

Abstract

We implement a method of automating the creation of

cinemagraphs for an input video using stabilization, object
tracking, image blending and video texturing. Currently,
artists must carefully setup and edit the video to create a
cinemagraph. This process is both tedious and
time-consuming. Our method streamlines the pipeline to
reduce the amount of work the user have to perform to
create a cinemagraph. The only user input our method
requires is a selection of four points for stabilization and
tracking.

Using the fact that the frames are highly similar, we
adopted an affine model for stabilization for computation
efficiency. Next, we use temporal gradients to track the
object’s motion-subject region between frames. Then, an
efficient two-band blending is used to blend across frames.
Lastly, we adopted video texturing to find a good seamless
loop for the GIF images. Our method will enable users to
create cinemagraphs easily using videos captured from any
devices, including their smart phones.

Future Distribution Permission
The author(s) of this report give permission for this
document to be distributed to Stanford-affiliated students
taking future courses.

1. Introduction
Cinemagraphs are short, repeating animated images of a

mainly static scene with slight motions, usually in GIF
format. It was first introduced by a professional
photographer, on his blog in Tumblr [1]. As mentioned
earlier, it is extremely difficult for a common user to create
cinemagraph as it takes time, skills and equipment to create
one. An artist must carefully set up a scene to create a
cinemagraph, as any motion shake increases the complexity
of creating cinemagraphs. Moreover, artists must manually
select masks for the area in motion, and blend frames onto
one another.

Our novel system enables users to automate the creation
process. The user can feed in a video recorded casually,
removing the need to carefully set up the scene. We can
thus assume that the frames will be highly similar, since the

video is assumed to be taken from the same scene with
roughly the same field of view.

1.1. Method

An overview of our system is as follows. Firstly, based
on the review of stabilization techniques by Rawat and
Singhi[2], we found out that the software stabilization
technique proposed by Farid and Woodward[3] was best
suited for our application. The algorithm is computationally
efficient and its affine model captures sufficiently rich
range of motion such as translation, rotation and scaling.
The user’s input will serve as the region of interest for
video stabilization. Since as mentioned before, the video is
assumed to be taken from the same scene, this method is
well-suited for our needs.

Originally, we used a SIFT descriptor to find the
bounding box of the tracked object through the scene. In
this step, we require the user to select the bounding box for
tracking. The user can choose to skip this step if the change
in the object’s position is lower than a threshold. However,
this method was very inaccurate and we had to switch to
motion tracking using Temporal Gradient. This filter tracks
moving objects and returns a mask of the areas with large
fluctuations in intensity.

After tracking the bounding box, we blend the bounding
boxes of subsequent frames onto the first frame using the
two-band blending algorithm proposed by Lowe[4]. This
method fast and provides a good result for highly similar
frames.

Lastly, we implemented techniques for transforming
normal videos into video textures [5] to create a seamless
endless loop for our video. These techniques include
methods of calculating transition cost and probability,
optimizing loops for minimum cost, and sequencing a list
of transitions into a loop for GIF format. Due to a lack of a
video texture format, we settled on producing an animated
GIF format image file. Although this loses the randomness
of true video textures, this is coherent with how
cinemagraphs are generated.

1.2. Data Set

We intend to record video using any digital camcorder.
Our sample size should be at least five videos of different
scenes. Sample data will include approximately

Cinemagraph: Automated Generation (CAG)

Walter Li

Stanford University
walterli@stanford.edu

Bo Xian See
Stanford University
bsee@stanford.edu

Stabilize Video

User
inputs
video

User inputs
stable region

Blend Frames

Track Motion

is stationary?

is moving?

User inputs region of interest

Blend Frames

Apply Video
Texturing

System outputs
animated GIF

Figure 1: Pipeline of our system.
A video is first fed into our system. The user then selects a region that is not moving in the video, and chooses if the
object of interest is moving. If it is not, we simply blend the region of interest selected by the user. If it is, we apply
motion tracking to track the region of interest before blending the frames. The last step of our pipeline is to create
an infinite look using video texturing,

Algorithm determines region of interest

five-second clips of mostly static scenery. For each video,
there must be a segment with static scenery for image
stabilization. The tracked object can be either stationary or
moving through the scene.

1.3. Evaluation

Evaluation of a piece of art is usually taken qualitatively.
We will visually evaluate the final animated image and
grade it based on smoothness of frame transitions, and the
smoothness of blending with background image. However,
some quantitative measurements can be employed to
evaluate the results.

Intermediate results are produced by each subsystem,
and evaluated individually. First, the video stabilization
system can be evaluated by considering the complete video
excluding the region of interest of the subject. The average
standard deviation in pixel intensities can be used to
compare the difference between the original video and the
stabilized video.

Second, the object tracking and pyramid blending
systems can be hard to quantify. But we can overlay a
highlighting color over the tracked region of interest, and
generate an animation over all the frames. A human user
can evaluate all frames and count the number of frames
with a correct and complete highlighting overlay.

Third, the two-band image blending step is also difficult
to quantify. On the one hand, sharp edges due to image
boundaries are unwanted. On the other hand, we do not
want to blend away important subject features. Image
overlay boundaries can be detected using edge detection.
The presence of edges as an outline around the object
signifies a non-optimal blending scheme. Faded features

sometimes may be necessary to reduce sharp jumps in loop
transitions, and thus unavoidable.

Finally, video textures can be evaluated based on total
loop length, total cost of transitions in final animation (in
comparison with other possible transitions not used), and
the loop performance, which is an aggregate metric defined
as length divided by cost.

2. Related Work
 Previous related works to automate the process use video
texturing to continuously loop through a video at selected
regions [6]. However, their method does not track objects
in motion, but instead consider regions containing dynamic
objects. This loses the context of the scene as the regions
are considered independent of each other. Also, this means
that dynamic scenes with many moving objects will not be
handled well.
 In this paper, we aim to overcome this by using object
tracking. Instead of creating the blending area based just on
using changes between frames, we use tracking to
determine the blending area across frames. This accounts
for translational movement, and thus is more robust than
the pipeline proposed by James et al.
 We also referred closely to the works and tutorials by
artists [7-9], to understand how cinemagraphs are
traditionally created.

3. Technical Approach

3.1. Video Stabilization

To stabilize the video, we modelled the camera
movement between two frames using a 2x2 affine matrix,
and a 2x1 translational vector, as described by Farid and
Woodward [3] via the equation:

���, �, �� = ��	
� + 	�� + 	
, 	�� + 	�� + 	�, � − 1�
The variables m1, m2, m3, m4 form the 2 × 2 affine matrix A
and m5 and m6 the translation vector T.

We solve for these 6 unknown variables by minimizing
the quadratic error between the two frames.

��	���� = � [���, �, �� − ��	
��,� ∈��� +	��
+ 	
, 	�� + 	�� + 	�, � − 1�]�

The ROI is the region of interest. Using the Taylor expansion,
and discarding high order terms, we can solve the
minimization function efficiently.

	��� = � !�!�"
���

#
$

 � !�%
���

	��� = [
 … 	�]" !�" = ���� ��� ��� ��� �� ��� % = �' + ��� + ���

The terms fx, fy,, and ft are partial differentials of f(x, y, t).
As long as the user selects a reasonably big region of

interest, this minimization function is solvable.
A coarse-to-fine scheme is adopted in order to compute

coarse movements efficiently. We use a 3-level Gaussian
Pyramid to give us better estimation for larger movements.
We chose to use 3-levels because we know that the frames
will be from the same scene, and a 3-level Gaussian
Pyramid should be sufficient to capture the camera shakes,
without causing a significant slowdown.

3.2. Object Tracking

To track the object through the scene, we used both Scale
Invariant Feature Tracking (SIFT)[11] and Temporal
Gradient[10].

Our first attempt at tracking object was done using a
SIFT descriptor. We first compute keypoints of every
frame in the video. Then, the user inputs the original
bounding box of the object, and the bounding box is tracked
in the scene using SIFT. When no bounding boxes are
found, or if the bounding box is determined to be incorrect,
the user reselects the bounding box of a scene. To detect an
incorrect bounding box, we check for discontinuity in
velocity, position, scale and rotation of the object. This is
because we know that the object must follow a certain path

in the scene. A scene of about 50 frames typically requires
the user to reselect the bounding box 3 times. However, we
realized that this method gives us a significant number of
false positives, claiming that a match has been found, and
giving incorrect positions. This is especially true during
frames where the object is blurred due to motion. Because
of the blur, we lose important keypoints and edges of the
object, either causing a false negative or a false positive.
 Also, it was extremely difficult to find a frame with good
keypoints because in most frames, the object is in motion.
A possible way to detect good frames is to use
Sum-Modified Laplacian[12], that gives an estimate on
how sharp the image is. However, we felt that overall, SIFT
will not work well in this situation.

To overcome this, we switched to intensity gradients
with respect to time to identify areas with motion. Here, we
are under the assumption that a change in pixel intensity is
equivalent to some form of motion. To reduce the
possibility of missing important regions of interest, we do
not apply a Gaussian blur first. We find that a Gaussian blur
simply reduces our chances of finding the areas of motion.
However, this introduces the possibility of higher noise in
our result. Since we do not plan on using excessively noisy
video in the system, this is not an issue. Any noise at the
edges of motion is suppressed by a dilation of the edges
created motion-tracking mask, and background-blending
later on.

The video is first converted to a 3D array with axes in the
height, width, and time. This allows us to easily apply a
Sobel filter in the t-axis using MATLAB’s ‘imfilter’
command. The magnitude of the resulting intensity rate of
change at each spatial-temporal point is normalized to the
maximum and then a threshold value is applied to consider
only regions with a large amount of motion. Empirically, a
value of around 0.15 to 0.25 works sufficiently well.
Finally, the points above the threshold is dilated using
‘imdilate’ with a disk of radius 15px (usually ~10% relative
to the minimum of width and height of the video).

Any noise (now typically circles with radius of 15px) in
the mask is blended away in the last step.

3.3. Two-Band Blending

We implemented a modified version of the two-band
blending algorithm proposed by Lowe et al. [4]. In the
paper, blending was done only for overlapping regions
between two panorama images. Our modification enables
the user to blend bounding boxes onto a common frame.
 To blend the two frames, we first divide the frames into
its high frequency component and its low frequency
component. This is achieved using a simple two level
Gaussian Pyramid on both the outer frame and the inner
frame, using the equations:

 ()*+,-.��, �� = /	01-��, �� ∗ 30455607�8, 569-� :61ℎ+,-.��, �� = /	01-��, �� − ()*+,-.��, ��

The variables x, y represents the position of the pixel in the
blending region, while 8 and 569-are parameters that the
user specifies. For our code, we used = 0.5 and 569- =[3 3] .

We combined the low frequency components using
linear interpolation over radius that is specified by the user.

 ()*+,-.CDEFGEG = ()*+,-.HIJEKLKMNE ∗ O+ ()*+,-.PFFEKLKMNE ∗ �1 − O�

O = Q,

In this equation, d is the distance to the inner frame and r is
the radius specified by the user. The low frequency
component of the blended image is thus the two
dimensional liner interpolation of the overlapping region.
As described in the paper, the high frequency component is
not interpolated because we want to keep the details of the
objects. We simply used the high frequency of bounding
box because it contains the details we want to preserve.
 The overall blended frame will then be the combination
of the low frequency component and high frequency
component.
 RS-7Q-Q/	01-��, ��= :61ℎ+,-.��, �� + ()*+,-.��, ��

To accommodate for uneven shapes, we used a Region
of Interest (ROI) mask to indicate the blending regions.
This is an extension to the existing algorithm, as the
existing algorithm only accounts for vertical seams. We
dilated the original ROI with a radius specified by the user
to get the blending region. In other words, we extended the
ROI by radius amount while keeping the original shape.
Blending is then done in this region outside the ROI.

Similar to the blending with bounding boxes, the high
frequency detail of the inner frame is kept, while the low
frequency detail is linearly interpolated. Note that the
weights of the low frequency components are now
calculated based on the distance away from the nearest
pixel within the ROI, and the above equations still hold.

3.4. Video Texturing

Given a series of frames, the objective now is to generate
an infinite loop of frames with minimal discontinuities
between frames. The video textures work by Arno Schodl,
et al. can be applied to find the optimal transitions between
non-continuous frames [5]. Since we are only concerned
with a subsample of each frame, video texturing is given
only a subsample of the whole video.
 First, we compute the cost of a transition as L2-norm
distances between the ith and jth frame for all the frames.
This is saved as an n-by-n square matrix (Dij). Dynamics
preservation and future costs are also incorporated by,

respectively, iteratively computing and solving the
following set of equations.

 TP,U = V/P − /UV�

*W = X16 13 13 16Z
TPU[= � *WTP\W,U\W

W

TP,U[[=]TP,U[^_ + O minW TU,W[[

bP,U[[= c ∙ -$ef,ghh
i

The matrices I i and I j are the images at frame i and j,
which can be used to calculate the cost matrix (D). The
vector w is a set of weights for computing the cost matrix
after considering preserving dynamics (D’). Finally, the
cost matrix that also considers future costs is calculated as
D” . The probability of each transition is modelled
exponentially, and normalized such that each row sums to
one.
 This results in the 3D plots for probability of each
transition shown in figure. This matrix is then filtered for
local maxima, which will become our list of possible
transitions. To make things interesting, we would like to
weight the probabilities by distance of each transition (in
indices from source to destination). This allows us to prefer
multiple large jumps to many small transitions which could
produce jittery motions in the animation. This is an issue
because we must make deterministic rather than
probabilistic decisions on transitions.

Following analysis of transitions, we consider only the
top 20 (or however many) transitions. These are then used
to find the optimal loop for up to a certain number of frames,
with the lowest cost. This is optimized by dynamic
programming. With the optimal set of transitions, we then
sequence them using the steps outlined in section 4.3 of
Schodl’s paper [5] to generate the final sequence of frames,
which is written to an animated GIF file.

4. Evaluation and Results
Because our results are in animated GIF format, please

go to the following links to view the results. The original
input GIF, taken by our smart phone and imported into
Matlab, can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/original
.gif

4.1. Video Stabilization

The stabilized video can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/stable.g
if .
 There are still some movements in the non-subject areas
of the image. However, this is a limitation of affine
transformations. A shaky camera still experiences slight

perspective changes, which cannot be fixed with an affine
transform.
 Fig. 2 shows the results of our image stabilization. In this
image, the black region is the region selected by the user as
moving parts. This is a parameter that the user can select, to
denote if the area selected is moving or stable. The intensity
of the pixel represents the variance of the pixel across all
the frames. Thus, a pixel with high intensity has high
variance, representing instability, while a pixel with low
intensity represents low variance, and hence, stability.

Figure 2: Evaluation Results of Image Stabilization

 The figure on the left is the output of the original video,
while the figure on the right is the output of the stabilized
video. From the figures, it is clear that the video is a lot
more stable after stabilization, because the average
intensity of the pixels is much lower.
 However, the result of the stabilization technique is
heavily dependent on the user input. A bad selection for the
stable region might yield a worse output compared to the
original.

4.2. Two – Band Blending

Figure 3: Unblended image (left) and blended image (right) with
bounding box blending

Figure 4: Unblended image (left) and blended image (right) with
region of interest selection.

 The images shown in figure 2 and figure 3 are the results
of image blending an orange with an apple. The original
image samples are taken from Lowe’s paper.
 To evaluate the blending method, we used a Sobel filter
to perform edge detection on the blended images. This is a
good measure of image blending because a well-blended
image will not have discontinuity at the blending regions.
The blend is considered good when no edge is detected at
the edge of the region of interest, and when all other edges
previous present are preserved.
 We blended 50 random images, creating 25 blended
images, similar to the ones above. In all our images, no
discontinuity was detected at the region of interest, and all
original edges were preserved.
 We also evaluated the efficiency of our algorithm. The
bounding box blending took an average of 0.5 seconds,
while the ROI blending took an average of 30 seconds for a
738x502 pixel image. The huge disparity between the
bounding box blending and the ROI blending is due to the
fact that in the ROI blending, the blending region is no
longer uniformed. Thus, we are unable to perform
column-wise and row-wise operation, causing a significant
slowdown in our pipeline. Instead, each pixel was
calculated individually. We realize that there is a trade off
between efficiency and robustness, and we chose to be
robust in our pipeline, since most natural objects do not
occur in uniform shapes.

4.3. Object Tracking

4.3.1 Scale Invariant Feature Tracking
We evaluated our SIFT-based tracking by counting the

number of true positives, false negatives and false
positives. We know that there are no true negatives in our
data set as the object is present through the entire scene.
Unfortunately, the SIFT-based tracking performed worse
than expected, detecting very few true positives.

Figure 5: 12 Frames from the SIFT-based tracking output.

 By displaying the tracked bounding box and the tracked
center, we are able to identify true positives, false positives
and false negatives. We ran this algorithm on five separate
files with 50 frames each, and realized that on average, the
descriptor only yields 80% accuracy across all frames. This
is even after discarding bounding boxes, which are
determined to be inaccurate.

4.3.2 Temporal Gradient

A gradient with respect to time can produce accurate
masks that capture the area of motion. Some noise is
produced due to unstable background images. With a less
noisy video, such as one taken on a tripod, with only the
subject in motion, such noise in the mask does not appear.
Dilating the mask helps to keep desired motion-rich areas
below the threshold by taking advantage of their proximity
to areas above the threshold.

Some types of motion do not lend well to the intensity
gradient method. For example, shadows are low frequency
content, in both spatial and temporal dimensions. Thus,
they can be lost during thresholding. If we limit our
subjects to higher frequency content, such as moving
objects, this method will be sufficient.

Figure 6: Tracking mask overlay produced by temporal gradient
method for two separate videos at four different points in time.

4.4. Video Texturing

The following charts depict some of the intermediate
variables and data used by video textures to determine the
optimal transitions. Each local maximum is considered
good transitions to take. This is necessary because many
local maxima are far lower in probability than the peaks in
the center, but we still want to take distant transitions, and
not a lot of small steps.

Figure 7: Probability of transition, modeled exponentially on the
cost matrix, after considering dynamics preservation and future
costs.

 We define a new metric in order to measure the
“performance” of a transition. A high performing transition
would take a longer jump, but still have very low cost. The
transition performance (TP) is defined as:

jb = T65�07!- �(-71�ℎ�)� j,0756�6)7k)5�)� j,0756�6)7

 This effectively weights the farther transition as “better”
than very tiny transitions that only move back by a few
frames. Such small jumps are unwanted because they
appear to have high frequency jittery motion that is
unappealing to the viewer. On the other hand, large jumps
usually contain some meaningful action appearing between
two transitions. In fig. 8,

Figure 8: Transition performance is defined as the length of the
loop created by the transition divided by the cost of that transition.

4.5. Final Cinemagraph

The result after creating a seamlessly looping animated
GIF image using video textures can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/final.gif
 Qualitatively, the result looks like a seamless infinitely
looping animation. Depending on the subject, the user may
wish to insert motionless frames at the end to provide a
pause between the action. This is purely an artistic decision,
and so it is not implemented here.

5. Conclusion
In conclusion, we have created a complete pipeline that

enables novice users to create cinemagraphs without
laborious photo editing and careful setup. Each of our
results were actually taken by hand using our smart phones,
and we were still able to create cinemagraphs.

We adopted various existing solution to help create the
pipeline. First, we used the affine
stabilization technique proposed by Rawat and Sin
to stabilize the video. Next, if the target object is in motion,
we use motion tracking algorithm to track the object.
Although our attempt at SIFT[11] failed, we achieved a
good result using Temporal Gradient[10]
the region of interest using the Two
proposed by Lowe et al[4]. Even though this technique was
originally used for 1-dimensional stitching, we extended it
to enable blending across a general shape. There is,
however, a trade-off between robustness and efficienc
we see that our runtime significantly increase with the
freehand blending. Lastly, we used video texturing
technique by Schodl et al.[5]. to create a seamless loop
between frames. This is necessary as cinemagraphs are
continuous and loops infinitely.

A typical cinemagraph of 400x300 pixels takes
approximately 5-7 minutes to render from start to finish on
a 8GB 2.8Ghz Core i7 processor. It also requires

Figure 8: Transition performance is defined as the length of the

the transition divided by the cost of that transition.

The result after creating a seamlessly looping animated
GIF image using video textures can be found here:

bin/cs231a/fan/final.gif
Qualitatively, the result looks like a seamless infinitely

looping animation. Depending on the subject, the user may
wish to insert motionless frames at the end to provide a

on. This is purely an artistic decision,

In conclusion, we have created a complete pipeline that
enables novice users to create cinemagraphs without
laborious photo editing and careful setup. Each of our

s were actually taken by hand using our smart phones,
and we were still able to create cinemagraphs.

We adopted various existing solution to help create the
pipeline. First, we used the affine-approximation
stabilization technique proposed by Rawat and Singhai[2]
to stabilize the video. Next, if the target object is in motion,
we use motion tracking algorithm to track the object.

failed, we achieved a
[10]. We then blend

est using the Two-Band Blending
. Even though this technique was

dimensional stitching, we extended it
to enable blending across a general shape. There is,

off between robustness and efficiency, as
we see that our runtime significantly increase with the
freehand blending. Lastly, we used video texturing, a

to create a seamless loop
between frames. This is necessary as cinemagraphs are

A typical cinemagraph of 400x300 pixels takes
to render from start to finish on

processor. It also requires two user

inputs: one for stabilization and
without motion.

6. Future Work
We realize that our output videos are in grey

obvious step forward is to extend this technique to all 3
color channels.

Also, we know that the bottle neck of our pipeline is
blending the image and creating the video texture. There is
definitely room for improvement for the above techniques.

Lastly, in the future, we would like to include color
filtering on the frames of the video. The duo
filter is what gives cinemagraphs a distinct look and feel for
it. Because our video lacks colors, th
duo-tone coloring. However, this is a feature that is
definitely nice to have.

7. Other Results
We have also created several other cinemagraphs to test

our system. You can view the other cinemagraphs via the
following links:

Figure 9: Ceiling Fan
Input:
http://www.stanford.edu/~bsee/cgi
inal.gif
Output:
http://www.stanford.edu/~bsee/cgi
.gif

Figure 10: Curtains I
Input:

for stabilization and another for blending

ealize that our output videos are in grey-scale. One
obvious step forward is to extend this technique to all 3

Also, we know that the bottle neck of our pipeline is
blending the image and creating the video texture. There is

m for improvement for the above techniques.
Lastly, in the future, we would like to include color

filtering on the frames of the video. The duo-tone color
filter is what gives cinemagraphs a distinct look and feel for
it. Because our video lacks colors, there was no need for

tone coloring. However, this is a feature that is

We have also created several other cinemagraphs to test
our system. You can view the other cinemagraphs via the

Ceiling Fan

http://www.stanford.edu/~bsee/cgi-bin/cs231a/ceiling/orig

www.stanford.edu/~bsee/cgi-bin/cs231a/ceiling/loop

Figure 10: Curtains I

http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/orig
inal.gif
Output:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/fina
l.gif

Figure 11: Curtains II
Input:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/orig
inal.gif
Output:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/fina
l2.gif

8. References
[1] J. Beck, K. Burg. (2011, Feb.). From Me To You

tendrils. [Online]. Available:
http://fromme-toyou.tumblr.com/post/3263
597796/les-tendrils-kaelen

[2] P. Rawat and J. Singhai, “Review of Motion Estimation an
Video Stabilization techniques For hand held mobile
video,” Signal & Image Processing: Int. J.
159–168, Jun. 2011.

[3] H. Farid, and J. B. Woodward. “Video Stabilization and
Enhancement.” Science (1997)

[4] M. Brown, and D. G. Lowe, “Recognizing
Panoramas.” International Conference on Computer Vision
2003. 1218-1225.

[5] A. Schödl, R. Szeliski, D. H. Salesin, I. Essa, “Video
Textures.” Proceedings of the 27th annual conference on
Computer graphics and interactive techniques SIGGRAPH
00 (2000) : 489-498.

[6] J. Tompkin, F. Pece, K. Subr, J. Kautz, “Towards Moment
Images: Automatic Cinemagraphs.” Proceedings of the 8th
European Conference on Visual Media Production (CVMP
2011). Nov. 2011.

[7] F. J. Baez. (2011, Apr.). Cinemagraph Tutorial
Available:
http://fernandojbaez.com/cinemagraph
orial/

[8] L. Banks. (2011, May). How to Make a Cinemagraph with
Photoshop and After Effects. [Online]. Available:
http://lesterbanks.com/2011/05/how

bin/cs231a/curtain/orig

bin/cs231a/curtain/fina

Figure 11: Curtains II

bin/cs231a/curtain/orig

bin/cs231a/curtain/fina

From Me To You – les

toyou.tumblr.com/post/3263
kaelen

P. Rawat and J. Singhai, “Review of Motion Estimation and
Video Stabilization techniques For hand held mobile

Signal & Image Processing: Int. J., vol. 2, no. 2, pp.

H. Farid, and J. B. Woodward. “Video Stabilization and

“Recognizing
International Conference on Computer Vision.

A. Schödl, R. Szeliski, D. H. Salesin, I. Essa, “Video
Proceedings of the 27th annual conference on

Computer graphics and interactive techniques SIGGRAPH

J. Tompkin, F. Pece, K. Subr, J. Kautz, “Towards Moment
Proceedings of the 8th

European Conference on Visual Media Production (CVMP

Cinemagraph Tutorial. [Online].

http://fernandojbaez.com/cinemagraph-tut

How to Make a Cinemagraph with
. [Online]. Available:

http://lesterbanks.com/2011/05/how-to-ma

ke-a-cinemagraph-with
r-effects/

[9] P. Edenberg, et al. (2011, Jun.).
Cinemagraph. [Online]. Available:
http://www.adorama.com/alc/article/How
o-Make-A-Cinemagraph

[10] Dollar, P.; Rabaud, V.; Cottrell, G.; Belongie, S.; , "Behavior
recognition via sparse spatio-tempor
Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005. 2nd Joint IEEE International Workshop
on , vol., no., pp. 65- 72, 15-16 Oct. 2005
doi: 10.1109/VSPETS.2005.1570899

[11] David G. Lowe, "Distinctive image features f
scale-invariant keypoints," International Journal of
Computer Vision, 60, 2 (2004), pp. 91

[12] Nayar, S.K.; Nakagawa, Y.; , "Shape from focus: an effective
approach for rough surfaces,"
1990. Proceedings., 1990 IEEE International Conference
on , vol., no., pp.218-225 vol.2, 13
doi: 10.1109/ROBOT.1990.12597

with-photoshop-and-afte

P. Edenberg, et al. (2011, Jun.). How to Make a
Online]. Available:

http://www.adorama.com/alc/article/How-T

Dollar, P.; Rabaud, V.; Cottrell, G.; Belongie, S.; , "Behavior
temporal features," Visual

Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005. 2nd Joint IEEE International Workshop

16 Oct. 2005
doi: 10.1109/VSPETS.2005.1570899

"Distinctive image features from
International Journal of

60, 2 (2004), pp. 91-110.
Nayar, S.K.; Nakagawa, Y.; , "Shape from focus: an effective

 Robotics and Automation,
1990. Proceedings., 1990 IEEE International Conference

225 vol.2, 13-18 May 1990
doi: 10.1109/ROBOT.1990.125976

