

Abstract

This paper proposes a GPU based real-time approach

for image super-resolution. This approach is based on the
fact that human observers are insensitive to single pixel
shifts as long as it is globally coherent. The approach
performs dilation or erosion on the pixel level depending
on the local context. We do this by shifting the center pixel
in the same the direction of the gradient if the color is
bright, and in the opposite direction if the color is dark.
Then, a series of contour aware high-pass and low-pass
filtering operations are performed to retain higher
sharpness and details. This approach attempts to eliminate
common artifacts produced in traditional super-resolution
algorithms, while maintaining a high performance for
real-time processing. The result is very promising: it
performs on par with state-of-art super-resolution
algorithms, in the absence of the complicated learning
stage. As a result, this is an excellent direction to take for
super-resolution in real-time processing.

Future Distribution Permission
The author would like to keep this document and source
code private. Please do not distribute on public domain or
Stanford class websites.

1. Introduction
Super-resolution (SR) is an operation that estimates a

high-resolution output given a low-resolution input image.
SR is useful for many purposes. In desktop applications,
image resizing is essential in image editing software and
desktop publishing. In mobile devices, it could be used to
enhance image capture quality. In today’s high-definition
television era, SR is prominent in the enhancement of
standard-definition video quality. SR of still images can be
broadly applied to many areas of graphics. Specifically, it
could be used to increase texture and image quality in
applications or video games with low resolution. This
paper seeks to find a solution of SR fitted in this context.

A challenging problem, SR has received much attention
from both the image processing as well as the graphics

research community, generating many different types of
solutions. However, none of these yield a good solution
for the GPU to be used in a real-time graphical context, as
they would have excessive run time. This effort seeks a
good approach of super-resolution to be used for real-time
video game.

More specifically, this effort seeks to find a solution for
real-time GPU enlargement of digital photographs to 2x
width and 2x height. The solution would be a single-image
super resolution of 4x the area, which could be used in
video game textures after they are loaded into the video
memory. In practice, textures are usually stored in small
resolution to save storage space and transfer time for
online-games. The enlargement factor of 4x is chosen
because anything beyond 4x the area would consume too
much video memory in this application.

Leveraging the fact that human observers are relatively
insensitive to single pixel shifts as long as the adjustment
is coherent with the global picture, the general approach
here is to dilate (increase contrast on) large bright areas,
and erode dark areas to obtain thin and sharp features.
Since the GPU is highly parallel, these operations could be
accomplished quickly on a per pixel basis.

2. Related Work
 The most rudimentary class of approach to solve the SR
problem is via data-invariant filters such as
nearest-neighbor, bilinear, and cubic spline [1]. These
methods are implemented in a lot of commercial software
due to their simplicity, but they tend to produce visual
artifacts such as blurring, ringing and aliasing.
 Another family of approach in solving SR is the
classical multi-image methods [2, 3, 4, 5]. A
high-resolution image is calculated from multiple
low-resolution images of the same scene, with sub-pixel
shifts. The pixels of the low-resolution images form a
linear combination. The system of linear equations can
solve the pixel value of the high-resolution image.
However, in many cases, low-resolution images of the
same scene are not always available in multiple copies
with slight shifts.
 Example-based SR is another class of methods [6, 7, 8,
9, 10], which is a learning algorithm that draws

CS231A Course Project: GPU Accelerated Image Super-Resolution

Fei Yue

Stanford University
450 Serra Mall Stanford, CA

jessyue@stanford.edu

correspondence from a database of low-resolution and
high-resolution image pairs. The learned model is then
applied to new low-resolution images to estimate plausible
high-frequency details in the high-resolution version.
Example-based SR algorithms preserve fine details, but
the result high-resolution image is not globally consistent.
Also, sometimes the generated textures are different from
the source.
 Kim et al. [11] produces a single-image SR algorithm
by extending the example-based method. The algorithm
learns the mapping from low-resolution images to
high-resolution images based on suitable pairs of example
images. The problem is posed as a kernel ridge regression,
which produces candidate images that reflect different
local information. An output is then produced as a convex
combination of the candidate images. Lastly, a prior model
of a generic image class is considered to correct the errors
caused at the learning stage.
 Glasner et al. [12] accomplishes super-resolution from a
single image by combining the classical multi-image
super-resolution with example-based super-resolution to
obtain SR from a single low-resolution image. Glasner
claims that patches in a natural image tend to repeat itself
many times in the same image. The repetition could be of
the same scale as the original patch, or of different scales.
In the case of the repetition of the same scale, the classical
SR approach could be applied to combine images obtained
at sub-pixel misalignment. The repetition of different
scales provides enough information of low- and
high-resolution pairs, which can be used to form a learning
model for the example-based super-resolution approach.
This algorithm inherits some of the drawbacks of
traditional example-based algorithms, which is the
inconsistency in quality, incorrect hallucination, and
adding features that do not exist in source images.
 An alternative direction for super-resolution is to
up-scale an image while maintaining edge details and
sharpness. Fattal [13] proposes such an approach based on
a statistical edge dependency, which relates edge features
of different resolutions. The weakness of this algorithm is
that it often produces mosaic-like images, shown in Figure
1. The details become lost and the texture becomes
unbelievable.

Figure 1: Example of a Mosaic-like SR Image [13]

 Sun et al. [14] proposes another algorithm that
emphasizes on preserving edge details and picture
sharpness using a gradient profile prior. The gradient
profile prior is learned from a dataset, and then applied to
new test images. This paper also uses a gradient approach
to preserve edge details. However, we accomplish similar
results as Sun et al. without the complexity of the learning
algorithm.
 Overall, the existing algorithms have the following
problems:

- Inconsistency in quality
- Adding features that do not exist
- Incorrect hallucination
- Transforming texture into something not similar

to the source
- Blurriness

This effort attempts to address the above issues under the
real-time performance constraint.

3. Approach
 The algorithm takes a two-pass approach. In the first
pass, the color is converted into non-perspective weighted
intensity values first using (1).

€

I =
(red + green + blue)

3
, (1)

Then, the algorithm generates the gradient and high pass
textures. The gradient components are generated via the
x-direction and y-direction kernels described in (2) and (3)
respectively. The tangent to the gradient direction is the
contour line of the pixel.

€

1
2

−0.5 0 0.5
−1 0 1
−0.5 0 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2)

€

1
2

−0.5 −1 −0.5
0 0 0
0.5 1 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (3)

The high-pass texture is obtained by first getting a
low-pass texture via kernel (4), then with equation (5),
where I is the pixel intensity value. The high-pass texture
will be used in the next pass to recover details lost by
edge-enhancement operations in the perpendicular
direction.

€

1
16

1 2 1
2 4 2
1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (4)

€

highPass = I − lowPass (5)

Figure 3: Contour Line and Gradient Direction

 Figure 2 entails the process of the second pass. In this
pass, the following steps are taken. Along the contour line
(figure 3), three intensity values are obtained which are
0.5 source pixels apart. The high-pass filter is taken with
kernel (6) on the three intensity values.

€

0.625 −0.25 0.625[] (6)

This removes the staircase effect along edges and
increases sharpness along the contour. We use it as our
base result. However, details along the direction

perpendicular to the contour line are reduced by this
operation. To counteract this effect, we source the details
from the high-passed texture obtained in step one. We take
three samples, 0.125 to 0.5 source pixels apart, tangent to
the contour from the high-passed texture. A low-pass
operation (7) is applied to these values, which filters out
the high-frequency edges in the direction of the contour,
since the base result already increases sharpness in that
direction. Filtering the high-pass samples in the direction
of the gradient also helps to remove bilinear filtering
artifact.

€

0.25 0.5 0.25[] (7)

We add the filtered high-pass to the base color to get the
final result.
 We modify the above technique to increase the
perception of fine details by adjusting the contours in the
image. We apply an erosion feature to dark features to thin
them and a dilation feature to light features to expand
them [15]. This is accomplished by adjusting the base
sampled position and then applying the above algorithm to
the new shifted base sample position. Dark colors are
shifted towards the negative direction of the gradient.
Light colors are shifted towards the positive direction of
the gradient, and medium colors remain un-shifted.

4. Experiments
 A set of test images, described in section 4.1, are used
as input images for the algorithm. The algorithm outputs
up-sampled images that are two times the height and two
times the width of the original. We hand-tuned the
high-pass filters, (6, 7) for individual images to obtain best
results. We then pass on the resulting image set, along

Figure 2: A progression of the algorithm. a) Step 1: Nearest-neighbor sampling b) Step 2: Applied gradient high-pass filter,
removes checkerboard pattern c) Step 3: Applied gradient shift, more sharpness and details in hair and eyes d) Step 4:
Applied high-pass texture, more overall sharpness

A B C D

Contour line

Gradient
direction

with two benchmarks, bilinear and Glasner, to five human
test subjects to study independently of each other. These
test subjects’ background in image processing and
graphics range from none to expert. Each test subject is
given a test survey that contains evaluation criteria
described in section 4.2. The test subject ranks all three
different algorithms from low to high on each criterion.

The reason for the subjective qualitative study is
because the objective of this effort is not to “correctly”
reproduce a source image that is down-sampled and then
up-sampled via a super-resolution algorithm. Rather, we
want to produce an image that is visually pleasing to the
human eye.

Another objective of the effort is to produce an
algorithm that has a high quality to performance trade-off
ratio. As such, section 4.3 details our performance
analysis.

4.1. Dataset
 Since the algorithm does not require any training, only a
set of low-resolution source images are used as input. We
take 26 test images from Glasner and 10 images from
photo.net with the following features:

- Natural images
- Human faces
- Real-world man-made objects
- Computer-generated/synthetic objects
- Plants
- Animals with interesting fur/texture/pattern
- Images with repeating natural patterns
- Images with repeating man-made patterns
- Images with high frequencies
- Images with aliasing

The above list comprehensively covers all cases one
would encounter in real-time video games as well as most
other general-purpose scenarios. This dataset allows direct
comparison with the results from our algorithm and
Glasner. Specifically, Glasner performs well in images
with dominant natural and man-made patterns. It is
interesting to see how our algorithm matches their results.

4.2. Evaluation Criteria
 Qualitatively, visual inspection is used to evaluate the

algorithm. The following guidelines are used for visual
evaluation. First, the up-sampled image must contain
believable textures that are similar to the source, and limit
hallucination artifacts – any added detail cannot stand out
from the detail in the photograph or look out of place to a
typical observer. For example, the technique should not
introduce waviness on straight edges. Second, match
perceptual sharpness of source image. Third, be devoid of
linear or cubic up-sampling artifacts. Fourth, the quality of
the image must be consistent throughout the entire picture.
Last, no loss in details.

Since the algorithm is constrained to run in real-time,
performance is an important factor. The performance of
the algorithm is gauged by the number of pixel reads from
the source image, since this is the slowest part out of all
the GPU operations. A discussion and comparison against
Glasner’s algorithm is also shown in section 4.4.

4.3. Qualitative Evaluation
 The result of the experimental survey are processed and
tabulated in Table 1.

Metrics Bilinear Glasner Yue
1.Believability
(high is desirable)

High Medium High

2.Sharpness
(high is desirable)

Low High Medium

3.Up-sampling artifacts
(low is desirable)

High Low Low

4.Consistency of quality
(high is desirable)

High Low High

5.Loss of details
(low is desirable)

High Low Low

Table 1: Texture Fetches Per Pixel

Overall, our method is superior to bilinear in all the
criteria, and also out-performs Glasner in the criteria 1 and
4.
 In addition, five sets of images are included in this
paper. Figure 4 is a good representation of a face example.
Glasner’s algorithm adds additional texture in the nose
which clearly does not belong. Fattal’s algorithm
generates a pastel-like image which is unnatural. Our
algorithm, in comparison, gives a sharp image that is very
believable in human perception. Figure 5 is a
representative image in the animal class with natural
patterns. In this picture, the Glasner’s patch-based
algorithm is defective because not all the pixels of the
image are up-sampled with the same quality. The patch
with dominating zebra patterns (marked i) is very sharp.
However, the zebra’s head (marked ii) and the grass area
(marked iii) are of very low quality. In comparison, our
algorithm is consistent throughout. Figure 6 shows a
defect in our algorithm. For input images that have
aliasing, the output image also has aliasing. Glasner’s
algorithm handles aliased images better. Figure 7 shows
an over-sharpening case of our algorithm. Although we
produce a very crisp result, the plant background (marked
in i) is over-sharpened. Lastly, figure 8 shows a failed case
of our algorithm compared to bilinear. The image has
much high frequency, and our algorithm seems to handle
the texture in the lower right corner (marked in i) very
poorly. It also does not perform much better than bilinear
in overall sharpness.

Figure 4: Baby (face) a) Original Image (1x) b) Bilinear (2x): lots of blurriness c) Yue (2x): sharp, realistic image d) Glasner
(3x): adding features inside the nose, shown by (i) which should not be there. e) Kim (3x): sharp, realistic image f)Fattal (3x):
pastel-like mosaic patterns shown by (ii)

A

B C

D E

 i

F

 ii

Figure 5: Zebra (animal, natural pattern) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Glasner (3x):
inconsistent quality shown by (i) very clear, and (ii), (iii) very blurry d) Yue (2x): clear, consistent image

A

B

C

D

i

ii

iii

Figure 6: Kitchen (man-made pattern) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Yue (2x): clear, but
floor pattern contains aliasing shown by (i) d) Glasner (3x): clear, less aliasing

A

B C

D

i

Figure 7: Butterfly (plant, animal) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Glasner (3x): clear image
d) Yue (2x): clear image, but (i) is over-sharpened with ringing

A

B

C

D

i

Figure 8: Waterfall (high-frequency image, courtesy of photo.net) a) Original image (1x) b) Bilinear (2x) c) Yue (2x):
not significantly better than bilinear other than slightly higher contrast. Does not handle high frequency area (i) well.

i

A

B

C

4.4. Performance Evaluation
 Our algorithm’s run-time cost is linear (O(n)), with
practical running time bounded by a fixed number of
texture fetches per source image pixel and output image
pixel. The pixel fetches are tabulated in Table 2.
 In comparison to most learning-based algorithms, our
algorithm is much faster. Taking Glasner et al. for
example, the algorithm’s performance is bottlenecked by
the nearest neighbor search [16], which uses a 5x5 patch
per pixel, and find k = 9 nearest neighbor patches.
Disregarding the multi-resolutions aspect of the paper, the
cost of building a single search structure is:

€

n = width × height
Therefore, the run time is proportional to:

€

O(n) = width2 × height 2
This makes the algorithm not usable in real-time, and not
comparable to our GPU based method.

 Number of Fetches
Source pixels 9

High-pass texture 3
Color 3

Gradient texture 1
Total 16

Table 2: Texture Fetches Per Pixel

5. Conclusion
 Overall, the approach described in this paper generates
promising results that could be used in real-time video
game up-sampling. The quality to performance ratio of our
algorithm is superior to all other existing SU algorithms.
The logical next step is to replace the hand-tuned
parameters with an adaptive algorithm that is suitable for
each image. We also need to seek better ways for
controlling dilation and erosion based on local relative
intensity instead of global intensity. We also learned that
the algorithm currently does not perform well for images
with a lot of high frequencies and aliasing. However, this
can probably be corrected by adapting the filter width
along the gradient and contour. As well, we need to
improve the algorithm to better preserve details by
limiting filtering in areas which exhibit noise.

6. References
[1] H. S. Hou and H. C. Andrews. Cubic splines for image

interpolation nand digital filtering. IEEE Trans. on SP,
26(6):508–517, 1978.

[2] M. Irani and S. Peleg. Super Resolution From Image
Sequences, ICPR, 2:115—120, June 1990.

[3] M. Irani and S. Peleg. Improving resolution by image
registration. CVGIP, (3), 1991.

[4] D. Capel. Image Mosaicing and Super-Resolution.
Springer–Verlag, 2004

[5] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar. Fast and
robust multi frame super resolution. T-IP, (10), 2004.

[6] S. Baker and T. Kanade. Hallucinating faces. In Automatic
Face and Gesture Recognition, 2000.

[7] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example
based super-resolution. Comp. Graph. Appl., (2), 2002.

[8] W. Freeman, E. Pasztor, and O. Carmichael. Learning low
level vision. IJCV, (1), 2000.

[9] J. Sun and M. F. Tappen. Context-Constrained
Hallucination for Image Super-Resolution. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2010).

[10] Y. Ha Cohen, R. Fattal, D. Lischinski. Image Upsampling
via Texture Hallucination. IEEE International Conference
on Computational Photography (ICCP 2010).

[11] K. Kim and Y. Kwon. Example-based learning for single
image SR and JPEG artifact removal. MPI-TR, (173), 08.

[12] D. Glasner, S. Bagon, M Irani. Super-Resolution From a
Single Image, ICCV 2009.

[13] R. Fattal. Image upsampling via imposed edge statistics. In
SIGGRAPH, 2007.

[14] J. Sun, Z. Xu, and H. Shum. Image super-resolution using
gradient profile prior. In CVPR, 2008

[15] T. Lottes, Personal Communication. November, 2011.
[16] S. Arya and D. M. Mount. Approximate nearest neighbor

queries in fixed dimensions. In SODA, 199

7. Supplementary Materials
//

//

// DOUBLE IMAGE SIZE SHADER GLSL SOURCE FOR OPENGL

//

//

//

// NON-PERCEPTUAL CONVERSION OF COLOR TO INTENSITY

//

float ToIntensity(vec4 pix) { return (pix.r + pix.g + pix.b) / 3.0; }

//

// PASS A

//

// Generate gradient texture and highpass texture.

// Output textures same size as input color texture.

//

void PixelShaderPassA(

 out vec4 dir, // output gradient direction

 out vec4 hi, // output high pass

 in sampler2D tex, // input texture

 in vec2 pos // pixel position in texture

) {

 // 3x3 pixels around the pixel

 // nw nm ne

 // mw mm me

 // sw sm se

 vec4 nw = textureLodOffset(tex, pos, 0.0, ivec2(-1, -1));

 vec4 nm = textureLodOffset(tex, pos, 0.0, ivec2(0, -1));

 vec4 ne = textureLodOffset(tex, pos, 0.0, ivec2(1, -1));

 vec4 mw = textureLodOffset(tex, pos, 0.0, ivec2(-1, 0));

 vec4 mm = textureLodOffset(tex, pos, 0.0, ivec2(0, 0));

 vec4 me = textureLodOffset(tex, pos, 0.0, ivec2(1, 0));

 vec4 sw = textureLodOffset(tex, pos, 0.0, ivec2(-1, 1));

 vec4 sm = textureLodOffset(tex, pos, 0.0, ivec2(0, 1));

 vec4 se = textureLodOffset(tex, pos, 0.0, ivec2(1, 1));

 // convert into intensity

 float nwI = ToIntensity(nw);

 float nmI = ToIntensity(nm);

 float neI = ToIntensity(ne);

 float mwI = ToIntensity(mw);

 float mmI = ToIntensity(mm);

 float meI = ToIntensity(me);

 float swI = ToIntensity(sw);

 float smI = ToIntensity(sm);

 float seI = ToIntensity(se);

 // filter weights

 float w1 = 1.0;

 float w2 = 0.5;

 // output gradient direction

 dir.x = ((-w2 * nwI) + (-w1 * mwI) + (-w2 * swI) + (w2 * neI) + (w1 * meI) + (w2 * seI)) / (w2+w1+w2);

 dir.y = ((-w2 * nwI) + (-w1 * nmI) + (-w2 * neI) + (w2 * swI) + (w1 * smI) + (w2 * seI)) / (w2+w1+w2);

 // convert from {-1,1} to {0,1} for output

 dir.xy = dir.xy * 0.5 + 0.5;

 // lowpass filter weights

 float ww0 = 4.0;

 float ww1 = 2.0;

 float ww2 = 1.0;

 // lowpass

 vec4 lo = vec4(0.0);

 lo += (mm * ww0);

 lo += (nm + mw + me + sm) * ww1;

 lo += (nw + ne + sw + se) * ww2;

 lo /= (ww0*1.0 + ww1*4.0 + ww2*4.0);

 // highpass

 hi = mm - lo;

 // convert from {-1,1} to {0,1} for output

 hi = hi * 0.5 + 0.5;

}

//

// PASS B

//

// Generates enlarged output.

// Takes as input the non-enlarged texture, and output from pass B.

//

void PixelShaderPassB(

 out vec4 result, // output color in enlarged surface

 in sampler2D texCol, // input color texture

 in sampler2D texDir, // input gradient texture

 in sampler2D texHi, // input highpass texture

 in vec2 pos, // pixel position in output surface

 in vec2 pix // size of non-enlarged source pixel {1.0/imageWidthInPixels, 1.0/imageHeightInPixels}

) {

 // fetch gradient direction

 vec2 dir = textureLod(texDir, pos, 0.0).xy;

 dir = dir * 2.0 - 1.0;

 // normalize the gradient direction

 dir.xy *= 1.0/(sqrt(dot(dir,dir)) + (1.0/65536.0));

 // contour vector is 90 deg to gradient

 vec2 contour = dir.yx * vec2(1.0,-1.0);

 // fetch color from this output pixel position

 vec4 color = textureLod(texCol, pos.xy, 0.0);

 float colorI = ToIntensity(color);

 // transform intensity into amount to shift in direction of gradient

 // dark colors shift towards the negative gradient

 // middle colors have no shift

 // light colors shift towards the positive gradient

 // maximum shift is 0.75 pixels (depending on image content)

 // units are in source image pixels

 float shift = (colorI * 2.0 - 1.0) * (0.5);

 // shifted position in image

 vec2 shifted = pos + dir * shift * pix;

 // fetch from three positions along shifted contour

 // spacing of fetches is 0.5 source pixels

 vec4 colorA = textureLod(texCol, shifted - (contour * pix * 0.5), 0.0);

 vec4 colorB = textureLod(texCol, shifted, 0.0);

 vec4 colorC = textureLod(texCol, shifted + (contour * pix * 0.5), 0.0);

 // base of result is a highpass along this shifted contour

 // this increases sharpness along the contour

 result = colorB * (-0.25) + (colorA + colorC) * (0.5 * 1.25);

 // fetch from three positions along shifted gradient direction

 // spacing of fetches is 0.125 source pixels

 // sampling in this case from the highpass texture

 vec4 hiA = textureLod(texHi, shifted - dir * pix * 0.125, 0.0);

 vec4 hiB = textureLod(texHi, shifted, 0.0);

 vec4 hiC = textureLod(texHi, shifted + dir * pix * 0.125, 0.0);

 // take the lowpass of these three values

 // this filters out high frequency edges which are in the direction of the contour

 // the base result already increased sharpness in that direction

 // leaving edges in the direction of the gradient

 vec4 hiL = hiB * (0.5) + (hiA + hiC) * (0.25);

 // convert highpass from {0,1} to {-1,1}

 vec4 hi = hiL * 2.0 - 1.0;

 // add to result the filtered highpass

 result += hi;

}

