
Self-Paced Learning for Semisupervised Image Classification

Kevin Miller
Stanford University

Palo Alto, CA
kjmiller@stanford.edu

Abstract

In this project, we apply three variants of self-paced
learning to semi-supervised image classification with latent
bounding boxes. Intuitively, these three variants aim to find
better local optima than the baseline algorithm (LSSVM)
by ignoring ”difficult” data during the earlier iterations of
the algorithm. Indeed, lower objectives are achieved by all
three variants, but they do not translate into better average
precision scores than those achieved by the LSSVM base-
line.

Future Distribution Permission
The author(s) of this report give permission

for this doc- ument to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

In this project, we aim to train a classifier
to predict which objects an image contains.
Specifically, during training we are given a set
X containing N images, and for each image
xi ∈ X , we are given a set of object labels
Yi ⊂ Y (where Y is the set of all possible object
labels) indicating which objects are contained in
the image xi. In this particular experiment, Yi is
always non-empty and is always a strict subset of
Y .
Theoretically it would be possible to train
a non-binary classifier to predict each Yi by
representing each possible Yi as a possible classi-
fication. However, this would require us to deal
with 2|Y | different possible classifications, which
could lead to tractability and data sparsity issues.
Therefore, we approach this problem by training
a traditional non-binary classifier (i.e. the type

one would typically use in the simpler problem
in which each image contained just one type of
object) that gives a classification score to each
member of Y for each image. These classification
scores can then be used to compute an average
precision score for each member of Y . The AP
scores essentially tell us how well our classifier
would do if we predicted each Yi by thresholding
the classifier scores.
Since we are given the ground truth during
training, it would be possible to learn a classifier
via a supervised learning; however, one can often
learn much more powerful models by using latent
variables that reduce noise. In this case, for each
image xi, the latent variable hi represents the
location and dimensions of a bounding box that
ideally contains one of the objects in xi. Hi is the
set of all possible bounding boxes for image i.

2. Related Work

In [1], Felzenszwalb et. al. formulate the
Latent SVM (LSVM) algorithm and use it to
train a deformable parts model for semisuper-
vised binary classification and detection. In [2],
Yu, Joachims, and Finley put forward an ex-
tension of this algorithm, the Latent Structural
SVM (LSSVM), which can efficiently learn mod-
els for classification problems with large predic-
tion and latent variable spaces. Like the LSVM,
the LSSVM problem is a non-convex problem,
and although the optimization algorithm used in
[2] can be shown to be a descent algorithm, it is
still susceptible to potentially bad local minima.

In [3], Koller, Packer, and Kumar formulate an
optimization algorithm for LSSVM called Self-
Paced Learning (SPL), which allows examples
to be ignored during the optimization of the
model w but increasingly rewards the inclusion
of examples. SPL is actually quite similar to
an independently-derived, fully-supervised algo-
rithm in [5] called Robust SVM, which attempts to
detect and ignore outliers while training an SVM.
Intuitively, SPL can be thought of as an algo-
rithm that ignores ”difficult” examples (such as
outliers) during early outer iterations and only in-
cludes them later.
In [3], SPL is shown to outperform the standard
optimization algorithm for LSSVM (which will
be referred to simply as ”LSSVM” for notational
convenience) on a very simple semisupervised
bounding box problem. In this project, we ap-
ply a slightly modified version of SPL to a more
complicated, larger-scale bounding-box problem.
In addition, in this project we formulate two ex-
tensions of the SPL algorithm and apply them to
our bounding box problem.

3. Approach

3.1. Features and Preprocessing

Our feature vector function Ψ(x, y, h) is
a concatentation of K such subfunctions
Ψ1(x, y, h), ...,ΨK(x, y, h), referred to as fea-
ture sets or ”kernels”. The kernels we use
are HoG, SIFT, color-SIFT, RGB-SIFT, and
opponent-SIFT. What makes this set of kernels
interesting is the fact that HoG and SIFT oper-
ate on greyscale versions of the images, while
color-SIFT, RGB-SIFT, and opponent-SIFT are
extensions of SIFT into the color domain (as
described in [4]); intuitively, we might expect
HoG and SIFT to be considered ”easier” features
for some types of images where color isn’t
well-corellated with object type. We form each
Ψk(x, y, h) by using a codebook to discretize the
descriptors and then forming a 2-level spatial
pyramid (via BoW max-pooling) over the part
of the image within the bounding box specified
by h and concatenating it with a BoW max-

pooling over the descriptors that fall outside of
the bounding box. Thus, our model takes into
account information both inside and outside
of the bounding box, as well as information
in each quadrant of the bounding box. Each
PsiK(x, y, h) can be thought of as having |Y |
subsections, each with a 1 entry at the beginning
to allow for bias terms; y simply determines
which of these subsections has the actual feature
data - the rest of the subsections are zeroed out.
In effect, this means that wT Ψ(x, y, h) is simply
the inner product of one subsection of w (indexed
by y) with the actual feature data.
The set of possible bounding boxes for each
image is determined by computing objectness
scores for a large range of potential bounding
boxes and then choosing the bounding boxes with
the top 50 objectness scores.

3.2. Algorithms

In order to train a classifier that will get good
AP scores, we construct an expanded training set
as follows:

For each xi ∈ X , duplicate |Yi| times, and for
each duplicate xj , let yj ∈ Yi be the ”true” la-
bel and let all other labels in Yi be ”whitelist”
labels that aren’t used in slack constraints (call
set of whitelist labels Ỹi.

Our baseline algorithm (referred to as LSSVM,
despite minor differences with the usual LSSVM
algorithm) is as follows:

w ← 0
Randomly initialize h∗1, ..., h

∗
Ñ

while Objective not yet converged do
w ← min{w, ξ}1

2
||w||22 + C

Ñ

∑Ñ
i=1 ξi

subject to,
wT Ψ(xi, ȳ, h̄)−wT Ψ(xi, yi, h

∗
i)+∆(yi, ȳ) ≤

ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)
for i = 1→ Ñ do
h∗i ← arg maxh∈Hi

wT Ψ(xi, yi, h)
end for

end while

The 1-slack cutting-plane algorithm described in
[6] is used to optimize for w.
In our version SPL (which is similar to the one
used in [3]), we add a constraint on how many
images in X̃(y) are included for each y ∈ Y
(where X̃(y) = {x̃i ∈ X̃ : yi = y)}. The SPL
algorithm is illustrated below:

w ← 0
Randomly initialize h∗1, ..., h

∗
Ñ

f ← f0

while Objective not yet converged do
for s = 1→ S do
v ← arg min{ v, ξ}C

Ñ

∑Ñ
i=1 viξi

subject to,
wT Ψ(xi, ȳ, h̄) − wT Ψ(xi, yi, h

∗
i) +

∆(yi, ȳ) ≤ ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)∑
i:xi∈X̃(y) vi == df |X̃(y)|e∀y ∈ Y

w ← arg min{w, ξ}1
2
||w||22 + C

Ñ

∑Ñ
i=1 viξi

subject to,
wT Ψ(xi, ȳ, h̄) − wT Ψ(xi, yi, h

∗
i) +

∆(yi, ȳ) ≤ ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)
end for
for i = 1→ Ñ do
h∗i ← arg maxh∈Hi

wT Ψ(xi, yi, h)
end for
f ← min{f + ∆f, 1}

end while

In an extension referred to as SPL+, we can
include or ignore (image, kernel) pairs rather than
entire images. The algorithm works as follows:

w ← 0
Randomly initialize h∗1, ..., h

∗
Ñ

f ← f0

while Objective not yet converged do
for s = 1→ S do
v ← arg min{ v, ξ}C

Ñ

∑Ñ
i=1 ξi

subject to,∑K
k=1(v

(k)
i wT

k Ψk(xi, ȳ, h̄) −
v

(k)
i wT

k Ψk(xi, yi, h
∗
i) +

v
(k)
i

K
∆(yi, ȳ)) ≤

ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)∑
i:xi∈X̃(y) v

(k)
i == df |X̃(y)|e∀y ∈ Y, k ∈

{1, ..., K}

w ← arg min{w, ξ}1
2
||w||22 + C

Ñ

∑Ñ
i=1 ξi

subject to,∑K
k=1(v

(k)
i wT

k Ψk(xi, ȳ, h̄) −
v

(k)
i wT

k Ψk(xi, yi, h
∗
i) +

v
(k)
i

K
∆(yi, ȳ)) ≤

ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)
end for
for i = 1→ Ñ do
h∗i ← arg maxh∈Hi

wT Ψ(xi, yi, h)
end for
f ← min{f + ∆f, 1}

end while
v is optimized as follows:

Randomly initialize v such that
for y ∈ Y do

for t = 1→ T do
for k = 1→ K do

Greedily optimize v(k)
i ∀i such that xi ∈

X̃(y)
end for

end for
end for

This update step admits two levels of paralleliza-
tion; first, the for loop across y ∈ Y can be
parallelized, and second, the greedy update step
can be parallelized across i : xi ∈ X̃(y).
In a further extension referred to as SPL++,
we can now include or ignore (image, kernel,
label) 3-tuples, where ”label” refers to the ȳ
that we consider in the slack constraint for the
w optimization problem. Intuitively, SPL++
should allow us to penalize instances where, for
example, our model would misclassify a cat as
a car but not penalize instances where it would
misclassify a cat as a dog. The SPL++ algorithm
works as follows:

w ← 0
Randomly initialize h∗1, ..., h

∗
Ñ

f ← f0

while Objective not yet converged do
for s = 1→ S do
v ← arg min{ v, ξ}C

Ñ

∑Ñ
i=1 ξi

subject to,

∑K
k=1(v

(k,ȳ)
i wT

k Ψk(xi, ȳ, h̄) −
v

(k,ȳ)
i wT

k Ψk(xi, yi, h
∗
i) +

v
(k,ȳ)
i

K
∆(yi, ȳ)) ≤

ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)∑
i:xi∈X̃(y) v

(k,ȳ)
i == df |X̃(y)|e∀y ∈

Y, k ∈ {1, ..., K}, ȳ ∈ Y (note that images
for which ȳ ∈ Ỹi are not counted in this
constraint)
w ← arg min{w, ξ}1

2
||w||22 + C

Ñ

∑Ñ
i=1 ξi

subject to,∑K
k=1(v

(k,ȳ)
i wT

k Ψk(xi, ȳ, h̄) −
v

(k,ȳ)
i wT

k Ψk(xi, yi, h
∗
i) +

v
(k,ȳ)
i

K
∆(yi, ȳ)) ≤

ξi∀(h̄, ȳ) ∈ Hi × (Y − Ỹi)
end for
for i = 1→ Ñ do
h∗i ← arg maxh∈Hi

wT Ψ(xi, yi, h)
end for
f ← min{f + ∆f, 1}

end while

The optimization of v for SPL++ is analogous to
the optimization for SPL+.
In practice, in order to obtain a good initial w and
avoid bad local (w, v) minima, the first two outer
iterations of SPL, SPL+, and SPL++ are LSSVM
outer iterations.

4. Experiment

4.1. Experimental Setup

A subset of the training set for VOC 2007 is
used. The total size of this subset is 800 images.
We use 4-fold cross-validation. Also, we only
consider the 7 most frequent classes which are:
1. person
2. car
3. chair
4. dog
5. sofa
6. bird
7. cat
(This indexing scheme is used in plots that in-
volve different classes).

4.2. Preliminary Work

A few different values of C were tried at first,
but the performace of LSSVM did not seem
to vary much, so we chose to go forward with
C = 1.0. Also, after some initial poor results
from SPL and SPL+, we decided to reweight the
slacks of each example so that it would be as if
we were training on a balanced data set. This did
improve the performance of LSSVM somewhat.
Full runs were thus subsequently done on the
reweighted dataset with C = 1.0.

4.3. Results

Below are the average test and train AP scores
of LSSVM, SPL, SPL+, SPL++ on each class
(within each cluster in the bar graphs below, the
ordering is LSSVM, SPL, SPL+, SPL++).

Thus, there was only one class for which LSSVM

did not have the best performance of any of the
algorithms. This is somewhat strange, given that
SPL, SPL+, and SPL++ consistently achieve a
lower objective than LSSVM, as shown below for
fold 3 (where black is LSSVM, red is SPL, green
is SPL+, and blue is SPL++):

This, combined with the fact that SPL, SPL+ and
SPL++ significantly underperform on train AP
relative to LSSVM, leads us to suspect that SPL,
SPL+, and SPL++ are leading to local minima
that are lower than what LSSVM reaches but
more underfitting to the data. It makes sense that
SPL, SPL+, and SPL++ would lead to an under-
fitting local minimum, given that they ignore data
that would lead to high slack values (and likely
overfitting).

4.4. Close Analysis of Self-Pacing

In the following instances, heatmaps are used
to represent v; black represents inclusion, while
white represents exclusion.

4.4.1 SPL

The temporary exclusion of this image coincides
with the widening of the bounding box. Perhaps
this widened bounding box is the result of an
underfitting of w. It’s not surprising that this
image is considered difficult at some point - there
are many people in it, all of them wiht different
poses, making it difficult to get a bounding box
over most of just one ”typical” person. A wider
bounding box would throw away more informa-
tion within itself because more points inside of it
would get max-pooled together.
Another interesting illustration of SPL’s be-
havior can be seen in the following example:

At first, it seems, the algorithm tries to classify
the child as a person but then decides that the
child is too difficult to classify as a person, at
which point the bounding box moves toward (and
ends up surrounding the top of) the couch. In the
LSSVM algorithm, by contrast, the bounding box
always surrounds the child, from beginning to
end. Perhaps if one looked at more images, one
might find a general pattern of SPL discarding
”difficult” people examples and underfitting its
model of people.

4.4.2 SPL+

The rows, going upwards, represent HoG, SIFT,
color-SIFT, RGB-SIFT, and opponent-SIFT.

The deviation of the bounding box from the
woman’s face seems to coincide with the ignor-
ing of one or more of the color-sensitive kernels.
It makes sense that color-sensitive kernels would
be ignored for this example, since its coloring is
quite weird. It also makes sense that practically
all of the kernels are ignored at some point - one
would not expect the the black grid lines to make
classification using orientation-based features
any easier.

4.4.3 SPL++

Here we can see that there are typically many
variables ignored in the ”dog” and ”cat” columns
(columns 4 and 7, respectively), which makes
sense, since we would expect horses to be easy
to confuse with cats and dogs (and horses aren’t
even an included class in our problem, making it
even more difficult for our model to be trained to
not call a horse a cat or a dog).

5. Conclusion

SPL, SPL+, and SPL++ in general do not
outperform LSSVM but do show promise, due
to their ability to achieve lower objective values.
Based on this, a next step would be to try higher
values of C, which would make underfitting less
likely. Other good ideas might be to run the
greedy update steps more thoroughly (in these

experiments, both S and T were set to 1 due to
time constraints). Finally, since our AP scores are
intuitively really related to binary classification,
a different reweighting of the examples that
balanced images with a particular type of object
against images without that type of object could
potentially lead to AP scores that better reflected
the objective values.

References
[1] P. Felzenszwalb, D. McAllester, and D. Ramanan A Discrim-

inatively Trained, Multiscale, Deformable Part Model CVPR,
2008.

[2] T. Joachims and C.-N. Yu. Learning Structural SVMs with
Latent Variables ICML, 2009

[3] M. Pawan Kumar, B. Packer, D. Koller Self-Paced Learning
for Latent Variable Models NIPS, 2010.

[4] Koen E. A. van de Sande, Theo Gevers, and Cees G. M. Snoek
Evaluating Color Descriptors for Object and Scene Recogni-
tion IEEE Transactions on Pattern Analysis and Machine In-
telligence volume 32 (9), pages 1582-1596, 2010

[5] L. Xu, K. Crammer, D. Schuurmans Robust Support Vector
Machine Training via Convex Outlier Ablation AAAI 2006

[6] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training
for structural SVMs Machine Learning 77(1):27-59, 2009

6. Appendix

This project is part of my research with Daphne
Koller, Ben Packer, and M. Pawan Kumar. I have
been collaborating with Rafi Witten, and under-
graduate who is not on CS231A, on much of this
research.

1. Explicitly explain what the computer vision
components are in this course project;

2. Explicitly list out all of your own contribu-
tions in this project in terms of:

(a) ideas Original SPL was formulated by
Koller, Kumar, and Packer. They also
came up with the main ideas behind
SPL+ and SPL++. However, I collabo-
rated with them and Rafi on exactly how
to pose these ideas in the form of an op-
timization problem.

(b) formulations of algorithms I did most of
the work in formulating the update steps
for SPL+ and SPL++.

(c) software and coding Rafi and I collabo-
rated closely on the main LSSVM algo-
rithm. The SPL, SPL+ and SPL++ up-
date code was entirely my own work, as
was all the code at places where SPL,
SPL+, and SPL++ interacted with the
normal LSSVM algorithm. Feature com-
putation and computation of objectness
scores for bounding boxes were entirely
Rafi’s work, not mine.

(d) designs of experiments I collaborated
with Rafi, as well as my advisors on
choosing AP scores as a metric. How-
ever, design choices for the particular ex-
periments for this project were entirely
my own (we’re currently trying to run
much bigger experiments as a longer-
term goal).

(e) analysis of experiments This was entirely
my own work.

3. Verify and confirm that you (and your part-
ner currently taking CS231A) are the sole au-
thor(s) of the writeup. Please provide pa-
pers, theses, or other documents related to
this project so that we can compare with your
own writeup. See CURIS presentation at-
tached to submission email. I collaborated
with Rafi on that last summer.

