
 

 

 
Abstract 

 
This paper proposes a GPU based real-time approach 

for image super-resolution. This approach is based on the 
fact that human observers are insensitive to single pixel 
shifts as long as it is globally coherent. The approach 
performs dilation or erosion on the pixel level depending 
on the local context. We do this by shifting the center pixel 
in the same the direction of the gradient if the color is 
bright, and in the opposite direction if the color is dark. 
Then, a series of contour aware high-pass and low-pass 
filtering operations are performed to retain higher 
sharpness and details. This approach attempts to eliminate 
common artifacts produced in traditional super-resolution 
algorithms, while maintaining a high performance for 
real-time processing. The result is very promising: it 
performs on par with state-of-art super-resolution 
algorithms, in the absence of the complicated learning 
stage. As a result, this is an excellent direction to take for 
super-resolution in real-time processing.  

Future Distribution Permission  
The author would like to keep this document and source 
code private. Please do not distribute on public domain or 
Stanford class websites.  

1. Introduction 
Super-resolution (SR) is an operation that estimates a 

high-resolution output given a low-resolution input image. 
SR is useful for many purposes. In desktop applications, 
image resizing is essential in image editing software and 
desktop publishing. In mobile devices, it could be used to 
enhance image capture quality. In today’s high-definition 
television era, SR is prominent in the enhancement of 
standard-definition video quality. SR of still images can be 
broadly applied to many areas of graphics. Specifically, it 
could be used to increase texture and image quality in 
applications or video games with low resolution. This 
paper seeks to find a solution of SR fitted in this context.  

A challenging problem, SR has received much attention 
from both the image processing as well as the graphics 

research community, generating many different types of 
solutions. However, none of these yield a good solution 
for the GPU to be used in a real-time graphical context, as 
they would have excessive run time. This effort seeks a 
good approach of super-resolution to be used for real-time 
video game.  

More specifically, this effort seeks to find a solution for 
real-time GPU enlargement of digital photographs to 2x 
width and 2x height. The solution would be a single-image 
super resolution of 4x the area, which could be used in 
video game textures after they are loaded into the video 
memory. In practice, textures are usually stored in small 
resolution to save storage space and transfer time for 
online-games. The enlargement factor of 4x is chosen 
because anything beyond 4x the area would consume too 
much video memory in this application. 

Leveraging the fact that human observers are relatively 
insensitive to single pixel shifts as long as the adjustment 
is coherent with the global picture, the general approach 
here is to dilate (increase contrast on) large bright areas, 
and erode dark areas to obtain thin and sharp features. 
Since the GPU is highly parallel, these operations could be 
accomplished quickly on a per pixel basis. 

2. Related Work 
    The most rudimentary class of approach to solve the SR 
problem is via data-invariant filters such as 
nearest-neighbor, bilinear, and cubic spline [1]. These 
methods are implemented in a lot of commercial software 
due to their simplicity, but they tend to produce visual 
artifacts such as blurring, ringing and aliasing.  
    Another family of approach in solving SR is the 
classical multi-image methods [2, 3, 4, 5]. A 
high-resolution image is calculated from multiple 
low-resolution images of the same scene, with sub-pixel 
shifts. The pixels of the low-resolution images form a 
linear combination. The system of linear equations can 
solve the pixel value of the high-resolution image. 
However, in many cases, low-resolution images of the 
same scene are not always available in multiple copies 
with slight shifts.  
    Example-based SR is another class of methods [6, 7, 8, 
9, 10], which is a learning algorithm that draws 
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correspondence from a database of low-resolution and 
high-resolution image pairs. The learned model is then 
applied to new low-resolution images to estimate plausible 
high-frequency details in the high-resolution version. 
Example-based SR algorithms preserve fine details, but 
the result high-resolution image is not globally consistent. 
Also, sometimes the generated textures are different from 
the source.  
    Kim et al. [11] produces a single-image SR algorithm 
by extending the example-based method. The algorithm 
learns the mapping from low-resolution images to 
high-resolution images based on suitable pairs of example 
images. The problem is posed as a kernel ridge regression, 
which produces candidate images that reflect different 
local information. An output is then produced as a convex 
combination of the candidate images. Lastly, a prior model 
of a generic image class is considered to correct the errors 
caused at the learning stage.   
    Glasner et al. [12] accomplishes super-resolution from a 
single image by combining the classical multi-image 
super-resolution with example-based super-resolution to 
obtain SR from a single low-resolution image. Glasner 
claims that patches in a natural image tend to repeat itself 
many times in the same image. The repetition could be of 
the same scale as the original patch, or of different scales. 
In the case of the repetition of the same scale, the classical 
SR approach could be applied to combine images obtained 
at sub-pixel misalignment. The repetition of different 
scales provides enough information of low- and 
high-resolution pairs, which can be used to form a learning 
model for the example-based super-resolution approach. 
This algorithm inherits some of the drawbacks of 
traditional example-based algorithms, which is the 
inconsistency in quality, incorrect hallucination, and 
adding features that do not exist in source images.   
    An alternative direction for super-resolution is to 
up-scale an image while maintaining edge details and 
sharpness. Fattal [13] proposes such an approach based on 
a statistical edge dependency, which relates edge features 
of different resolutions. The weakness of this algorithm is 
that it often produces mosaic-like images, shown in Figure 
1. The details become lost and the texture becomes 
unbelievable.  
 

 
Figure 1: Example of a Mosaic-like SR Image [13] 

 

    Sun et al. [14] proposes another algorithm that 
emphasizes on preserving edge details and picture 
sharpness using a gradient profile prior. The gradient 
profile prior is learned from a dataset, and then applied to 
new test images. This paper also uses a gradient approach 
to preserve edge details. However, we accomplish similar 
results as Sun et al. without the complexity of the learning 
algorithm.  
    Overall, the existing algorithms have the following 
problems:  

- Inconsistency in quality 
- Adding features that do not exist 
- Incorrect hallucination 
- Transforming texture into something not similar 

to the source 
- Blurriness 

This effort attempts to address the above issues under the 
real-time performance constraint.  

3. Approach 
    The algorithm takes a two-pass approach. In the first 
pass, the color is converted into non-perspective weighted 
intensity values first using (1).  
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I =
(red + green + blue)

3
,  (1) 

 
Then, the algorithm generates the gradient and high pass 
textures. The gradient components are generated via the 
x-direction and y-direction kernels described in (2) and (3) 
respectively. The tangent to the gradient direction is the 
contour line of the pixel.   
 

€ 

1
2

−0.5 0 0.5
−1 0 1
−0.5 0 0.5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  (2) 

 

€ 

1
2

−0.5 −1 −0.5
0 0 0
0.5 1 0.5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  (3) 

 
The high-pass texture is obtained by first getting a 
low-pass texture via kernel (4), then with equation (5), 
where I is the pixel intensity value. The high-pass texture 
will be used in the next pass to recover details lost by 
edge-enhancement operations in the perpendicular 
direction.  
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highPass = I − lowPass  (5) 
 

 
Figure 3: Contour Line and Gradient Direction 

     
    Figure 2 entails the process of the second pass. In this 
pass, the following steps are taken. Along the contour line 
(figure 3), three intensity values are obtained which are 
0.5 source pixels apart. The high-pass filter is taken with 
kernel (6) on the three intensity values.  
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This removes the staircase effect along edges and 
increases sharpness along the contour. We use it as our 
base result. However, details along the direction 

perpendicular to the contour line are reduced by this 
operation. To counteract this effect, we source the details 
from the high-passed texture obtained in step one. We take 
three samples, 0.125 to 0.5 source pixels apart, tangent to 
the contour from the high-passed texture. A low-pass 
operation (7) is applied to these values, which filters out 
the high-frequency edges in the direction of the contour, 
since the base result already increases sharpness in that 
direction. Filtering the high-pass samples in the direction 
of the gradient also helps to remove bilinear filtering 
artifact.  
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We add the filtered high-pass to the base color to get the 
final result.  
    We modify the above technique to increase the 
perception of fine details by adjusting the contours in the 
image. We apply an erosion feature to dark features to thin 
them and a dilation feature to light features to expand 
them [15]. This is accomplished by adjusting the base 
sampled position and then applying the above algorithm to 
the new shifted base sample position. Dark colors are 
shifted towards the negative direction of the gradient. 
Light colors are shifted towards the positive direction of 
the gradient, and medium colors remain un-shifted.  

4. Experiments 
    A set of test images, described in section 4.1, are used 
as input images for the algorithm. The algorithm outputs 
up-sampled images that are two times the height and two 
times the width of the original. We hand-tuned the 
high-pass filters, (6, 7) for individual images to obtain best 
results. We then pass on the resulting image set, along 

 
Figure 2: A progression of the algorithm. a) Step 1: Nearest-neighbor sampling b) Step 2: Applied gradient high-pass filter, 
removes checkerboard pattern c) Step 3: Applied gradient shift, more sharpness and details in hair and eyes d) Step 4: 
Applied high-pass texture, more overall sharpness 
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with two benchmarks, bilinear and Glasner, to five human 
test subjects to study independently of each other. These 
test subjects’ background in image processing and 
graphics range from none to expert. Each test subject is 
given a test survey that contains evaluation criteria 
described in section 4.2. The test subject ranks all three 
different algorithms from low to high on each criterion.    

The reason for the subjective qualitative study is 
because the objective of this effort is not to “correctly” 
reproduce a source image that is down-sampled and then 
up-sampled via a super-resolution algorithm. Rather, we 
want to produce an image that is visually pleasing to the 
human eye.  

Another objective of the effort is to produce an 
algorithm that has a high quality to performance trade-off 
ratio. As such, section 4.3 details our performance 
analysis.  

4.1. Dataset 
    Since the algorithm does not require any training, only a 
set of low-resolution source images are used as input. We 
take 26 test images from Glasner and 10 images from 
photo.net with the following features:  

- Natural images 
- Human faces  
- Real-world man-made objects 
- Computer-generated/synthetic objects 
- Plants 
- Animals with interesting fur/texture/pattern 
- Images with repeating natural patterns 
- Images with repeating man-made patterns 
- Images with high frequencies 
- Images with aliasing 

The above list comprehensively covers all cases one 
would encounter in real-time video games as well as most 
other general-purpose scenarios. This dataset allows direct 
comparison with the results from our algorithm and 
Glasner. Specifically, Glasner performs well in images 
with dominant natural and man-made patterns. It is 
interesting to see how our algorithm matches their results.  

4.2. Evaluation Criteria 
 Qualitatively, visual inspection is used to evaluate the 

algorithm. The following guidelines are used for visual 
evaluation. First, the up-sampled image must contain 
believable textures that are similar to the source, and limit 
hallucination artifacts – any added detail cannot stand out 
from the detail in the photograph or look out of place to a 
typical observer. For example, the technique should not 
introduce waviness on straight edges. Second, match 
perceptual sharpness of source image. Third, be devoid of 
linear or cubic up-sampling artifacts. Fourth, the quality of 
the image must be consistent throughout the entire picture. 
Last, no loss in details. 

Since the algorithm is constrained to run in real-time, 
performance is an important factor. The performance of 
the algorithm is gauged by the number of pixel reads from 
the source image, since this is the slowest part out of all 
the GPU operations. A discussion and comparison against 
Glasner’s algorithm is also shown in section 4.4.  

4.3. Qualitative Evaluation 
    The result of the experimental survey are processed and 
tabulated in Table 1.  
 
Metrics Bilinear Glasner Yue 
1.Believability 
(high is desirable) 

High Medium High 

2.Sharpness 
(high is desirable) 

Low High Medium 

3.Up-sampling artifacts 
(low is desirable) 

High Low Low 

4.Consistency of quality 
(high is desirable) 

High Low High 

5.Loss of details 
(low is desirable) 

High Low Low 

Table 1: Texture Fetches Per Pixel 
 
Overall, our method is superior to bilinear in all the 
criteria, and also out-performs Glasner in the criteria 1 and 
4.  
    In addition, five sets of images are included in this 
paper. Figure 4 is a good representation of a face example. 
Glasner’s algorithm adds additional texture in the nose 
which clearly does not belong. Fattal’s algorithm 
generates a pastel-like image which is unnatural. Our 
algorithm, in comparison, gives a sharp image that is very 
believable in human perception. Figure 5 is a 
representative image in the animal class with natural 
patterns. In this picture, the Glasner’s patch-based 
algorithm is defective because not all the pixels of the 
image are up-sampled with the same quality. The patch 
with dominating zebra patterns (marked i) is very sharp. 
However, the zebra’s head (marked ii) and the grass area 
(marked iii) are of very low quality. In comparison, our 
algorithm is consistent throughout. Figure 6 shows a 
defect in our algorithm. For input images that have 
aliasing, the output image also has aliasing. Glasner’s 
algorithm handles aliased images better. Figure 7 shows 
an over-sharpening case of our algorithm. Although we 
produce a very crisp result, the plant background (marked 
in i) is over-sharpened. Lastly, figure 8 shows a failed case 
of our algorithm compared to bilinear. The image has 
much high frequency, and our algorithm seems to handle 
the texture in the lower right corner (marked in i) very 
poorly. It also does not perform much better than bilinear 
in overall sharpness.  



 

 

 
Figure 4: Baby (face) a) Original Image (1x) b) Bilinear (2x): lots of blurriness c) Yue (2x): sharp, realistic image d) Glasner 
(3x): adding features inside the nose, shown by (i) which should not be there. e) Kim (3x): sharp, realistic image f)Fattal (3x): 
pastel-like mosaic patterns shown by (ii) 
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Figure 5: Zebra (animal, natural pattern) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Glasner (3x): 
inconsistent quality shown by (i) very clear, and (ii), (iii) very blurry d) Yue (2x): clear, consistent image 
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Figure 6: Kitchen (man-made pattern) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Yue (2x): clear, but 
floor pattern contains aliasing shown by (i) d) Glasner (3x): clear, less aliasing 
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Figure 7: Butterfly (plant, animal) a) Original image (1x) b) Bilinear (2x): lots of blurriness c) Glasner (3x): clear image 
d) Yue (2x): clear image, but (i) is over-sharpened with ringing 
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Figure 8: Waterfall (high-frequency image, courtesy of photo.net) a) Original image (1x) b) Bilinear (2x) c) Yue (2x): 
not significantly better than bilinear other than slightly higher contrast. Does not handle high frequency area (i) well.   
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4.4. Performance Evaluation 
    Our algorithm’s run-time cost is linear (O(n)), with 
practical running time bounded by a fixed number of 
texture fetches per source image pixel and output image 
pixel. The pixel fetches are tabulated in Table 2.  
    In comparison to most learning-based algorithms, our 
algorithm is much faster. Taking Glasner et al. for 
example, the algorithm’s performance is bottlenecked by 
the nearest neighbor search [16], which uses a 5x5 patch 
per pixel, and find k = 9 nearest neighbor patches. 
Disregarding the multi-resolutions aspect of the paper, the 
cost of building a single search structure is:  

€ 

n = width × height  
Therefore, the run time is proportional to:  

€ 

O(n) = width2 × height 2  
This makes the algorithm not usable in real-time, and not 
comparable to our GPU based method.  
 

 Number of Fetches 
Source pixels 9 

High-pass texture 3 
Color 3 

Gradient texture 1 
Total 16 

Table 2: Texture Fetches Per Pixel 

5. Conclusion 
    Overall, the approach described in this paper generates 
promising results that could be used in real-time video 
game up-sampling. The quality to performance ratio of our 
algorithm is superior to all other existing SU algorithms. 
The logical next step is to replace the hand-tuned 
parameters with an adaptive algorithm that is suitable for 
each image. We also need to seek better ways for 
controlling dilation and erosion based on local relative 
intensity instead of global intensity. We also learned that 
the algorithm currently does not perform well for images 
with a lot of high frequencies and aliasing. However, this 
can probably be corrected by adapting the filter width 
along the gradient and contour. As well, we need to 
improve the algorithm to better preserve details by 
limiting filtering in areas which exhibit noise. 
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7. Supplementary Materials 
// 
 
// 
 
// DOUBLE IMAGE SIZE SHADER GLSL SOURCE FOR OPENGL 
 
// 
 
// 
 
 
 
// 
 
// NON-PERCEPTUAL CONVERSION OF COLOR TO INTENSITY 
 
// 
 
float ToIntensity(vec4 pix) { return (pix.r + pix.g + pix.b) / 3.0; } 
 
 
 
// 
 
// PASS A 
 
// 
 
// Generate gradient texture and highpass texture. 
 
// Output textures same size as input color texture. 
 
// 
 
void PixelShaderPassA( 
 
  out vec4      dir, // output gradient direction 
 
  out vec4      hi,  // output high pass   
 
  in  sampler2D tex, // input texture 
 
  in  vec2      pos  // pixel position in texture 
 
) { 
 
     
 
  // 3x3 pixels around the pixel 
 
  //   nw nm ne 
 



 

 

  //   mw mm me  
 
  //   sw sm se 
 
  vec4 nw = textureLodOffset(tex, pos, 0.0, ivec2(-1, -1)); 
 
  vec4 nm = textureLodOffset(tex, pos, 0.0, ivec2( 0, -1)); 
 
  vec4 ne = textureLodOffset(tex, pos, 0.0, ivec2( 1, -1)); 
 
  vec4 mw = textureLodOffset(tex, pos, 0.0, ivec2(-1,  0)); 
 
  vec4 mm = textureLodOffset(tex, pos, 0.0, ivec2( 0,  0)); 
 
  vec4 me = textureLodOffset(tex, pos, 0.0, ivec2( 1,  0)); 
 
  vec4 sw = textureLodOffset(tex, pos, 0.0, ivec2(-1,  1)); 
 
  vec4 sm = textureLodOffset(tex, pos, 0.0, ivec2( 0,  1)); 
 
  vec4 se = textureLodOffset(tex, pos, 0.0, ivec2( 1,  1)); 
 
 
 
  // convert into intensity 
 
  float nwI = ToIntensity(nw); 
 
  float nmI = ToIntensity(nm); 
 
  float neI = ToIntensity(ne); 
 
  float mwI = ToIntensity(mw); 
 
  float mmI = ToIntensity(mm); 
 
  float meI = ToIntensity(me); 
 
  float swI = ToIntensity(sw); 
 
  float smI = ToIntensity(sm); 
 
  float seI = ToIntensity(se); 
 
 
 
  // filter weights 
 
  float w1 = 1.0; 
 
  float w2 = 0.5; 
 
 
 
  // output gradient direction 



 

 

 
  dir.x = ((-w2 * nwI) + (-w1 * mwI) + (-w2 * swI) + (w2 * neI) + (w1 * meI) + (w2 * seI)) / (w2+w1+w2); 
 
  dir.y = ((-w2 * nwI) + (-w1 * nmI) + (-w2 * neI) + (w2 * swI) + (w1 * smI) + (w2 * seI)) / (w2+w1+w2); 
 
 
 
  // convert from {-1,1} to {0,1} for output 
 
  dir.xy = dir.xy * 0.5 + 0.5; 
 
   
 
  // lowpass filter weights 
 
  float ww0 = 4.0; 
 
  float ww1 = 2.0; 
 
  float ww2 = 1.0; 
 
 
 
  // lowpass 
 
  vec4 lo = vec4(0.0); 
 
  lo += (mm * ww0); 
 
  lo += (nm + mw + me + sm) * ww1;   
 
  lo += (nw + ne + sw + se) * ww2;   
 
  lo /= (ww0*1.0 + ww1*4.0 + ww2*4.0); 
 
 
 
  // highpass  
 
  hi = mm - lo; 
 
 
 
  // convert from {-1,1} to {0,1} for output 
 
  hi = hi * 0.5 + 0.5; 
 
} 
 
 
 
// 
 
// PASS B 
 



 

 

// 
 
// Generates enlarged output. 
 
// Takes as input the non-enlarged texture, and output from pass B. 
 
// 
 
void PixelShaderPassB( 
 
  out vec4      result, // output color in enlarged surface 
 
  in  sampler2D texCol, // input color texture 
 
  in  sampler2D texDir, // input gradient texture 
 
  in  sampler2D texHi,  // input highpass texture   
 
  in  vec2      pos,    // pixel position in output surface 
 
  in  vec2      pix     // size of non-enlarged source pixel {1.0/imageWidthInPixels, 1.0/imageHeightInPixels} 
 
) { 
 
   
 
  // fetch gradient direction 
 
  vec2 dir = textureLod(texDir, pos, 0.0).xy; 
 
  dir = dir * 2.0 - 1.0; 
 
   
 
  // normalize the gradient direction 
 
  dir.xy *= 1.0/(sqrt(dot(dir,dir)) + (1.0/65536.0)); 
 
   
 
  // contour vector is 90 deg to gradient 
 
  vec2 contour = dir.yx * vec2(1.0,-1.0); 
 
   
 
  // fetch color from this output pixel position 
 
  vec4 color = textureLod(texCol, pos.xy, 0.0); 
 
  float colorI = ToIntensity(color); 
 
 
 
  // transform intensity into amount to shift in direction of gradient 



 

 

 
  // dark colors shift towards the negative gradient  
 
  // middle colors have no shift 
 
  // light colors shift towards the positive gradient 
 
  // maximum shift is 0.75 pixels (depending on image content) 
 
  // units are in source image pixels 
 
  float shift = (colorI * 2.0 - 1.0) * (0.5); 
 
         
 
  // shifted position in image 
 
  vec2 shifted = pos + dir * shift * pix; 
 
   
 
  // fetch from three positions along shifted contour 
 
  // spacing of fetches is 0.5 source pixels 
 
  vec4 colorA = textureLod(texCol, shifted - (contour * pix * 0.5), 0.0);   
 
  vec4 colorB = textureLod(texCol, shifted, 0.0);   
 
  vec4 colorC = textureLod(texCol, shifted + (contour * pix * 0.5), 0.0);   
 
   
 
  // base of result is a highpass along this shifted contour 
 
  // this increases sharpness along the contour 
 
  result = colorB * (-0.25) + (colorA + colorC) * (0.5 * 1.25); 
 
 
 
  // fetch from three positions along shifted gradient direction 
 
  // spacing of fetches is 0.125 source pixels 
 
  // sampling in this case from the highpass texture 
 
  vec4 hiA = textureLod(texHi, shifted - dir * pix * 0.125, 0.0);   
 
  vec4 hiB = textureLod(texHi, shifted, 0.0);   
 
  vec4 hiC = textureLod(texHi, shifted + dir * pix * 0.125, 0.0);   
 
 
 



 

 

  // take the lowpass of these three values 
 
  // this filters out high frequency edges which are in the direction of the contour 
 
  // the base result already increased sharpness in that direction 
 
  // leaving edges in the direction of the gradient 
 
  vec4 hiL = hiB * (0.5) + (hiA + hiC) * (0.25); 
 
  
 
  // convert highpass from {0,1} to {-1,1} 
 
  vec4 hi = hiL * 2.0 - 1.0;   
 
 
 
  // add to result the filtered highpass 
 
  result += hi; 
 
} 
 

 


