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Abstract

This paper 1 concerns a newly built model, namely ob-
ject group (OG) model, for scene studying. The model is
well suited for recognizing and classifying image content in
the scene level. The first half of the paper will concentrate
on introducing the OG model and coming up with a set of
well developed methodologies to learn the model. The sec-
ond half of the paper will introduce the techniques used to
extract the OG feature of an input image, given the learned
OG model. Such OG feature can be used later in various
machine learning algorithms (e.g., k-NN, SVM) to do scene
recognition or scene discovery.
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1. Introduction

1.1. The existence of object groups

In daily life, people talk about objects individ-
ually, as well as thinking connections among ob-
jects. We observe some objects tend to co-occur
as a group in natural environment. Given such
observation, we hypothesize a hierarchical struc-
ture in human visual perception with individual
objects lie in the bottom level, scene concepts in
the top level, and the notion of object groups in
between. See Figure 1.

Both a bottom-up view and a top-down view
occurs naturally and usually simultaneously when
people are considering this hierarchical structure.
On one hand, knowing the existence of certain ob-

1This work is part of the submitting CVPR 2012 paper of Hao el al. [3]
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Figure 1. Hierarchical grouping.

jects helps us get aware of the scene content. For
example, it is very likely that we are in an outdoor
scene if we observe the existence of sky, trees and
rivers; in contrast, it is very likely that we are in an
indoor scene if we observe the existence of bed,
desks and chairs. On the other hand, knowing the
scene helps us both recognize and localize the in-
dividual objects better. For example, if we are told
that we are in an indoor scene, it would be rare
to expect trees in it. If we gain more knowledge
about the scene, e.g., the prior information about
the relative positions of objects in it, then it would
be also rare to find there is a chair on the bed.

Object detection [2] has been a hot topic in
Computer Vision for a long time. However,
through tons of research papers on object detec-
tion, people tend to treat the desired object indi-
vidually and separately, as a single entity. In con-
trast, this paper will aim to detect a group of ob-
jects which tend to go together in our daily life,
e.g., knife and fork, sky and cloud, in hope of
exploring the relationship among objects. There
comes the rough idea of object groups.



1.2. Some statistics on object groups

Figure 2 illustrates the co-occurrence rela-
tion between objects in a subset of LabelMe [8]
dataset. This shows consistently with common
sense that certain object tends to go together with
some other objects to form an object group, e.g,
desk and lamp tend to go together to form a study-
ing area.
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Figure 2. The co-occurrence relation between objects in a subset of
LabelMe dataset. Each row (or column) corresponds to one object.
The color indicates the correlation between the pair of objects. The
warmer the color is, the higher the correlation is. We observe that
object co-occurrence is quite common in real world images.

Figure 3 illustrates the relative location of two
objects that tends to go together (i.e., in the
same object group). This also shows consistently
with common sense that correlated objects have a
somehow “fixed” relative location to each other,
e.g., it is very rare to see sky in the bottom of an
image while trees are above it.

2. The object group (OG) model

We have roughly described the two important
information contained in an object group. In this
section we are going to formally introduce the ob-
ject group model. We’ll first talk about the math-
ematical representation of object group, called
OG templates, which literally encode the co-
occurrence property and spatial information men-
tioned above. Then, we’ll discuss the methodol-
ogy used to learn OG templates given a training
set.
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Figure 3. Relative location between positively correlated pairs of
objects. In each row, one object is chosen as an anchor object.
Given the anchor object, we then select positively correlated ob-
jects, which are objects tend to co-occur with the anchor object.
We sample images containing both the anchor object and the cor-
related object and then plot the relative location between the cen-
ter of the pair of objects as a cloud map. The vector drawn in each
figure directs from the anchor object to the mean of the relative
location of the correlated object.

2.1. Preliminary terminology

2.1.1 The Hist-image [5]

We use the notation G ∈ Hm×n to denote an m×
n Hist-image, which is an m×n image with each
pixel replaced by a histogram2, which we call a
Hist-pixel.

A 2 × 2 and a 2 × 3 Hist-image are illustrated
in Figure 4.
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Figure 5. Object group examples. We assume that each object group template is a 2 × 2 lattice and each image is decomposed to 4 × 4
grids. Each row shows one object group. The table on the left shows the distribution of objects in each grid of the object group template.
We also pick image regions that give high repsonses to the object group template as examples on the right. It can be seen that each of
our learned object group templates focuses on one group of object typically co-occur and is capable of capturing the spatial distribution of
groups in the group. Information of groups of objects pooled from large area in an image will improve the discriminability between images
of different scenes.
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Figure 6. Building OG representation for an input image using the
learned object group templates.

4.3. Building OG Representation using Object
Group Templates

Having obtained G from the above learning method, we
can now build an Object Group based representation for an
input image and use it in scene recognition tasks. Figure 6
shows the scheme. Given one input image, we first build a
spatial histogram representation as described in Sec 4.1.1.
Then we convolve the learned OG templates with the spa-
tial histogram of the input image and obtain response maps.
Finally, we apply a pyramid pooling following the approach
in [22] and build our OG feature vector.

5. Experiment

In this section, we evaluate the object group representa-
tion for two scene recognition tasks - automatic scene dis-
covery and scene classification.

5.1. Automatic Scene Discovery

Using our object group based image representation, we
can automatically discover scene categories consistent with
human perception by a simple k-means algorithm. To val-
idate the concept of the object group, we begin with an
ideal case assuming we have perfect object detectors, that
is, we will use the groundtruth object annotation as the input
of learning algorithm. Later, we further show how visual
words can be used to learn informative and discriminative
object groups.
Dataset We evaluate our algorithm on a subset of the
SUN09 dataset [4], where each image contains object con-
tour annotations. Our selection criterion is that at least 90%
pixels should be covered by object annotations and there are
at least 50 images in each scene category . Our final data set
consists of about 2500 images from 17 scene classes 3. The
images are annotated by 573 objects. In the rest of the pa-
per, we will refer this dataset as SUN09-17.
Experiment Setup For scene discovery by groundtruth an-
notated objects, we learn 32 object groups. We set M =

3The scene classes include bedroom, mountain, skyscraper, street,
building, kitchen, forest, living, coast, office, dining room, swimming pool,
beach, ocean, lake, river, balcony.
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Figure 5. Object group examples. We assume that each object group template is a 2 × 2 lattice and each image is decomposed to 4 × 4
grids. Each row shows one object group. The table on the left shows the distribution of objects in each grid of the object group template.
We also pick image regions that give high repsonses to the object group template as examples on the right. It can be seen that each of
our learned object group templates focuses on one group of object typically co-occur and is capable of capturing the spatial distribution of
groups in the group. Information of groups of objects pooled from large area in an image will improve the discriminability between images
of different scenes.
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Figure 6. Building OG representation for an input image using the
learned object group templates.

4.3. Building OG Representation using Object
Group Templates

Having obtained G from the above learning method, we
can now build an Object Group based representation for an
input image and use it in scene recognition tasks. Figure 6
shows the scheme. Given one input image, we first build a
spatial histogram representation as described in Sec 4.1.1.
Then we convolve the learned OG templates with the spa-
tial histogram of the input image and obtain response maps.
Finally, we apply a pyramid pooling following the approach
in [22] and build our OG feature vector.

5. Experiment

In this section, we evaluate the object group representa-
tion for two scene recognition tasks - automatic scene dis-
covery and scene classification.

5.1. Automatic Scene Discovery

Using our object group based image representation, we
can automatically discover scene categories consistent with
human perception by a simple k-means algorithm. To val-
idate the concept of the object group, we begin with an
ideal case assuming we have perfect object detectors, that
is, we will use the groundtruth object annotation as the input
of learning algorithm. Later, we further show how visual
words can be used to learn informative and discriminative
object groups.
Dataset We evaluate our algorithm on a subset of the
SUN09 dataset [4], where each image contains object con-
tour annotations. Our selection criterion is that at least 90%
pixels should be covered by object annotations and there are
at least 50 images in each scene category . Our final data set
consists of about 2500 images from 17 scene classes 3. The
images are annotated by 573 objects. In the rest of the pa-
per, we will refer this dataset as SUN09-17.
Experiment Setup For scene discovery by groundtruth an-
notated objects, we learn 32 object groups. We set M =

3The scene classes include bedroom, mountain, skyscraper, street,
building, kitchen, forest, living, coast, office, dining room, swimming pool,
beach, ocean, lake, river, balcony.
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Figure 4. Two examples of Hist-images: the left is a 2 × 2 Hist-
image, with each Hist-pixel described by a pie-shaped chart; the
right is a 2 × 3 Hist-image, with each Hist-pixel described by a
column-shaped chart.

2The number of the instances in the histogram is given, so as the names
and orderings of the instances.



We are now ready to introduce two operations
for the Hist-image we just defined.

• The dot product between two Hist-pixels.
Given the instances of the histogram, any
Hist-pixel can be treated as a vector with di-
mensionality the same as the number of his-
togram instances. Thus, we define the dot
product between two Hist-pixels which is a
scalar, to be the dot product of their two cor-
responding vectors.
We overload the “·” symbol to denote the dot
product operation.

• The correlation between two Hist-images.
The correlation between an input Hist-image
and a kernel (mask) Hist-image is almost the
same as the correlation between two images,
with the only difference that we replace every
occurrence of pixel-wise multiplication to be
a Hist-pixel-wise dot product.
We call the output of the correlation between
an input Hist-image and a kernel Hist-image
a response map of the input image.
We overload the “*” symbol to denote the
correlation operation.

2.1.2 The H-transform

We use the notation H0(·) to denote the H-
transform, which maps an annotated input image
to a single Hist-pixel, i.e., simply a histogram.

An annotated image is an image contains object
annotations, i.e., ideally each pixel will be desig-
nated without ambiguity an object label which it
belongs to. In real experiments, we would allow
less than 10% of the pixels to be not designated. 3

We can implement the H-transform H0(·) by
counting the pixels that belong to certain objects,
accumulating the numbers in the corresponding
bins and finally normalizing to obtain the his-
togram.

We use the notation Hm×n(·) to denote an ex-
tension of the H-transform, which at first equally
divides the input image intom×n sub-images and

3The SUN09 dataset, for example, is a good source for us to obtain
such annotated images.

apply the H-transform H0(·) to each sub-images.
The output of Hm×n(·) is an m× n Hist-image. 4

Figure 5 shows an illustration of the extended
H-transform H4×4(·).
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Figure 5. The extended H-transform H4×4(·). The annotation of
the input image is not shown. There are four instances in the his-
togram: sky (blue), hill (red), trees (green), grass (purple).

The extended H-transform will be widely used
in the sequel.

2.2. OG templates

An OG template is the mathematical represen-
tation of an object group.

2.2.1 Notations

• O =< O1, O2, . . . , Oh >.
The codebook which specifies the instances
of a histogram. A typical codebook is a list
of single objects where ordering matters. For
example, O =< ‘tree’, ‘chair’, . . . , ‘bike’ >.

• I = {I1, I2, . . . , Ip}.
The set of input images.

• Ĩ = {Ĩ1, Ĩ2, . . . , Ĩp} = Hm×n(I).
The set of Hist-images obtained by applying
the extended H-transform to the original input
images. Put it mathematically, ∀Ĩi ∈ Ĩ, Ĩi =
Hm×n(Ii) ∈ Hm×n.

• G = {G1, G2, . . . , Gg}.
The set of OG templates. ∀Gi ∈ G, Gi ∈
Hs×t, for some predefined s and t, with the
requirements that s ≤ m and t ≤ n.

2.2.2 The desired OG templates

The desired OG templates is intentionally de-
signed to encode the co-occurrence and spatial

4It can be easily seen that H1×1(·) is the same as H0(·).



information which are mentioned in the introduc-
tion section at the same time.

As described in the notation above, an OG tem-
plate G ∈ Hs×t is an s× t Hist-image. Naturally,
the co-occurrence properties can be encoded di-
rectly using histograms and the spatial informa-
tion can be encoded as relative locations in the
Hist-images.

We give a simple example to illustrate what a
desired OG template might look like.
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Figure 5. Object group examples. We assume that each object group template is a 2 × 2 lattice and each image is decomposed to 4 × 4
grids. Each row shows one object group. The table on the left shows the distribution of objects in each grid of the object group template.
We also pick image regions that give high repsonses to the object group template as examples on the right. It can be seen that each of
our learned object group templates focuses on one group of object typically co-occur and is capable of capturing the spatial distribution of
groups in the group. Information of groups of objects pooled from large area in an image will improve the discriminability between images
of different scenes.
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4.3. Building OG Representation using Object
Group Templates

Having obtained G from the above learning method, we
can now build an Object Group based representation for an
input image and use it in scene recognition tasks. Figure 6
shows the scheme. Given one input image, we first build a
spatial histogram representation as described in Sec 4.1.1.
Then we convolve the learned OG templates with the spa-
tial histogram of the input image and obtain response maps.
Finally, we apply a pyramid pooling following the approach
in [22] and build our OG feature vector.

5. Experiment

In this section, we evaluate the object group representa-
tion for two scene recognition tasks - automatic scene dis-
covery and scene classification.

5.1. Automatic Scene Discovery

Using our object group based image representation, we
can automatically discover scene categories consistent with
human perception by a simple k-means algorithm. To val-
idate the concept of the object group, we begin with an
ideal case assuming we have perfect object detectors, that
is, we will use the groundtruth object annotation as the input
of learning algorithm. Later, we further show how visual
words can be used to learn informative and discriminative
object groups.
Dataset We evaluate our algorithm on a subset of the
SUN09 dataset [4], where each image contains object con-
tour annotations. Our selection criterion is that at least 90%
pixels should be covered by object annotations and there are
at least 50 images in each scene category . Our final data set
consists of about 2500 images from 17 scene classes 3. The
images are annotated by 573 objects. In the rest of the pa-
per, we will refer this dataset as SUN09-17.
Experiment Setup For scene discovery by groundtruth an-
notated objects, we learn 32 object groups. We set M =

3The scene classes include bedroom, mountain, skyscraper, street,
building, kitchen, forest, living, coast, office, dining room, swimming pool,
beach, ocean, lake, river, balcony.
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Figure 6. An example illustrating the desired OG template.

Suppose we want to hand design a desired
OG template used for describing an object group
for bed area. In this example, we take O =<
table, bed, pillow, lamp, cushion, ... >, G ∈ H2×2

is a desired OG template in G (i.e., s = t = 2).
Figure 6 shows one possible such G. It says,

1) a typical object group for bed area contains ob-
jects like table, bed, pillow, lamp and cushion, but
does not contain other things like trees or build-
ings; 2) inside this object group, a bed is more
likely to be observed in the bottom half, while a
pillow on contrast is more likely in the top half,
since a pillow is usually on the bed rather than
under the bed.

One thing should be aware of is that Figure 6
merely illustrates one possible and reasonable ex-
ample for an OG template that we desire to have.
An OG template is consider to be reasonable if
it is consistent with our common sense, more ac-
curately, it is consistent with most cases that we
would see in various images existed in the world.

Therefore, it makes no sense to talk about the
notion of a “perfect” or “optimal” OG template
for an object group in general. However, it does
make sense to find a set of OG templates that is
the most consistent with a training set of images.

This implies we can learn a set G of OG tem-
plates given a training set of images by formulat-
ing and solving an optimization problem.

2.2.3 OG templates learning

We put an OG templates learning problem into an
optimization problem illustrated as follows.

minimize
p∑

i=1

‖si‖1

‖si‖2

− ‖s̄‖1

‖s̄‖2

(1)

subject to si(j) = max{Ĩi ∗Gj}; (2)

s̄ =
1

p

p∑
i=1

si; (3)

h∑
k=1

Gj(:, :, k) = 1; (4)

Gj(:, :, k) ≥ 0. (5)

In the formulation mentioned above, G =
{G1, G2, . . . , Gg} and s̄, s1, · · · , sp are the opti-
mization variables, O =< O1, O2, . . . , Oh > and
Ĩ = {Ĩ1, Ĩ2, . . . , Ĩp} are the known parameters of
the optimization problem. Ĩ is also known as the
training set of learning problem.

Constraint (2) and (3) simply give the defini-
tions of the optimization variables s̄, s1, · · · , sp;
while constraints (4) and (5) give the straight for-
ward requirements for a histogram (i.e., nonneg-
ative components summing to 1), since each OG
template is a Hist-image.

The objective (1) is a little bit tricker which
heavily inherits the idea of Sparse Filtering [4] .
We’ll explain this next in detail.

The quotient of L1 norm and L2 norm plays
the key role in the objective (1). ∀x ∈ Rn, the
quotient ‖x‖1/‖x‖2 = ‖x/‖x‖2‖1 measures the
element-wise sparsity of the vector x normalized
by its L2 norm. Thus, minimizing the quotient
‖x‖1/‖x‖2 drives the vector x to be sparse, i.e.,
only a small number of components in x is non-
zero. In contrast, maximizing the quotient will
encourage most of the components in x to be non-
zero.



The response vector si defined by constraint
(2) takes its jth component to be the maximum
of the response map Ĩi ∗ Gj . One major prop-
erty of the correlation operator is that it finds one
patch in the input image, which is most similar to
the kernel. So in this case, si(j) finds the most
similar patch to the OG template Gj in the input
image Ĩi. The larger si(j) is, the more likely that
object group Gj is contained somewhere in the
input image Ĩi. For an input image Ĩi, our goal
is to find what object groups are contained in it.
It’s obvious that most images/scenes we see con-
tains only a small number (possibly 1-4) of object
groups. Therefore, we require the response vec-
tor si to be active only on a small number of its
components and response strongly on those ac-
tive components. Put it mathematically, we want
to minimize the quotient ‖si‖1/‖si‖2 for each i.
That is exactly where the first term of the objec-
tive (1) comes from.

The average response vector s̄ defined by
constraint (3) is obtained by literally taking the
average over s1, · · · , sp. It can be easily shown
that each response vector si is component-wise
nonnegative. Therefore, if the jth component of
s̄ is nearly 0, i.e, s̄(j) < ε, where ε is small posi-
tive number, then si(j) < ε, ∀i = 1, · · · , p. This
implies that the jth object group Gj is not likely
to be contained in any of the input images. One
can therefore, argue the necessity of the existence
of Gj in the OG templates set G. To avoid such
phenomenon, we hope there does not exist a com-
ponent in s̄ which is inactive or active with very
weak response relative to other components.5 Put
it mathematically, we want to maximize the quo-
tient ‖s̄‖1/‖s̄‖2, which is equivalent to minimize
the negative quotient−‖s̄‖1/‖s̄‖2. That is exactly
where the second term of the objective (1) comes
from.

5In this course project, we predefined the number of OG templates in G,
i.e., we fix g at the beginning. How to choose such number g is a remaining
issue to be discussed in the future research. One possible way of tackling
this problem is always to try a big g first, if s̄∗ which is the solution to
the optimization problem, has k components that response weakly, we can
decrease the value of g by k.

2.3. OG features

Once we have obtained or learned a set G of
desired OG templates, we want to extract a feature
vector from an image using G and make use of the
feature vector to do scene studying.

2.3.1 Feature vector as si: spatial information lost

A natural way of extracting a feature vector from
an image Ii by using G is simply using the re-
sponse vector si. It can be obtained directly from
s∗i which is the solution to the optimization prob-
lem mentioned in the previous section.

Feature vector extracted in this way retains the
information of object group existences. In other
words, whenever an object group Gj is contained
with high probability in image Ii, we would ex-
pect a large value of si(j). However, we have no
idea where the object group Gj is located in the
image Ii, i.e., we lose the spatial information of
the particular object group completely.

One reason for losing the spatial information
is that we obtain si by simply solving the op-
timization problem. Note that constraint (2) of
the optimization problem just takes the maximum
value of the response map, but drops the informa-
tion of where the maximum comes from (i.e., we
doesn’t care about the “argmax” of the response
map Ĩi ∗Gj).

2.3.2 OG features: retain the spatial information via
pyramid max pooling
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Figure 7. Extracting an OG feature for an image using the set of
learned OG templates.



In order to come up with a feature vector that is
capable in answering both the question of what
object group is contained in the image and the
question of where the object group is located, we
use a pyramid max pooling [9] procedure after we
get all the response maps. We concatenate ev-
erything obtained during pyramid max pooling to
form a long vector, which is called the OG fea-
ture of an image.

Figure 7 gives a concrete example of how to
extract OG features for an image by using learned
G. In this example, m = n = 4, s = t = 2, i.e.,
∀i = 1, · · · , p, Ĩi ∈ H4×4; ∀j = 1, · · · , g, Gj ∈
H2×2. Therefore, the response map of the input
image and each OG template is a 3 × 3 matrix.
The right half of Figure 7 illustrates the procedure
of pyramid max pooling.

Note that, in Figure 7, if we collect the red-
most, green-most and blue-most square and con-
catenate them together, we get exactly the re-
sponse vector si for an input image Ii. So the OG
feature has a much larger dimensionality than the
response vector does and now we get the spatial
information back.

3. Scene studying using the object group model

So far, we have talked about the way of repre-
senting an input image as an OG feature in our
newly built object group model. Therefore, it’s
straight forward to use the OG feature together
with the existing machine learning algorithms to
do some classification and recognition tasks in
scene studying.

Figure 8 shows a typical system chart when
performing scene studying tasks in the framework
of the OG model.

4. Experiments and results

The dataset used for this set of experiments is
a subset of the SUN09 dataset [1]. Each image
in the dataset is an annotated image as required
(i.e., more than 90% of the pixels are assigned
to a certain object label). There are 573 object
classes. The dataset has 2500 images with each
image having a scene label from 17 predefined
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Figure 8. System chart for using OG model to scene studying
tasks. Given training images, we first learn a set G of OG tem-
plates and then use G to extract an OG feature for a test image.
We then use the OG feature for scene studying tasks such as scene
discovery and scene classification.

scene classes. To assure enough examples in each
of the scene classes, every scene class includes at
least 50 images.

In a word, using the notation defined earlier, we
have the number of images p = 2500, the number
of objects h = 573 and the object codebook O is
completely given.

4.1. Learned OG templates

To learn the set G of OG templates, we solve
the optimization problem (1)-(5).

Before solving the problem itself, we first hand
design several problem parameters as follows.
Choose m = n = 4, s = t = 2, i.e., each in-
put image will be transformed into a 4 × 4 Hist-
image and each OG template is designed as a 2×2
Hist-image; choose g = 32, i.e., there are 32 OG
templates in G.

We first tried an iterative method called pro-
jected sub-gradient descent to solve the optimiza-
tion problem. The method did not work quite
well in two aspects: 1) the method is very sensi-
tive to the choice of starting point and also very
easily trapped around undesired the local min-
ima due to the problem’s high non-convexity; 2)
the method progress extremely slowly and might
not converge at all for some unfortunate starting
points.

An alternative and more efficient method is
called projected Quasi-Newton (PQN) method
which is implemented by Hao et al [3]. The solver



is used in the following manner.

• Starting point selection for G.
We extract all of the s × t Hist-image
patches from Ĩ = {Ĩ1, Ĩ2, . . . , Ĩp}. We per-
form a k-means clustering algorithm, where
k = g = 32, to the extracted Hist-image
patches. The output 32 cluster centers will
then be chosen as the starting point for G =
{G1, G2, . . . , Gg}, respectively.

• Run the PQN based solver to solve the op-
timization problem.
The typical run time for solving the problem
for G is around 20-30 minutes with GPU sup-
port, which is far more efficient and reliable
than simple sub-gradient descent method.

• Learned OG templates visualization It is
helpful to evaluate the learning task by out-
putting the learned Gj’s together with the im-
age patches on which the corresponding Gj

has a high response. Figure 9 shows three
typical examples.

Figure 9. OG templates examples. Each row represents one case
of a specified OG template. The first column illustrates 3 OG tem-
plates represented by pie-shaped histogram. The rest part of each
row lists a set of image patches on which the corresponding OG
template has high responses. It can be seen that each learned OG
template faithfully exhibits the set of objects that co-occur in the
corresponding object group and moreover, the spatial information
(top-left, top-right, bottom-left, bottom-right) is also retained in
the OG template.

4.2. Automatic scene discovery [7]

Have the learned set G of OG templates at hand,
it is ready to construct an OG feature as described
in Figure 7 for an input image.

Using the extracted OG features, we perform a
task named automatic scene discovery, which is
described as follows.

Using the dataset we introduced at the begin-
ning of this section, where each image is assigned
to one of the 17 scene labels, we carry out a k-
means (k = 17) clustering. We use three differ-
ent representations, i.e., object bank (OB) [6] fea-
ture, OB feature with principle component analy-
sis (PCA), OG feature, for images in the cluster-
ing task. After applying the k-means clustering
algorithm, we’ll get k = 17 cluster centers and
their corresponding clusters. For each of the 17
groups, find an image Ic (represented by its fea-
ture vector) that is closest to the corresponding
cluster center and predict every image in the clus-
ter a scene label that is the same as the scene label
of Ic.

Figure 10 illustrates several examples for some
selected clusters.

Representative 
Image 

of each group
Sample images from each group

Figure 10. Automatic scene discovery example. Each row denotes
one cluster, with the representative image which is closest to the
cluster center listed on the left. The rest part of each row lists
several other images in the same cluster, which are predicted the
same scene label as that of the representative image. Most of the
images in a cluster get the correct scene label prediction (in a green
frame), a few of them get the wrong predictions (in a red frame).

Now, we can compute an accuracy of the test
set, which compares the predicted scene label to
its ground truth for each image. Table 1 gives a
comparison among results obtained by using dif-
ferent feature vector of an image. We can see the



Used feature vector Scene label prediction accuracy
OB feature 68.5%

OB feature with PCA 62.2%
OG feature 75.1%

Table 1. Accuracies for scene label prediction via different feature
vector representations.

improvements made by using the OG feature rep-
resentation of the input images, compared to clas-
sical OB feature representation and modified OB
feature with PCA.

5. Conclusion

In this paper, we introduced an object group
(OG) model for scene studying. Empirical results
show that the learned OG templates are consistent
with human’s common sense. Using OG features
produced by OG templates, we achieve state-of-
the-art performance in scene discovery task.
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