image points
on the sensor. The direction vector (indicated in orange)
from the camera to the lower image point represents all the
3D world locations where that point could have existed in
the real world. Assuming that the lower image point is y
units below the sensor center, we can find that direction
vector as:

€

d = (−y,FL)

(−y,FL)

(Of course the image points are defined in terms of

pixels but given the sensor size, it is trivial to convert from
pixel height to sensor height). Given this direction vector,
we now impose further constraints on the point. The first
constraint comes from the assumption that every point in
the 3D world resides at or above ground level – i.e. we
don’t have object at lower than ground level. This gives us
a constraint on the points minimum height in the world
and the corresponding depth can be computed by first
computing the scaled vector

€

d ground :

€

d ground = −

d
dy

• H

The z-component of

€

d ground then gives the maximum

depth of the point in the scene:

€

zmax = dground z
To find the other extreme we look at the closest point to

the camera where we expect to find an object. We call this
point as closest focusing distance (and use a somewhat
arbitrary value of 0.5m for it), though in reality it is just a
proximity constraint on how close the object can be to the
viewer and does not have to depend on camera system’s
minimum focusing distance. Since here we already have
depth so we can find the height as:

€

d close =

d
dz

•minFocusD

ymax =

d closey

For the second image point on top, we use a similar
process to find the height at closest depth point, except
that that image point is now the minimum-y point instead
of maximum-y point. Since the upward going vector is not
bounded by ground plane so the maximum height
constraint has to come from the farthest possible depth in
the scene. Of course the largest possible depth is infinity
but for our purposes it is sufficient to use a moderately
large value of depth such as 1000m to represent infinity.
That then gives the maximum height for the upper image
point as:

€

d far =

d upper

dupperz

•maxFocusD

ymax =

d fary

Now we incorporate the 2D sensor and the viewing
angle. To incorporate a viewing angle for the camera we
note that viewing up / down by an angle θ is equivalent to
the camera sensor rotating up / down by an angle θ around
the –axis (with center of rotation at the camera point (0,
H)). The points on the un-rotated sensor have 3D
co-ordinates (x, y, FL) with respect to the camera location
and after rotation each point on the sensor moves to a new
location R. (x, y, FL) where R is the rotation matrix
describing rotation around the x-axis by an angle θ. Thus
the direction vector for any point (x, y) on the rotated
sensor can be calculated as:

€

d θ =

R(x,y,FL)
(x,y,FL)

Where x, y represent distances from the sensor center.

With that setup, give a point in the image and a viewing

angle θ for the camera we can compute the constraints
(ymin , ymax) corresponding to the minimum and maximum
possible height of that point in the 3D world. And we can
also derive the corresponding z and x locations.
Alternatively we can look at it as constraints on minimum
and maximum depth along with a direction vector which
can give us the y and x co-ordinates at each depth.

Now we use this to find constraints on the vertical
planes in the scene. Looking again at figure 4, lets now
assume that the two image points are top and bottom
points of a front-facing vertical plane. In that scenario the
top and bottom points would be at the same depth in the
3D world. Thus in this particular example the overall
depth of the plane would then be constrained by the lower
edge of the plane which cannot go below ground plane as
per our assumption. And the minimum depth constraint
simply comes form the minFocusDistance parameter as
before. From this constraint on the minimum and
maximum depth of the plane we can now derive
constraints on vertical position, height, and width of the
plane. Note that we define the ‘vertical position’ as the
y-coordinate of the lower edge of the plane and height as
the vertical dimension of the plane (i.e. difference between
the y-coordinated of its upper and lower edge). For
example a plane, which extends from 3m to 7m above the
ground level has a vertical position of 3m and height of
4m.

To understand what does this really mean in terms of
our ability to identify the plane as an object lets consider
the front-facing vertical plane on the left in figure 2
(marked by a green boundary). Assuming that the camera
was pointed up by 1 degree, we learn that this plane be

anywhere from 0.5m to 36m away from the camera. We
also learn that at 0.5m away, it would represent a tiny
object, which is only around 4cm in its vertical size and is
located up in the air at a vertical position of around 1.65m.
We can now imagine looking up the object database to see
if we know any object class in our little universe, which
can be as small as 4cm and can be found at a height of
1.5m in the air.

The procedure for measuring the dimensions and
location of “side-facing” vertical planes like the right most
slanted plane in figure 2 (marked by a green boundary) is
conceptually similar but involves a bit more math due to
the added complexity that for these planes different points
on the plane are at a different depth. The first step in that
case is to find the plane orientation i.e. the angle of the
plane with respect to the image plane, which can be found
out by using the slanted lines on top or bottom of the plane
by using a bit more 3D geometry. Once that is know, we
can then find the constraints on height, vertical location
and width in a manner similar to the front-facing. We
haven’t included the equations of that case for the sake of
brevity and instead refer the interested reader to the code.

We note that the plane has are two slanted bounding
lines available which can both be independently used to
find an estimate for plane orientation and if there is
disagreement in both measurements then that tells us that
our current assumed viewing direction is probably
incorrect – a fact that we will use later when we try to
refine viewing direction estimates.
3.6.2 Matching

Now we have all the pieces in place to try and match
each plane to one or more of the object classes. Lets again
look at the example of front-facing plane from figure 2.
Table 2 specifies the constraints that the system has
computed for this plane assuming a vertical viewing angle
of 1 degree. Now the system takes the plane and for each
object in the DB tests the hypothesis that this plane can be
an object of that class. The process to test the hypothesis
involves testing a constraint on the plane against the
corresponding constraint on the object and finding if there
exists a region of overlap. If an overlap exists then we
tighten the constraints to match the overlap region and test

next constraint. For example lets look at the test for the
hypothesis that our test plane is from a car:

1. Do the possible vertical locations for the plane
overlap the possible vertical locations for a car
plane? Yes – the common range is 0.25m-1m.

2. What is the range of heights the plane will have at
vertical locations 0.25m – 1m? – [1.25m to 2.7m].

3. Does this range overlap with possible heights for a
car plane. NO – Match failed

Table 3 shows the results of matching the plane to each
object class. The street sign does not work because there is
no overlap in possible vertical locations. The Box has a
possible match at vertical location 0. However for this
plane to be at vertical location 0, it has to be 3.2m high,
which means it cannot be a Box. The building object on
the other hand meets all criteria and thus our best guess for
this plane is that it belongs to a building.

We must emphasize here that looking at individual
constraints a match was possible with many objects,
however the hypothesis failed in most cases because it was
not possible to find a set of parameters where all three
constraints on vertical location, height and aspect ratio
were matched. So at the end of the process we not only
know that the plane is a building plane, we have narrowed
down the large range of its possible depths and heights to
exactly one possible height, depth and width using the
object-level knowledge.

As another example let’s look at the plane 10 from
figure 5. Based on the constraints computed on its height
and vertical locations, the system concludes that it can
either be a box lying at ground with a height of around
0.95m, or it can be a plane from a car which is around
0.5m above the ground and has a height of 0.38 – 0.4m.
However since it is a long and thin plane with an aspect
ratio of around 0.22 so we reject the hypothesis that it is a
box (which in our world have a minimum aspect ratio of
0.5) and this conclude that it is a car plane which is around
18-19m away and has a vertical size of about 0.38-0.4m.

3.7. Matching Summary
To summarize this section the whole matching

mechanism is based on the belief that while a plane might

 Vertical Location Height Width Aspect Ratio
Plane 0 - 1.65m 4cm – 3.2m 0.32

Table 2 – Constraints on the 3D presence of an image plane

Matching Common Vertical

Locations?
Common
Heights?

Common
Widths?

Match?

Plane- Street Sign None NO
Plane - Car 0.25m – 1m None NO
Plane - Box 0m None NO
Plane - Building 0m 3.2m 0.32 YES

Table 3 – Matching the plane to objects

have a large range of possible locations in the 3D world
based on the geometric constraints alone, only a small
subset of those locations would ‘make sense’ given what
we know about the objects in the world. The algorithm
thus provides one way to combine the geometric
information from the image and viewing system with
object level knowledge where each alone would not have
been enough to argue about the objects in the image.

3.8. Refining the viewing angle
Previous sections assumed that the viewing angle of the

camera is known with some degree of accuracy. However
the second part of the system deals with performing the
matching when the viewing angle is not precisely known.
The algorithm accepts the viewing angle with a degree of
uncertainty – e.g we can say that the viewing angle can be
anywhere from -10 to +10 degrees or 15 to 25 degrees etc.
The algorithm then tries to refine that estimate along with
the matching process.

Initially we assume that all viewing angles are equally
probable and we associate the same “confidence” to each
angle, There are then 4 sources of feedback, which help in
refining the confidence to find the best estimate of
viewing angle. First, we believe that an incorrect viewing
angle estimate will often result in such constraints on the
image planes which do no make sense in the context of the
objects in our world, and thus will result in low matches.
In other words “the image will only make sense when we
interpret it with a reasonable estimate of the viewing
angle”. So the first form of feedback is to just try all
viewing angles (with a steps size of 0.5 degrees) and
compute a confidence measure based on how many planes
are successfully matched to unique objects in the database
and how many are unmatched or are ambiguous.

The second source of feedback comes from using the

slanted lines, which we isolated during the edge detection
stage, and finding their intersection to locate possible
vanishing points for parallel lines in the world. A simple
huff transform mechanism is used and the height of any
detected vanishing points is then used to find the
corresponding viewing angle. The output of this process is
also a confidence measure if say two possible vanishing
points are detected at slightly different heights then it
gives confidence that the horizon line lies somewhere in
that range and the range of corresponding viewing angles
then get a vote of confidence. The supplemental section at
the end gives some example outputs.

The third source of feedback also relies on vanishing
points but in this case it is applied after we have identified
vertical planes like plane 3 in figure 5. Here we know with
greater certainty that the top and bottom lines of this plane
should intersect at a vanishing point unlike the previous
case where we did not know which of the slanted edges
are true parallel lines and which are just angled edges.

The 4th feedback comes from any horizontal plane,
which has been identified as possibly being the ground
plane. The ground plane gives the constraint that the
horizon line should be above the edge of ground plane in
the image, which than limits the possible range of viewing
angles.

We note that none of these measures is considered as a
“proof” for true location of the horizon line / viewing
angle. Instead each of these just provides a vote /
confidence measure for one or more viewing angles and
we then combine the votes from each source to come up
with the best guess.

At the last step we then use this best guess viewing
angle and find the object-plane matching suggested by this
viewing angle. This is then the final refined matching.

!
!!

Figure 5 – (a) Segments identified as planes, (b) Horizon lines for various assumptions on viewing angle

4. Evaluation
For evaluation we use the test image in figure 2, which

we have already been using throughout the paper to
discuss various parts of the algorithm. We assess 4 aspects
of the performance for this image including correct
detection of planes, object matching when a correct
viewing angle is specified, object matching when an
incorrect assumption is used for the viewing angle and
finally ability to automatically determine the correct
viewing angle and perform matching when a broad range
of viewing angles are specified.

We have already seen in figure 3 all the segments
identified by the segmentation algorithm. Table shows the
number of segments as they get filtered at each step. We
start with a total of 29 segments identified by the
segmentation routine. After removing the thin segments by
a combination of automatic and manual means, we are left
with 20 segments. The plane finding algorithm then
discards 10 more which it cannot identify as being a plane.
And Figure 5 shows the final 10 segments, which remain
at this stage.

Our simple criteria for finding plane types is unable to
confidently label plane ‘4’ in the figure 5 as a vertical
plane as it does not have any vertical lines bounding it and
it gets labeled as a “vertical or horizontal plan”. It can
eventually be identified as a vertical plane when object
criteria are applied (there is no know object in our world
which is horizontal and sits above the horizon line).
However our current implementation does not implement
this and thus this plane gets eliminated during matching.
Plane 5 also gets discarded and we are left with a total of 7
vertical planes and 1 horizontal plane.

Figure 5(b) shows the position of horizon lines
corresponding to various estimates of viewing angles. The

red lines correspond to -5, 0 and 5 degrees (top line = -5
degrees) and the green region shows a range of -20 to +2-
degrees which pretty much means that the horizon line can
be anywhere in the image.

Table 4 shows the estimated object types and
dimensions for each of the 8 planes when a viewing angle
estimate of 0 degrees is used. We note that the algorithm is
able to find exact objects matches for each plane.
Moreover for all “building objects” it is able to narrow
down the height and depth range to exactly one possible
value due to the constraint that a building plane can only
be at a vertical location of 0m. For car object there are
multiple possible locations and sizes of the plane
consistent with the belief that it is a car plane. However
even then it is able to narrow down the possible
configurations to a relatively small range. We also note
that the assumed viewing angle value of 0m is actually
slightly off from the correct viewing angle.

Tables 5 and 6 show what happens when we assume
viewing angles of -5 and 5 degrees. With a -5 degree
assumption most vertical planes can’t find a suitable
match. Just one plane fits a possible configuration where it
can be a car plane (an incorrect match). With a 5 degree
assumption a couple of planes find a match as a building
(correct matches) – however most planes again don’t find
any possible configuration in which they can be one of the
objects in the database.

These results are fairly interesting and reinforce the two
key ideas (i) that object-level constraints are very powerful
in narrowing down the large range of possible 3D
configurations to a narrow range, and (ii) that the objects
in a scene just don’t make sense when we try to interpret
them with an incorrect assumptions on viewing
parameters. In other words the object knowledge guides us
towards a correct interpretation even when we don’t
accurately know the viewing parameters.

Figure 6 (a) Confidence for various viewing angles from -20 to 20 (b) 3D Model reconstructed from the output

And now we come to the final stage where we give the
system a broad range of -20 to 20 degrees as the possible
viewing angle. As figure 5(b) shows this means that the
horizon line can be pretty much anywhere in the image.
Figure 6(a) shows the confidence that we get for various
viewing angles using a combination of criteria discussed
earlier. There is a clear trend which shows that only a
narrow range of viewing angle make most sense. The final
estimate of the viewing angle comes out to be 1 degree,
which is consistent with a manual analysis of the image.
Figure 6(b) shows the 3D model crated from parameters
suggested by the final refined match at 1 degree (with
some manual fixes).

5. Conclusion
This work has shown one possible approach to combine

object level knowledge with geometric information to
recover the information about the original 3D scene. From
a purely geometric perspective a given 2D image can be
the result of infinitely many 3D configurations in the real
world. However the key point is that only a few of these
configurations make sense in the context of the objects in
the world, as we know them. And our results show that
this knowledge is a powerful tool to incorporate when
interpreting 3D scene as it greatly filters down the space of
possible 3D interpretations of the image. We have also
seen that an image only “makes sense” when we interpret
it using the right parameters. Humans all the time use
familiar objects configurations in the world to calibrate
their visual system. A similar approach can be adopted in
the compute vision task of understanding the 3D scene,
where the information flows both ways i.e. geometric
information constrains possible object matches and object
matches constrain possible geometric configurations and
the final solution is the best possible reconciliation of
both.

While a significant part of this work (and the write-up)
was focused on image segmentation and extraction of
image plane, in retrospect we would have chosen a
different approach. We feel that we should have focused
more on trying our various configurations of objects in the

images to see how well our framework works across
various scenarios. The image segmentation task in the end
was just means to an end, and if we do this again we
would instead use 3d scenes generated from 3d modeling
software such that the segmentation task is
straightforward. Or alternatively we will just manual mark
the planes in the image and let the algorithm concentrate
on finding plausible object matches and viewing system
parameters.

Other future work could include incorporating the
coarse focus distance information as suggested in the
original proposal.

Finally, this work did not make use of any knowledge
about object features as used in typical object recognition
tasks. In fact all objects in our world looked identical
(planes) from a features perspective, which is essentially a
harder matching task. But at the same time our world had
only 5 possible objects. In a practical system, we would
expect the ‘object database’ to contain features in addition
to height and location etc, which can then be a really
powerful framework for matching.

References
[1] A. Criminisi, I. Reid and A. Zisserman. Single View

Metrology, International Journal of Computer Vision
(IJCV), 2000.

[2] Erick Delage, Honglak Lee, and Andrew Y. Ng. Automatic
Single-Image 3d Reconstructions of Indoor Manhattan
World Scenes, In ISRR, 2005.

[3] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based
image segmentation. IJCV, 59, 2004.

[4] D. Hoiem, A.A. Efros, , M. Hebert, Putting Objects in
Perspective, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2006

[5] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context
from a single image. In Proc. ICCV, 2005.

[6] Jingyuan Huang, Bill Cowan. Simple 3D Reconstruction of
Single Indoor Image with Perspective Cues. CRV'2009.
pp.140~147

[7] Ashutosh Saxena, Min Sun, Andrew Y. Ng, Learning 3-D
Scene Structure from a Single Still Image, , In ICCV
workshop on 3D Representation for Recognition
(3dRR-07), 2007

 Object Depth Height
Plane 1 Ground - -
Plane 2 Building 14m 2.32m
Plane 3 Building 17m 2.6m
Plane 6 Building 26m 2.3m
Plane 7 Building 12.5m 2.3m
Plane 8 Car 10-14m 0.28-0.4m
Plane 9 Car 11-13m 0.33-0.4m
Plane 10 Car 13-19m 0.28-0.4m
Table 4 – Matches assuming 0 degree angle

 Object Depth Height
Plane 1 Ground - -
Plane 2 Building 52mm 8.7m
Plane 7 Building 36.8m 6.64m
Table 6 – Matches assuming 5 degree angle

 Object Depth Height
Plane 1 Ground - -
Plane 6 Car 4.6m 0.4m
Table 5 – Matches assuming 5 degree angle

Future Distribution Permission
The author(s) of this report give permission for this
document to be distributed to Stanford-affiliated students
taking future courses.

