
 

 

 

Abstract 
 

Most object detection methods existing today are not 

tailored for transparent objects, for which local features 

vary as the illumination, or the background behind the 

transparent object changes. In addition, transparent 

objects have no intrinsic textures or features of their own, 

making it difficult to use patch descriptors. Thus, this 

project investigates the efficiency and effectiveness of using 

a template matching method based on gradient grids, 

which proved successful for texture-less objects, to detect 

transparent objects in various types of backgrounds. We 

first form the template using only the gradients of the object 

on a texture-less background, then use a similarity measure 

as we scan over the test image to determine if the object(s) 

of interest are in the image. There is no assumption that we 

know anything about the background in the test image. 

Quantization and other methods are used to optimize the 

method, to make real-time object detection possible, which 

would prove important for applications such as robotics.  

1. Introduction 

Object detection, especially real-time object recognition 

has been one of the most difficult challenges in computer 

vision. Because many computer vision applications require 

systems to adapt to new environments and recognize new 

objects, it is imperative to find solutions that are both robust 

and computationally efficient. 

 

There are two major classes of object recognition 

algorithms, namely template matching and statistical 

methods. Statistical methods [4-5] typically require a 

massive amount of training data and are computationally 

expensive, so they are less than ideal for real-time object 

recognition. Template matching [6-7], on the other hand, 

offers some real-time solutions for most classes of objects. 

In particular, for highly textured objects, there are patch 

descriptors that can be computed efficiently for training 

images, and subsequently these could easily be compared 

with similar descriptors in test images.   

 

However, these methods fail for texture-less objects, 

because not many meaningful descriptors can be extracted 

from texture-less objects, and in many cases these 

descriptors will be dominated by descriptors from a 

cluttered background, making it impossible to detect the 

texture-less object. An adapted template matching method 

has been used in [1-2] to successfully detect texture-less 

objects in cluttered backgrounds and has been shown to be 

faster and most robust than methods such as HoG and DOT. 

The reason for its success is that it quantified the image 

characteristic that texture-less objects still retain – their 

contours. 

 

Even more challenges are posed when we consider 

transparent objects. They are so prevalent in our daily lives, 

yet little research has gone into detecting transparent 

objects via visual cues. Transparent objects first have no 

intrinsic textures of their own, rather like texture-less 

objects. Any “texture” that we observe is due to 

illumination, shadows and refraction of light through the 

transparent medium. We could thus use a similar template 

matching method to [1-2], using only gradient grids, for 

detecting transparent objects. But transparent objects have 

local features that vary as the background illumination 

changes or when there are other objects surrounding it, as 

illustrated in Figure 1. We would like to test how robust a 

template matching method based on object image gradients 

is when detecting transparent objects. 

 
 

 

 

 
 

 

 

 

 

 
Figure 1. Demonstration of how local features of transparent objects 

change under different backgrounds. If we were to use simple patch 

descriptors for these objects, the detection results would fluctuate and be 
very sensitive to background changes. 

 

In the rest of the paper, we first detail the problem and 

discuss related work, describe the technical approach, then 

examine the results of detection for various test images. 
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2. Related Work 

Both statistical learning and template matching methods 

have been used for various types of object recognition, and 

both have their own advantages and disadvantages. 

Statistical learning methods typically require a large set of 

training images and a long training time, because their goal 

is to identify the general category of an object in the test 

image, rather than detect if an object matches something 

that the system has seen before. Thus, usually statistical 

learning methods are unsuitable for real-time tracking and 

detection tasks.  

 

Statistical learning methods include Histogram of 

Gradients [], which summarizes the distribution of 

intensities within an image patch. This method has a high 

recognition accuracy rate, but is computationally very 

expensive. An even more expensive method is to use SIFT 

descriptors and then a learning algorithm such as Support 

Vector Machines to detect objects in an image []. 

 

Template matching, on the other hand, has always had an 

important role in real-time object detection (such as in 

robotics), due to its simplicity of concept and ability to 

manage all different types of objects. One of its largest 

benefits is that it does not require a large set of training 

images and thus the amount of time required to train the 

system could be much reduced.  

 

The crux of any template matching method lies in the 

similarity measure for determining the match between a 

training template and a test image. One of the first template 

matching methods involved computing the Hausdorff 

distance [7], which is the maximum distance from all edge 

points in the test image to the nearest edge point in the 

template, and vice versa.  

 

Although the naive Hausdorff distance is extremely 

sensitive to occlusions and background noise, a 

workaround could be achieved by taking the maximum of 

only a specified fraction of distances. This removes the 

infinite distances between an edge point on a template and 

its corresponding occluded edge point in the image. 

However, this means that it will be necessary to estimate 

the maximum amount of clutter in the test image. 

 

A variation of Hausdorff distance is the Chamfer 

distance between edge points in the template and the test 

image as the similarity measure [8]. This distance can be 

computed quickly using the Distance Transform of an 

image, but is still very sensitive to outlier edge points both 

in the template and test images. Regardless, the 

computational load is not light, and both these distances 

rely on finding the edge points using some form of edge 

detector, for example the Canny edge detector. Setting 

thresholds for edge detectors is always an art, and the edges 

detected are sensitive to variation in illumination and 

background clutter, so both these methods are not 

completely robust. 

 

Instead of using image edge points, there are also 

methods that use image gradients and the similarity 

measure is then defined as the dot product between the 

template edge gradients and the test image edge gradients. 

However, these require dense sampling for accurate results, 

and are usually not computationally practical. Moreover, 

one must be sure to normalize the products in such cases or 

there will be false positives due to larger gradients in the 

background clutter.  

 

The method used in this project overcomes the dense 

sampling required, and also does not require a large amount 

of training data. Each transparent object is represented with 

a set of templates from various viewpoints, and each 

template is a patch of dominant image gradients. The 

templates are then used to detect the objects of interest in 

test images. 

 

3. Technical Approach 

3.1. Data Collection 

We want to use efficient template matching to detect 

transparent objects. The training data collected to form our 

model templates is a set of two-dimensional images of 

transparent reference objects against a clean and 

uncluttered background. One dataset had objects captured 

from multiple viewpoints (see Figure 2), to test if the object 

detection is indeed invariant to viewpoint and slight 

distortion. The second dataset had one template (viewed 

from the front) for each object, the main objective of which 

is to test how robust the method was to local feature 

changes because of illumination or background changes. 

For each training image, a binary mask was created for each 

of these images to facilitate creating a model template that 

is free of background clutter.  

 

These data will then be processed to form the set of 

model templates, which is the basis of our detection system. 

These templates will be matched against patches on test 

images of numerous levels of difficulty: images free of 

background clutter, images with some background clutter, 

and images with a lot of background clutter. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 2. This is an example of a set of training reference images and 
binary masks for one transparent object, from multiple viewpoints.  

 

3.2. Summary of Algorithm 

ALGORITHM 1 

Set T = 8 

// Training step 

For each object to detect 

    For each viewpoint 

        // compute the model template 

        For each location in the object‟s bounding box 

            Compute the gradient orientation 

            Quantize each gradient orientation 

        For each location in template // second pass 

            Set gradient orientation at this location to be the         

                 quantized orientation that occurs the most often 

in its 3x3 neighborhood // smoothing 

            Spread quantized orientation at this location to  

 

 // Pre-compute response maps 

         For each possible combination of quantized gradient 

orientation 

            Calculate the maximum response of that 

combination to a single quantized gradient 

 

// Testing step 

For each test image 

    For each location in image 

        Compute the gradient orientation, and smooth 

    For each learned template 

        For each template-sized patch in image 

            Calculate the similarity score 

            if similarity score > threshold 

                 annotate this patch as an object instance of the 

template it‟s currently being compared to        

 

This template matching algorithm allows not only the 

object class to be identified, but also provides a rough pose 

estimation given that for each object, the templates learnt 

cover the range of poses that are of interest for that object. 

For example, for the transparent glass in Figure 2, if we 

were to just use those six templates, it would give us a range 

of roughly 90 degrees on the horizontal plane. If more 

poses are to be detected, more templates should also be 

added. 

3.3. Model Template Calculation 

Gradient orientations are mostly invariant to illumination 

and background changes, which are problems with all 

binary edge detectors. Furthermore, because with 

transparent objects, local features within the contours of the 

object may change as backgrounds and illumination 

change, so image gradients that outline the contour of the 

object are more reliable than other object descriptors.  

 

Thus, we would like to exploit only the gradient 

orientations of the object. The orientation of the gradient is 

calculated for each point in the image. To completely 

remove the problems of a binary edge detector, the 

gradients are then normalized.  

 

To further make the method robust, we take the 

maximum of the gradients in the red, blue and green 

channels so that color or illumination variation do not result 

in any bias in gradient orientations. Thus, for an image I 

with R, G, B color channels, the gradient orientation G(x) at 

location x in an image G is defined as 

 

                                                   

where 

                                                          

 

To handle false-positive gradients that result from noise, 

gradients which have norms below a certain threshold are 

ignored, to eliminate some weak gradients due to noise in 

the image.  

3.4. Optimization of Template Computation 

To improve speed and robustness, the gradients are then 

quantized into 9 distinct bins based on their angles. Also, 

because we are interested in characterizing the contour of 

the transparent object, we do not differentiate between 

gradient orientations in completely opposite directions, and 

limit our gradient orientations to 0 to 180 degrees only (see 

Figure 3). To further eliminate gradients that are a result of 

noise, we take the gradient orientation at a location to be the 

quantized gradient orientation that occurs most often 

(dominant gradient orientation) in the 3 by 3 neighborhood 



 

 

of the location. 

 

 

 

 

 

 

 

 
Figure 3. Gradient orientations are quantized into 9 bins as shown above, 

with no orientations in the range 180 to 360 degrees. It is possible to 

quantize to a different number of bins, but 9 bins seems precise enough for 
our purposes. 

 

We then “spread” the gradients by adding the gradient of 

one individual pixel to be the gradients in a T x T 

neighborhood of the pixel (see Figure 4). This allows us to 

speed up the detection step after we have our templates, and 

also allows for slight distortion or misalignment when 

detecting the object in the test image. 

 

(a)                      (b)                                (c) 

 

Figure 4. Spreading the gradient orientation around for robustness.  

(a) In the first grid, the arrows represent the original gradient orientations 

obtained from the training image.   
(b) Spreading the gradient orientation at each location to a 3 x 3 

neighborhood results in the second grid of orientations. If we compare this 

template of orientations to a patch of orientations in a test image, a slight 

distortion in the test image could still result in a match. 

(c) The third grid shows how the quantized orientations are actually stored. 

If we were only quantizing to two bins, then the storage grid would look 
like this, with the second bit turned on if some location has a horizontal 

orientation component, and with the first bit turned on if some location has 

a vertical orientation component. 

 

 To increase efficiency, after quantization, gradient 

orientations are stored using a binary string per location, as 

demonstrated in Figure 4. Each „1‟ in the binary string 

represents that that pixel has a component in the 

corresponding gradient orientation. 

 

A visualization of the contours after gradient orientations 

have been computed, dominant gradients found and 

quantized, and then spread, is presented in Figure 5. It is 

obvious that the contours are extremely clear, and because 

they are normalized, there is no worry for false positives 

resulting from overly dominant gradients due to 

illumination or background clutter. 
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Figure 5. (a) Original training image 

(b) Gradient image computed using the normal approach 

(c) Gradient image after quantization. The gray levels each represent one 
quantized orientation. 

(d) Gradient image after quantization and spreading 

 

3.5. Similarity Measure 

The similarity measure aims to be robust to both 

background clutter, and small translations and deformation. 

Given a gradient orientation template T and test image I, 

we define the similarity score as  

 

           

                                         

     

            

 

Here, Pos is the set of positions within a template T 

which have non-zero gradient orientations, so we do not 

have to check all positions in a given template, since many 

pixels on a near-texture-less object would unavoidably 

have no gradient orientations at all. Note also at each 

location of the image, we are taking the maximum of the 

match in orientation with the template in a neighborhood of 

the location, so that the method is even more robust to 

slight distortions in the test image. 

 

Having to take the difference of the orientation, calculate 

the cosine of that, and find the maximum of that value in the 

neighborhood of every single location in the test image and 

for every single template is extremely time-consuming. It is 

possible to speed up this computation by pre-computing the 

“similarity response” of each possible combination of 

quantized gradients (in template images) to each possible 

quantized gradient orientation  (in test images). Thus, the 

similarity score can be obtained by a few lookups in a hash 

table of similarity responses. 

 

To determine if we have detected an object, we impose a 

threshold on the similarity score, and only patches within 

the test image with higher scores than could be potential 

instances of the object in interest. For this project, a few 

threshold values were tried and the one that gave the best 

          01 01 01 00   

          01 01 01 00 

          01 01 11 10 

          00 00 10 10 



 

 

true positives versus false positives ratio was kept. 

 

There is one more optimization in terms of speed that can 

be done. Because we had previously spread our gradient 

orientations in the templates, it is now possible to not have 

to scan through patches one pixel by one pixel, which is a 

very time consuming process. We can skip T pixels at a 

time, and would not miss any important information. 

 

4. Results and Discussion 

4.1. Small displacements and distortions 

This method proved very robust to small displacements 

and distortions. Rotating the transparent glass on a 

texture-less table step by step, a set of 60 images were 

collected for the glass, that varied from 0 degrees all the 

way to 360 degrees on the horizontal plane. Of these 60, 15 

were taken as training images to form the model templates, 

and the rest were treated as testing images. Each image in 

this set was in a slightly different orientation, and may also 

have been slightly displaced from each other because the 

rotation was manual and imperfect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above described method picked up almost all of these 

objects in the image, regardless of the small shift in 

translation or rotation. Tests were done with other 

transparent objects such as cups and water bottles on 

similar texture-less backgrounds, and Table 1 summarizes 

the effectiveness of the method on these objects on clean 

backgrounds. 

 

Object True Positives False Positives  

Glass 100% 0% 

Water Bottle 100% 0% 

Drinking cup 99% 1% 

 

With these results, we can conclude that on uncluttered 

backgrounds, the template matching method can 

effectively detect objects that are slightly distorted, as long 

as the background remains clean and uncluttered, like in the 

training images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Detection of the transparent glass in various orientations and small displacements. The glass in each case was found successfully, 

although the original training templates were not in the exact same (but close) orientation and position as these glasses. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Background clutter 

In cluttered backgrounds, we would expect to see more 

false positives, since there is a much increased probability 

of something in the background having a similar contour to 

the transparent object of interest. Indeed, if I lower the 

threshold score to 0.5, I see many positives being detected 

around the glass itself. However, picking a score threshold 

of 0.9, the glass was detected accurately in all the images 

shown above with any false positives, and the detection rate 

was also high in the other test situations. The true positives 

to false positives rate was 98% - 2%, which is on par with 

some of the better statistical learning methods and better 

than some template matching methods. False positives 

mostly showed up when there was something similar in the 

background to the cup, such as the mat with horizontal lines 

(because the cup orientation is pretty much horizontal, the 

mat looked similar to the detector, although it did have a 

lower similarity score than the actual cup). 

 

In the third and fourth image above, the images are  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

almost similar but the glass is slightly bigger in the fourth 

image than the second image, but was still successfully 

detected. We can see from this that the template matching 

method is also robust to small changes in scale of the object 

in the test image. Amongst the images that were tested, the  

range of scales, compared to the training image object 

scale, which were successfully detected by the system, was 

(1.0, 1.5).  

4.3. Notes on similarity score 

There are many ways to set the threshold on the 

similarity score for determining if some image patch is 

indeed some meaningful object. We could just take the 

absolute value of the similarity score and give it a 

threshold. However, this number would always vary as we 

test with different objects, since the number of gradient 

pixels on each object would be different, and would vary 

with distance to the object and the object‟s orientation. 

Thus, this is not a robust scoring method.  

 

  

  

Figure 7. Even in the presence of various degrees of background clutter, template matching managed to find the transparent glass. In the last two 
images, the scales of the glasses are different, but both objects were detected successfully, suggesting that this method is robust to slight changes in 

scale as well. 



 

 

One could also use the number of gradient points in the 

template image before or after spreading the gradient 

orientations, but false positives that happen to have just a 

few more local features could score higher than the actual 

object that has less local features, because of the spreading. 

 

Thus the solution taken in this project was to increase the 

neighborhood range when smoothing gradient orientations 

in the test images. Testing various sizes of neighborhoods 

to smooth over, the best size happened to be T, the size of 

the neighborhood we chose to spread the orientations over, 

which was 8 in this case. Normalizing the similarity score 

by the number of gradient pixels in the template after 

smoothing, a threshold of 0.9 was able to give me the high 

detection rates and low false positive rates. 

5. Future Work 

Depth information is a new modality that can be made 

use of, especially with the now prevalent Kinect sensors 

that provide valuable 3D depth information. This 

information could help make detection results more robust, 

especially because depth sensors usually show impossible 

depth at the location of a transparent object. Coupling this 

information with the gradient orientation similarity 

measure may improve the detection results. 

 

Furthermore, it would be interesting to try to model the 

refraction of light through transparent objects. Illumination 

does indeed greatly affect the local features of especially 

glass-made transparent objects, and if it were possible to 

accurate model the light refraction through the glass or 

somehow account for it, it would be possible to extract the 

real contour of the object instead of having to worry about 

local features. 

 

On the same note, because illumination affects 

transparent (and refractive) objects so much, it would be of 

interest to study the detection of objects not with one test 

image, but with two images under different lighting 

conditions – perhaps one that is taken with flash and one 

without. The change in light refraction could help the 

system detect what is constant in the equation, and could 

help to improve detection results. 

 

6. Conclusion 

The template matching method based on gradient grids 

works well for transparent object detection, and achieves a 

high detection rate that can be compared to the detection 

rate in statistical learning and other template matching 

methods for general (non-transparent) objects. It would be 

of interest to study the characteristics of transparent objects 

further, and make use of that knowledge to improve the 

system‟s robustness to noise and clutter, and perhaps even 

to object scale. 
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