
 

 

 
Abstract 

 
As humans we are able to understand the structure of a 

scene without the need for a precisely calibrated camera 
system. We are able to employ a number of cues such as an 
approximate understanding of our height and field of view 
as well as the knowledge that we have accumulated about 
the world such as expected dimensions of objects in the 
world, their color and texture, their shape, and their 
expected location in a scene. Using these cues humans are 
able to get an approximate yet precise and detailed 
understanding of the scene including identification of 
various objects as well as their depth and height etc. In this 
project we explore the possibility of using a similar 
approach in our computer vision task of interpreting a 2D 
image to extract 3D information. In particular we 
implement a system which considers just a subset of these 
parameters, and identifies objects in the image purely by 
comparing geometric constraints on image elements with 
constraints on possible objects in 3D world.. Using some 
knowledge about visual system parameters and 3D 
geometry we compute constraints on possible dimensions 
and locations of each image ‘element’ in the 3D world and 
compare that against an ‘object database’ to find plausible 
matches. Moreover the system also attempts to use 
feedback from the scene geometry to improve our estimate 
of visual system parameters. Our particular case study 
defines a world with 5 distinct object classes and interprets 
an image containing some of these objects to reconstruct 
the 3D scene structure from a single 2D image. Our results 
show that in our limited universe we get a fairly accurate 
reconstruction of our target image even with a very rough 
estimate of visual system parameters.  

1. Introduction 
Human beings rely on a number of cues, which come 

together to aid in our understanding of this world. One big 
tool is off course our built-in stereovision using two eyes. 
However our visual system is not just a sophisticated and 
well-calibrated stereo system employing object 
correspondences and 3d geometry to extract depth at each 
point in the scene in front of our eyes. In fact from our 

everyday experience we know that even if we close one 
eye and shut down the stereo engine, our ‘3D’ 
understanding of the world is still fairly complete. So what 
are some other helping aids we use in addition to the 
stereo engine? These could include, but are not limited to, 
the following: 

1. An implicit understanding of how our height relates 
to height of other objects in the world 

2. Implicit understanding of field of view captured by 
our eyes 

3. Approximate understanding of our viewing angle (are 
we looking up or down and by what extent) 

4. Are our eyes focused at a close distance or far?  
5. What are the properties of objects in our world: 

a. Height and width 
b. Texture and color (sky is typically blue) 
c. Location in the world (cars don’t fly) 

6. Cues from the geometry e.g. vanishing points 
7. Depth of field, etc. 
Lets look at some images to for further elaboration. As 

first example consider the two images of the same cottage 
in Figure 1. Even though in one of the images the cottage 
occupies a much smaller part of the image, still we 
roughly get the same idea about its scale from both 
images. There are two important helping aids, which guide 
us here - the horizon line and the ground plane. The fact 
that the cottage top rises above the horizon line tells us 
that the object in question is taller than the viewer height. 
Also by comparing the distance from ground plane to 
horizon line and from horizon line to top of the cottage, 
we get a fair idea of its height. Combining this with an 
understanding of field of view captured in the image, our 
brain calculates that the smaller cottage is very far.  

To extend this further let’s look at the third cottage 
image where the horizon line as well as most of the 
ground has been taken away. Even though we no longer 
have an explicit reference, the sense of scale is still there 
though perhaps less precise. From a purely geometric 
perspective it can be anything from a huge structure really 
far away to a tiny box right in front of us. But our 
knowledge about his object is enough to still give us a 
sense of its scale. In other words only one interpretation 
“makes sense” out of all possibilities from 3D geometry. 
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As a second example lets consider the street image next 
to this cottage. Again we know right away that anything 
above the middle of the image must be above our eye 
level. Which tells us that the structures that we are looking 
at in the image must be high things like walls and 
buildings. Moreover by the relationship between the 
ground plane, horizon line and the white pole, we can say 
that the white pole is just over 1.5 times the viewer height. 
Moreover we can see that if we were to try a find a car in 

this scene, we would only be looking in the lower half of 
the image, as we don’t expect the cars to be up in the air.  

We also note that even though we can’t see an explicit 
horizon line in this image, the edge of the ground plane 
and the slanting lines at top and bottom of the walls give 
us a clear cue about where the horizon line lies. So in 
some sense it is a cyclic process where we use elements of 
the scene to calibrate our viewing system and then use that 
knowledge to interpret the same scene.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0 – Example images from the world 

  

  

  



 

 

For next image (street sign) we have none of the cues 
like previous cases but we derive the sense of scale from 
the object itself because we know what we expect the size 
of this object to be.  

As a last example lets look at a picture with so called 
miniature-model effect – i.e. a picture where we are 
tricked into believing that the picture is depicting 
miniature models of real-life objects, when in reality the 
picture has full-size real objects. The blurred areas trick us 
into believing that those areas are out-of-focus, as we 
would expect when we are focusing close. Moreover the 
downward angle is consistent with our belief where we 
expect to typically have only small objects in our field of 
view when we are looking downwards. 

As last example shows, human visual system does not 
always get it right. However it works extremely well in so 
many cases because typically objects in the world remain 
consistent with how we expect objects in the world to be. 

The motivation for this paper is to come up with an 
algorithm modeled around the same principles combining 
some knowledge about our visual system with an 
understanding of scene geometry and object knowledge to 
reconstruct 3D information for a 2D image. Of course it is 
beyond the scope of this project to have an object database 
anywhere as comprehensive and complex as employed by 
humans so our little universe consists of a very small set 
of objects which are characterized as consisting of 
horizontal or vertical ‘planes’ of various sizes. Figure 2 
shows some planes associated with objects in test image.  

The task of the algorithm is to match each ‘plane’ in the 
image to best possible candidate object that exists in our 
database of objects. These objects include “Buildings”, 
“Cars”, Boxes”, “Street Signs” and “Ground”. No explicit 
features such as SIFT etc are used for object identification 
and instead the matching is purely based on the 
“plausibility” that a plane could belong to a particular 
object class. This plausibility is derived from the 
constraints that we have on the size and location of each 
object class in the 3D world, as well as the information 
that we have about the visual system. In a nutshell the 
algorithm tries to find object-plain pairs which 
simultaneously satisfy the geometric constraints placed on 
the size and location of the plane as well as the size and 
location constraints on the object as specified by database. 

The information about the visual system that is input to 
this system includes the following: 

1. Approximate height 
2. Approximate field of view 
3. Range of possible vertical viewing angles. 
The approximate values of first two parameters should 

be trivially obtainable in most visual systems. For the 
viewing angle a broad range can be specified as an input 
(such as +-20 degrees) and the algorithm tries to refine it 
as much as possible using feedback from the object 
matching process. So the algorithm again tries to mimic 
human visual system which can use cues from the scene to 
calibrate its understanding of current orientation. 

The major tasks in the project then include: 
1. Segmenting the image to extract the planes 
2. First pass plane to object matching 
3. Refinement of viewing angle using matching 

feedback and final match using this value. 
Section 3 will discussed each of these in detail followed 

by evaluation in section 4. But before that next section 
looks at background work in related areas. 

2. Related work 
There has been a number of works in past which dealt 

the problem of recovering 3D information from a single 
2D images. Work of Criminisi, et al. [1] for example looks 
for vanishing lines and vanishing points in a scene and 
uses that to measure distances between parallel image 
planes as well as distance between objects (up to a 
common scale factor), which lie on a given plane. They 
also use this information to estimate camera positions and 

Object Class Plane Type(s) Vertical Location Height Range Width Range Aspect Range 
Building Vertical 0m 2m-10m  0.25 - 4 
Car Vertical 0.25m – 1m 0.25m-0.4m 1.25m-2m 0.2 - 0.4 
Box Vertical 0m 0.5m – 1m  0.5 – 1.5 
Street Sign Vertical 4m-6m 0.2m-0.25m  0.2 – 0.3 
Ground Horizontal 0m    
Table 1 - Objects in our object database 

 
 

Figure 2 – Algorithm works on planes like the 
ones marked here with green boundaries 

 
 
 
 
 
 
 
 
 
 



 

 

orientation. Overall the work is based purely on 
perspective geometry of parallel lines and does not use 
any object-level knowledge. Our work also uses similar 
information if available. However we do not rely on the 
existence of vanishing lines and points and if they do 
exist, we primarily use them as one of many mechanisms 
built in the system to detect viewing direction with respect 
to ground plane. 

Work by Hoiem et al.[4][5] is based on very similar 
considerations to what drove our work. Even though our 
work was initially conceived independently of work done 
by Hoiem et. Al, the similarities in underlying thinking 
nevertheless are very clear. Like us they strive to use 
knowledge about scene geometry to constrain where 
various subjects can live and in parallel use information 
about objects to constrain possible viewing direction for 
the camera. However their approach is fairly different 
from ours. Their algorithm uses a training based statistical 
approach to match the scene to some known templates of 
scene structures in the process identifying important scene 
elements like ground and sky. This then gives approximate 
information about 3D structure of the scene, which then 
works as a prior for feature-based detection of a known 
object in the 2D image. However unlike their work we 
actually do a full projecting of each image plane into the 
3D world without assuming any specific structure to the 
scene and then use constraints on objects to find object 
matches in 3D and also to refine our knowledge of the 3D 
world. We do feel however that elements of their work can 
be combined with ours to create a more powerful system. 

Other works such as that by Huang and Cowan [6], and 
Delage et al.[2], target scenes with known structure 
(specifically indoor scenes with walls, floor and ceilings in 
a well-composed structure). 

Another interesting related work is done by sexana et al. 
[7]  which is also based on the idea of using cues from the 
scene to understand its 3D structure in a manner analogous 
to how humans use such cues. However their approach is 
based on a statistical learning system which can ‘learn’ 
depth cues by using a set of test images and as such they 
don’t make any explicit use of object level knowledge. 

3. Approach 
We first look at overall algorithm and then discus each 

component in detail. The inputs to the system include: 
Input image 
Visual system parameters including an estimate of the 

viewing direction 
Object database  
The output consists of the following: 
Identification of any objects from the DB which exist in 

the scene 
3D Location and orientation of the object  
Dimensions of the object in the 3D world 

A refined estimate of the viewing direction 
 
 The matching algorithm consists of the following steps: 
Identify major edges and lines in the image 
Segment the image 
Find horizontal and vertical planes using 1 and 2 
Find constrains on possible 3D locations of these planes 

in the 3D world 
Attempt to match these planes with DB objects across 

the range of possible viewing directions 
Use the feedback from matching process to refine the 

estimate of viewing direction 
Find the final plane-to-object matching based on our 

best guess of the viewing direction 

3.1. Objects Database 
As discussed earlier, all objects in our world are 

characterized in terms of vertical and horizontal planes, 
and constraints on their potential location and size in the 
3D world. Table 1 lists all 5 objects and their attributes. 

The vertical location specifies the possible vertical 
position of the object in the 3D world. For example a 
building is not expected to exist up in the air so its only 
possible vertical location is at a height of. A street sign on 
the other hand can only be found at a height of 4-6m 
above ground as per our database. The height column 
gives the expected vertical dimensions of the objects. Fir 
example a street sign can be 0.2-0.3m high. As we can see 
most parameters span a range of possible values. Note that 
all of these values are ‘loose’ and are just based on 
‘eyeballing’ by the author. 

Lets also consider the object car further. While a car is 
not a planar object, for the purpose of our work we can 
characterize it in terms of its components such as 
windshield, which can be considered as planes.  

Ground is the special object in the sense that it is the 
only object expected to be a horizontal plane. Note that 
this somewhat preferential treatment for the ground plane 
is purely for simplicity and does not significantly impact 
the matching process - we don’t use the knowledge about 
ground plane as a factor in locating other objects. 

3.2. Visual system input parameters 
The visual parameters used as input include: 
1. Approximate height (defaults to 5.5ft) 
2. A measure of field of view. Currently this is specified 

in terms of camera sensor size and lens focal 
length. Can be replaced by FOV measured in 
degrees and does not need to be very exact. 

3. An estimate of vertical viewing direction specified as 
a range. E.g a range of 0-15 degrees would 
specify that the camera / viewer is looking up by 
an angle somewhere in the range of 0-15 degrees.   

Nest we look at each of the algorithmic steps. 



 

 

3.3. Detecting major edges 
The first step in the algorithm is to detect major edges 

in the image. The edge information is used in two ways. 
First the slanted and vertical lines in the image are used to 
form an estimate of the viewing angle. Second the edge 
information is used in combination with image 
segmentation output to determine plane boundaries. 

For this purpose we use a canny edge detector built into 
matlab with some enhancements. Canny is a good detector 
for our purposes since it implements edge linking to create 
well-connected edge lines, which is helpful when trying to 
find object boundaries. Also it allows control over the 
scale at which we want to detect the edges which is great 
since we only want to detect major edges along object 
boundaries and ignore the spurious edges within the 
objects. However Canny considers edge strength as the 
only criterion when deciding which edges to keep at a 
given scale. This gives rise to a large number of isolated 
small edge segments, which do not correspond to object 
boundaries and instead only represent isolated edges 
within objects. Increasing the threshold removes these but 
also eliminates some true object boundaries. To fix that we 
used a relatively low threshold to preserve all major edges 
and then added a post-processing step which iterates over 
all edges in the output and removes all edges smaller than 
a threshold (75 pixels). 

Figure 3 shows an example output, which shows that 
this approach works very well. In fact we observed that 
once this post-processing step was added, the final output 
did not depend too heavily on the exact threshold used 
during the canny stage. The supplemental section at the 
end includes a couple more example outputs before and 
after the post-processing step.  
3.3.1 Isolating Straight Edges 

We use edges primarily to find lines leading to 

vanishing point and to help find plane boundaries, both of 
which only rely on straight edges. So we add a second 
post-processing step, which looks at all edge segments 
remaining after refinement and retains only those edges, 
which correspond to straight-line segments. In the canny 
output a single stretch of connected edge pixels might 
cover multiple straight and curved lines segments. Thus 
we need to run a window over each edge line looking for 
local straight segments and cataloging the whole set. 
During this process we also bin these straight edges into 
“horizontal”, “vertical” and “slanted” edges.  

3.4. Image segmentation 
The next step is to perform image segmentation. The 

particular scheme that we used is a graph based scheme 
the developed by Felzenszwalb and Huttenlocher [3]. The 
algorithm can automatically decide the number of 
segments and also considers color and texture instead of 
relying only on intensity. Thus it can effectively 
distinguish the variability within a ‘textured’ object like a 
tree from the variability between two different objects 
such as a tree versus sky.  

We used the freely available public domain code for 
this algorithm. The algorithm has only 3 parameters – we 
used a blur sigma of 1.0, left the threshold at a default 
value of 500 but set the minimum component size to a 
high value of 1200 to again eliminate small segments and 
retain only large object level segments. By trying it across 
different images, this consistently gave good results. 

Figure 3 shows the output from this step. The overall 
segmentation quality is very good. However we note that 
the algorithm often creates a number of thin segments on 
the boundary between two objects. This is apparently 
because the boundary region between some objects is a 
blurred combination of both objects and the algorithm is 
unable to associate this to any one of the two objects. Like 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Edges (after pros processing) & segments 

  



 

 

edge detection we added a post-processing step to try and 
remove any thin segments, distributing the pixels to 
neighboring objects on both sides. Nevertheless we did not 
invest a lot of time on this and thus the resulting algorithm 
is not very effective at removing all thin segments. Mostly 
this is not a problem because these segments are not 
expected to match any objects in our database and get 
eliminated during matching step. Nevertheless we still 
‘manually’ remove some of these segments by passing an 
‘segments-to-ignore’ list to the system to simplify matters. 
Given more time it should be fairly easy to automatically 
eliminate most such segments.  

3.5. Extracting planes 
This step now uses the segmentation and edge data to 

extract planes in the scene. We assume that the scene can 
contain three types of planes – horizontal planes, vertical 
planes that are front-facing and vertical planes which are 
side facing. Looking back at picture 2 the large plane on 
the right marked by a green boundary is a side facing 
vertical plane, the plane on left again marked by a green 
boundary is a front-facing vertical plane and the ground 
plane is a horizontal plane. Note that the distinction 
between front-facing versus side-facing vertical planes is 
arbitrary and only a result of how we process these planes. 
The object descriptions of Table 1 do not distinguish 
between these two vertical plane types. 

We use relatively simple criteria to categorize each 
segment as either one of these three plane types or as type 
“no-plane”. First we isolate the boundary points of each 
segment and then fit horizontal, vertical and slanted lines 
through these segment boundaries. For slanted lines we 
use the set of slanted lines that we have already identified 
during edge detection as the candidates. In some cases not 
all edges of a plane are visible so we require that each 
segment is bounded by at least two straight lines to declare 

it as a plane. For categorization we use a simple system 
where each segment, which is bounded by at least one 
vertical, and one horizontal segment is considered a 
front-facing vertical segment. A plane bounded by at least 
one vertical and one slanted line is considered a 
side-facing vertical plane, and a plane having at least one 
slanted and one horizontal boundary line is considered a 
horizontal plane. This is not comprehensive and ignores 
some cases but can be improved easily. 

3.6. Plane-to-Object Matching 
Once planes have been isolated we come to the core 

task of matching these to objects in the database. The task 
consists of two parts – first we use our knowledge about 
visual system parameters and location of planes in the 
image to derive constraints on possible location, 
orientations and dimensions of each plane in the 3D world. 
Then the matching tasks become finding for each plane 
one or more object-plane pairs which simultaneously 
satisfy these geometric constraints placed on the planes as 
well as the size and location constraints on the object as 
specified by the object database of Table 1 

For this discussion we initially assume that the viewing 
angle is known (within a small error margin). Later we 
will extend this to the case when the knowledge about the 
viewing angle is not precise. 
3.6.1 Finding 3D constraints on the planes 

To derive constraints in the planes, lets first study the 
constraints placed on a single image point as depicted in 
figure 4. For now we assume a 1D vertical imaging sensor 
and vertical viewing direction of 0 degrees. Our camera’s 
‘eye point’ sits at a height of H and at a depth of 0 (y = H, 
z = 0). The imaging sensor is approximately a focal length 
away at (H, FL) (actual distance is not quite equal to focal 
length unless we are focused infinity but we are looking 
for approximate measures only). We consider the 

 
Figure 4 – Deriving constraints on image points 



 

 

constraints on the actual 3D locations of two image points 
on the sensor. The direction vector (indicated in orange) 
from the camera to the lower image point represents all the 
3D world locations where that point could have existed in 
the real world. Assuming that the lower image point is y 
units below the sensor center, we can find that direction 
vector as: 

  

€ 

 
d = (−y,FL)

(−y,FL)
 

 
(Of course the image points are defined in terms of 

pixels but given the sensor size, it is trivial to convert from 
pixel height to sensor height). Given this direction vector, 
we now impose further constraints on the point. The first 
constraint comes from the assumption that every point in 
the 3D world resides at or above ground level – i.e. we 
don’t have object at lower than ground level. This gives us 
a constraint on the points minimum height in the world 
and the corresponding depth can be computed by first 
computing the scaled vector   
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 
d ground : 
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 
d ground = −
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d 
dy

• H  

The z-component of  

€ 

 
d ground then gives the maximum 

depth of the point in the scene: 

€ 

zmax = dground z  
To find the other extreme we look at the closest point to 

the camera where we expect to find an object. We call this 
point as closest focusing distance (and use a somewhat 
arbitrary value of 0.5m for it), though in reality it is just a 
proximity constraint on how close the object can be to the 
viewer and does not have to depend on camera system’s 
minimum focusing distance. Since here we already have 
depth so we can find the height as: 
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 
d close =

 
d 
dz

•minFocusD

ymax =
 
d closey

 

For the second image point on top, we use a similar 
process to find the height at closest depth point, except 
that that image point is now the minimum-y point instead 
of maximum-y point. Since the upward going vector is not 
bounded by ground plane so the maximum height 
constraint has to come from the farthest possible depth in 
the scene. Of course the largest possible depth is infinity 
but for our purposes it is sufficient to use a moderately 
large value of depth such as 1000m to represent infinity. 
That then gives the maximum height for the upper image 
point as: 

  

€ 

 
d far =

 
d upper

dupperz

•maxFocusD

ymax =
 
d fary

 

Now we incorporate the 2D sensor and the viewing 
angle. To incorporate a viewing angle for the camera we 
note that viewing up / down by an angle θ is equivalent to 
the camera sensor rotating up / down by an angle θ around 
the –axis (with center of rotation at the camera point (0, 
H)). The points on the un-rotated sensor have 3D 
co-ordinates (x, y, FL) with respect to the camera location 
and after rotation each point on the sensor moves to a new 
location R. (x, y, FL) where R is the rotation matrix 
describing rotation around the x-axis by an angle θ. Thus 
the direction vector for any point (x, y) on the rotated 
sensor can be calculated as: 

  

€ 

 
d θ =

R(x,y,FL)
(x,y,FL)

 

Where x, y represent distances from the sensor center. 
 
With that setup, give a point in the image and a viewing 

angle θ for the camera we can compute the constraints 
(ymin , ymax ) corresponding to the minimum and maximum 
possible height of that point in the 3D world. And we can 
also derive the corresponding z and x locations. 
Alternatively we can look at it as constraints on minimum 
and maximum depth along with a direction vector which 
can give us the y and x co-ordinates at each depth. 

Now we use this to find constraints on the vertical 
planes in the scene. Looking again at figure 4, lets now 
assume that the two image points are top and bottom 
points of a front-facing vertical plane. In that scenario the 
top and bottom points would be at the same depth in the 
3D world. Thus in this particular example the overall 
depth of the plane would then be constrained by the lower 
edge of the plane which cannot go below ground plane as 
per our assumption. And the minimum depth constraint 
simply comes form the minFocusDistance parameter as 
before. From this constraint on the minimum and 
maximum depth of the plane we can now derive 
constraints on vertical position, height, and width of the 
plane. Note that we define the ‘vertical position’ as the 
y-coordinate of the lower edge of the plane and height as 
the vertical dimension of the plane (i.e. difference between 
the y-coordinated of its upper and lower edge). For 
example a plane, which extends from 3m to 7m above the 
ground level has a vertical position of 3m and height of 
4m. 

To understand what does this really mean in terms of 
our ability to identify the plane as an object lets consider 
the front-facing vertical plane on the left in figure 2 
(marked by a green boundary). Assuming that the camera 
was pointed up by 1 degree, we learn that this plane be 



 

 

anywhere from 0.5m to 36m away from the camera. We 
also learn that at 0.5m away, it would represent a tiny 
object, which is only around 4cm in its vertical size and is 
located up in the air at a vertical position of around 1.65m. 
We can now imagine looking up the object database to see 
if we know any object class in our little universe, which 
can be as small as 4cm and can be found at a height of 
1.5m in the air. 

The procedure for measuring the dimensions and 
location of “side-facing” vertical planes like the right most 
slanted plane in figure 2 (marked by a green boundary) is 
conceptually similar but involves a bit more math due to 
the added complexity that for these planes different points 
on the plane are at a different depth. The first step in that 
case is to find the plane orientation i.e. the angle of the 
plane with respect to the image plane, which can be found 
out by using the slanted lines on top or bottom of the plane 
by using a bit more 3D geometry. Once that is know, we 
can then find the constraints on height, vertical location 
and width in a manner similar to the front-facing. We 
haven’t included the equations of that case for the sake of 
brevity and instead refer the interested reader to the code. 

We note that the plane has are two slanted bounding 
lines available which can both be independently used to 
find an estimate for plane orientation and if there is 
disagreement in both measurements then that tells us that 
our current assumed viewing direction is probably 
incorrect – a fact that we will use later when we try to 
refine viewing direction estimates. 
3.6.2 Matching 

Now we have all the pieces in place to try and match 
each plane to one or more of the object classes. Lets again 
look at the example of front-facing plane from figure 2. 
Table 2 specifies the constraints that the system has 
computed for this plane assuming a vertical viewing angle 
of 1 degree. Now the system takes the plane and for each 
object in the DB tests the hypothesis that this plane can be 
an object of that class. The process to test the hypothesis 
involves testing a constraint on the plane against the 
corresponding constraint on the object and finding if there 
exists a region of overlap. If an overlap exists then we 
tighten the constraints to match the overlap region and test 

next constraint. For example lets look at the test for the 
hypothesis that our test plane is from a car: 

1. Do the possible vertical locations for the plane 
overlap the possible vertical locations for a car 
plane? Yes – the common range is 0.25m-1m. 

2. What is the range of heights the plane will have at 
vertical locations 0.25m – 1m? – [1.25m to 2.7m]. 

3. Does this range overlap with possible heights for a 
car plane. NO – Match failed 

Table 3 shows the results of matching the plane to each 
object class. The street sign does not work because there is 
no overlap in possible vertical locations. The Box has a 
possible match at vertical location 0. However for this 
plane to be at vertical location 0, it has to be 3.2m high, 
which means it cannot be a Box. The building object on 
the other hand meets all criteria and thus our best guess for 
this plane is that it belongs to a building. 

We must emphasize here that looking at individual 
constraints a match was possible with many objects, 
however the hypothesis failed in most cases because it was 
not possible to find a set of parameters where all three 
constraints on vertical location, height and aspect ratio 
were matched. So at the end of the process we not only 
know that the plane is a building plane, we have narrowed 
down the large range of its possible depths and heights to 
exactly one possible height, depth and width using the 
object-level knowledge. 

As another example let’s look at the plane 10 from 
figure 5. Based on the constraints computed on its height 
and vertical locations, the system concludes that it can 
either be a box lying at ground with a height of around 
0.95m, or it can be a plane from a car which is around 
0.5m above the ground and has a height of 0.38 – 0.4m. 
However since it is a long and thin plane with an aspect 
ratio of around 0.22 so we reject the hypothesis that it is a 
box (which in our world have a minimum aspect ratio of 
0.5) and this conclude that it is a car plane which is around 
18-19m away and has a vertical size of about 0.38-0.4m. 

3.7. Matching Summary  
To summarize this section the whole matching 

mechanism is based on the belief that while a plane might 

 Vertical Location Height Width Aspect Ratio  
Plane 0 - 1.65m 4cm – 3.2m  0.32  

Table 2 – Constraints on the 3D presence of an image plane 
 
Matching Common Vertical 

Locations? 
Common 
Heights? 

Common 
Widths? 

Match? 

Plane- Street Sign None   NO 
Plane - Car 0.25m – 1m None  NO 
Plane - Box 0m None  NO 
Plane - Building 0m 3.2m 0.32 YES 

Table 3 – Matching the plane to objects 



 

 

have a large range of possible locations in the 3D world 
based on the geometric constraints alone, only a small 
subset of those locations would ‘make sense’ given what 
we know about the objects in the world. The algorithm 
thus provides one way to combine the geometric 
information from the image and viewing system with 
object level knowledge where each alone would not have 
been enough to argue about the objects in the image. 

3.8. Refining the viewing angle 
Previous sections assumed that the viewing angle of the 

camera is known with some degree of accuracy. However 
the second part of the system deals with performing the 
matching when the viewing angle is not precisely known. 
The algorithm accepts the viewing angle with a degree of 
uncertainty – e.g we can say that the viewing angle can be 
anywhere from -10 to +10 degrees or 15 to 25 degrees etc. 
The algorithm then tries to refine that estimate along with 
the matching process. 

Initially we assume that all viewing angles are equally 
probable and we associate the same “confidence” to each 
angle, There are then 4 sources of feedback, which help in 
refining the confidence to find the best estimate of 
viewing angle. First, we believe that an incorrect viewing 
angle estimate will often result in such constraints on the 
image planes which do no make sense in the context of the 
objects in our world, and thus will result in low matches. 
In other words “the image will only make sense when we 
interpret it with a reasonable estimate of the viewing 
angle”. So the first form of feedback is to just try all 
viewing angles (with a steps size of 0.5 degrees) and 
compute a confidence measure based on how many planes 
are successfully matched to unique objects in the database 
and how many are unmatched or are ambiguous. 

The second source of feedback comes from using the 

slanted lines, which we isolated during the edge detection 
stage, and finding their intersection to locate possible 
vanishing points for parallel lines in the world.  A simple 
huff transform mechanism is used and the height of any 
detected vanishing points is then used to find the 
corresponding viewing angle. The output of this process is 
also a confidence measure if say two possible vanishing 
points are detected at slightly different heights then it 
gives confidence that the horizon line lies somewhere in 
that range and the range of corresponding viewing angles 
then get a vote of confidence. The supplemental section at 
the end gives some example outputs. 

The third source of feedback also relies on vanishing 
points but in this case it is applied after we have identified 
vertical planes like plane 3 in figure 5. Here we know with 
greater certainty that the top and bottom lines of this plane 
should intersect at a vanishing point unlike the previous 
case where we did not know which of the slanted edges 
are true parallel lines and which are just angled edges. 

The 4th feedback comes from any horizontal plane, 
which has been identified as possibly being the ground 
plane. The ground plane gives the constraint that the 
horizon line should be above the edge of ground plane in 
the image, which than limits the possible range of viewing 
angles. 

We note that none of these measures is considered as a 
“proof” for true location of the horizon line / viewing 
angle. Instead each of these just provides a vote / 
confidence measure for one or more viewing angles and 
we then combine the votes from each source to come up 
with the best guess. 

At the last step we then use this best guess viewing 
angle and find the object-plane matching suggested by this 
viewing angle. This is then the final refined matching. 

!
!!
 

 
Figure 5 – (a) Segments identified as planes, (b) Horizon lines for various assumptions on viewing angle 
 



 

 

4. Evaluation 
For evaluation we use the test image in figure 2, which 

we have already been using throughout the paper to 
discuss various parts of the algorithm. We assess 4 aspects 
of the performance for this image including correct 
detection of planes, object matching when a correct 
viewing angle is specified, object matching when an 
incorrect assumption is used for the viewing angle and 
finally ability to automatically determine the correct 
viewing angle and perform matching when a broad range 
of viewing angles are specified. 

We have already seen in figure 3 all the segments 
identified by the segmentation algorithm. Table shows the 
number of segments as they get filtered at each step. We 
start with a total of 29 segments identified by the 
segmentation routine. After removing the thin segments by 
a combination of automatic and manual means, we are left 
with 20 segments. The plane finding algorithm then 
discards 10 more which it cannot identify as being a plane. 
And Figure 5 shows the final 10 segments, which remain 
at this stage.  

Our simple criteria for finding plane types is unable to 
confidently label plane ‘4’ in the figure 5 as a vertical 
plane as it does not have any vertical lines bounding it and 
it gets labeled as a “vertical or horizontal plan”. It can 
eventually be identified as a vertical plane when object 
criteria are applied (there is no know object in our world 
which is horizontal and sits above the horizon line). 
However our current implementation does not implement 
this and thus this plane gets eliminated during matching. 
Plane 5 also gets discarded and we are left with a total of 7 
vertical planes and 1 horizontal plane.   

Figure 5(b) shows the position of horizon lines 
corresponding to various estimates of viewing angles. The 

red lines correspond to -5, 0 and 5 degrees (top line = -5 
degrees) and the green region shows a range of -20 to +2- 
degrees which pretty much means that the horizon line can 
be anywhere in the image. 

Table 4 shows the estimated object types and 
dimensions for each of the 8 planes when a viewing angle 
estimate of 0 degrees is used. We note that the algorithm is 
able to find exact objects matches for each plane. 
Moreover for all “building objects” it is able to narrow 
down the height and depth range to exactly one possible 
value due to the constraint that a building plane can only 
be at a vertical location of 0m. For car object there are 
multiple possible locations and sizes of the plane 
consistent with the belief that it is a car plane. However 
even then it is able to narrow down the possible 
configurations to a relatively small range. We also note 
that the assumed viewing angle value of 0m is actually 
slightly off from the correct viewing angle. 

Tables 5 and 6 show what happens when we assume 
viewing angles of -5 and 5 degrees. With a -5 degree 
assumption most vertical planes can’t find a suitable 
match. Just one plane fits a possible configuration where it 
can be a car plane (an incorrect match). With a 5 degree 
assumption a couple of planes find a match as a building 
(correct matches) – however most planes again don’t find 
any possible configuration in which they can be one of the 
objects in the database. 

These results are fairly interesting and reinforce the two 
key ideas (i) that object-level constraints are very powerful 
in narrowing down the large range of possible 3D 
configurations to a narrow range, and (ii) that the objects 
in a scene just don’t make sense when we try to interpret 
them with an incorrect assumptions on viewing 
parameters. In other words the object knowledge guides us 
towards a correct interpretation even when we don’t 
accurately know the viewing parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 (a) Confidence for various viewing angles from -20 to 20 (b) 3D Model reconstructed from the output 

 
 



 

 

And now we come to the final stage where we give the 
system a broad range of -20 to 20 degrees as the possible 
viewing angle. As figure 5(b) shows this means that the 
horizon line can be pretty much anywhere in the image. 
Figure 6(a) shows the confidence that we get for various 
viewing angles using a combination of criteria discussed 
earlier. There is a clear trend which shows that only a 
narrow range of viewing angle make most sense. The final 
estimate of the viewing angle comes out to be 1 degree, 
which is consistent with a manual analysis of the image. 
Figure 6(b) shows the 3D model crated from parameters 
suggested by the final refined match at 1 degree (with 
some manual fixes). 

5. Conclusion 
This work has shown one possible approach to combine 

object level knowledge with geometric information to 
recover the information about the original 3D scene. From 
a purely geometric perspective a given 2D image can be 
the result of infinitely many 3D configurations in the real 
world. However the key point is that only a few of these 
configurations make sense in the context of the objects in 
the world, as we know them. And our results show that 
this knowledge is a powerful tool to incorporate when 
interpreting 3D scene as it greatly filters down the space of 
possible 3D interpretations of the image. We have also 
seen that an image only “makes sense” when we interpret 
it using the right parameters. Humans all the time use 
familiar objects configurations in the world to calibrate 
their visual system. A similar approach can be adopted in 
the compute vision task of understanding the 3D scene, 
where the information flows both ways i.e. geometric 
information constrains possible object matches and object 
matches constrain possible geometric configurations and 
the final solution is the best possible reconciliation of 
both. 

While a significant part of this work (and the write-up) 
was focused on image segmentation and extraction of 
image plane, in retrospect we would have chosen a 
different approach. We feel that we should have focused 
more on trying our various configurations of objects in the 

images to see how well our framework works across 
various scenarios. The image segmentation task in the end 
was just means to an end, and if we do this again we 
would instead use 3d scenes generated from 3d modeling 
software such that the segmentation task is 
straightforward. Or alternatively we will just manual mark 
the planes in the image and let the algorithm concentrate 
on finding plausible object matches and viewing system 
parameters. 

Other future work could include incorporating the 
coarse focus distance information as suggested in the 
original proposal. 

Finally, this work did not make use of any knowledge 
about object features as used in typical object recognition 
tasks. In fact all objects in our world looked identical 
(planes) from a features perspective, which is essentially a 
harder matching task. But at the same time our world had 
only 5 possible objects. In a practical system, we would 
expect the ‘object database’ to contain features in addition 
to height and location etc, which can then be a really 
powerful framework for matching. 
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  Object Depth Height 
Plane 1 Ground - - 
Plane 2 Building 14m 2.32m 
Plane 3 Building 17m 2.6m 
Plane 6 Building 26m 2.3m 
Plane 7 Building 12.5m 2.3m 
Plane 8 Car 10-14m 0.28-0.4m 
Plane 9  Car 11-13m 0.33-0.4m 
Plane 10 Car 13-19m 0.28-0.4m 
Table 4 – Matches assuming 0 degree angle 

 Object Depth Height 
Plane 1 Ground - - 
Plane 2 Building 52mm 8.7m 
Plane 7 Building 36.8m 6.64m 
Table 6 – Matches assuming 5 degree angle 

 Object Depth Height 
Plane 1 Ground - - 
Plane 6 Car 4.6m 0.4m 
Table 5 – Matches assuming 5 degree angle 
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