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video is assumed to be taken from the same scetle wi
roughly the same field of view.

We implement a method of automating the creation of1.1.Method

cinemagraphs for an input video using stabilizatiobject
tracking, image blending and video texturing. Cuthg,
artists must carefully setup and edit the videaxreate a
cinemagraph. This process is both tedious and
time-consuming. Our method streamlines the pipeime
reduce the amount of work the user have to perfrm
create a cinemagraph. The only user input our metho
requires is a selection of four points for stal@tion and
tracking.

Using the fact that the frames are highly similare
adopted an affine model for stabilization for corgtion
efficiency. Next, we use temporal gradients to Kréte
object’'s motion-subject region between frames. Tlaen
efficient two-band blending is used to blend acrfoases.
Lastly, we adopted video texturing to find a goedrsless
loop for the GIF images. Our method will enablerase
create cinemagraphs easily using videos capturemh fany
devices, including their smart phones.
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1. Introduction

Cinemagraphs are short, repeating animated im&ges o
mainly static scene with slight motions, usually GiF
format. It was first introduced by a professional
photographer, on his blog in Tumblr [1]. As men&dn
earlier, it is extremely difficult for a common uige create
cinemagraph as it takes time, skills and equiprteoteate
one. An artist must carefully set up a scene tatera
cinemagraph, as any motion shake increases thelerityp
of creating cinemagraphs. Moreover, artists mustualy
select masks for the area in motion, and blend ésaanto
one another.

Our novel system enables users to automate théarea
process. The user can feed in a video recordedaltasu
removing the need to carefully set up the scene.cére
thus assume that the frames will be highly simarce the

An overview of our system is as follows. Firsthgded
on the review of stabilization techniques by Rawaat
Singhi[2], we found out that the software stabiiiaa
technique proposed by Farid and Woodward[3] wa$ bes
suited for our application. The algorithm is congtignally
efficient and its affine model captures sufficigntich
range of motion such as translation, rotation acalirsg.
The user’s input will serve as the region of inseréor
video stabilization. Since as mentioned beforeyviteo is
assumed to be taken from the same scene, this thetho
well-suited for our needs.

Originally, we used a SIFT descriptor to find the
bounding box of the tracked object through the ecém
this step, we require the user to select the bagnidlox for
tracking. The user can choose to skip this stdmeithange
in the object’s position is lower than a threshéldwever,
this method was very inaccurate and we had to bwic
motion tracking using Temporal Gradient. This filtleacks
moving objects andeturns a mask of the areas with large
fluctuations in intensity

After tracking the bounding box, we blend the bdagd
boxes of subsequent frames onto the first framegutie
two-band blending algorithm proposed by Lowe[4]isTh
method fast and provides a good result for higlntyilar
frames.

Lastly, we implemented techniques for transforming
normal videos into video textures [5] to createcarsless
endless loop for our video. These techniques irclud
methods of calculating transition cost and prolighil
optimizing loops for minimum cost, and sequencinisa
of transitions into a loop for GIF format. Due téaak of a
video texture format, we settled on producing aimated
GIF format image file. Although this loses the ranthess
of true video textures, this is coherent with how
cinemagraphs are generated.

1.2.Data Set

We intend to record video using any digital cameord
Our sample size should be at least five videosiftérént
scenes. Sample data will include approximately
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Figure 1: Pipeline of our system.
A video is first fed into our system. The user thadacts a region that is not moving in the videa chooses if the
object of interest is moving. If it is not, we siynplend the region of interest selected by the.uéé is, we apply
motion tracking to track the region of interestdrefblending the frames. The last step of our fijeeis to create

an infinite look using video texturing,

five-second clips of mostly static scenery. Forhegicleo,
there must be a segment with static scenery forgéma
stabilization. The tracked object can be eithetigtary or
moving through the scene.

1.3.Evaluation

Evaluation of a piece of art is usually taken crasliely.
We will visually evaluate the final animated imaged
grade it based on smoothness of frame transitamd the
smoothness of blending with background image. Harev

sometimes may be necessary to reduce sharp junhpsgn
transitions, and thus unavoidable.

Finally, video textures can be evaluated basedotal t
loop length, total cost of transitions in final axtion (in
comparison with other possible transitions not jsadd
theloop performancewhich is an aggregate metric defined
as length divided by cost.

2. Related Work
Previous related works to automate the processidse

some quantitative measurements can be employed tdexturing to continuously loop through a video elested

evaluate the results.

regions [6]. However, their method does not trabjects

Intermediate results are produced by each subsystemin motion, but instead consider regions contairpgamic

and evaluated individually. First, the video stalbilion
system can be evaluated by considering the comylkixte
excluding the region of interest of the subjecte Hverage
standard deviation in pixel intensities can be used
compare the difference between the original vided the
stabilized video.

Second, the object tracking and pyramid blending
systems can be hard to quantify. But we can ovealay
highlighting color over the tracked region of irgst, and
generate an animation over all the frames. A huoser
can evaluate all frames and count the number ofids
with a correct and complete highlighting overlay.

Third, the two-band image blending step is als@adlift
to quantify. On the one hand, sharp edges due &mem
boundaries are unwanted. On the other hand, weotlo n
want to blend away important subject features. knag
overlay boundaries can be detected using edgetigtec
The presence of edges as an outline around thectobje
signifies a non-optimal blending scheme. Fadedufeat

the

objects. This loses the context of the scene asetiens
are considered independent of each other. Alse ntigians
that dynamic scenes with many moving objects vatl Ine
handled well.

In this paper, we aim to overcome this by usingecih
tracking. Instead of creating the blending are@basst on
using changes between frames, we use tracking to
determine the blending area across frames. Thisuats
for translational movement, and thus is more robliah
pipeline  proposed by James et

We also referred closely to the works and tuteriay
artists [7-9], to understand how cinemagraphs are

al.

traditionally created.



3. Technical Approach in the scene. A scene of about 50 frames typiceliyires
the user to reselect the bounding box 3 times. hewave
3.1.Video Stabilization realized that this method gives us a significannber of
false positives, claiming that a match has beendpand
To stabilize the video, we modelled the camera giving incorrect positions. This is especially trdaring
movement between two frames using a 2x2 affineimatr  frames where the object is blurred due to moticecaiise
and a 2x1 translational vector, as described bydFard of the blur, we lose important keypoints and edgethe
Woodward [3] via the equation: object, either causing a false negative or a fatsstive.
Also, it was extremely difficult to find a frameitivgood
keypoints because in most frames, the object mation.
The variablesn;, mp, mg, my form the 2 x 2 affine matri® A possible way to detect good frames is to use

flo,y,t) = fmx + myy + mg, myx + myy + mg, t — 1)

andms andm the translation vector. ~ Sum-Modified Laplacian[12], that gives an estimate
We solve for these 6 unknown variables by miningzin  how sharp the image is. However, we felt that oleBs T
the quadratic error between the two frames. will not work well in this situation.
To overcome this, we switched to intensity gradient
E(m) = Z [f(x,y,t) — f(mx+myy with respect to time to identify areas with motiétere, we
x,y EROI are under the assumption that a change in pixehgity is
+ms, max + myy + mg, t — 1)]? equivalent to some form of motion. To reduce the

_ _ possibility of missing important regions of interese do
The ROl is the region of interedsing the Taylor expansion,  not apply a Gaussian blur first. We find that a €an blur
and discarding high order terms, we can solve thesimply reduces our chances of finding the areasatfon.

minimization function efficiently. However, this introduces the possibility of higmeise in

our result. Since we do not plan on using exceisivasy

-1 video in the system, this is not an issue. Any @aisthe

m= [Z EETI [Z Ekl edges of motion is suppressed by a dilation ofetiges
ROI ROI created motion-tracking mask, and background-blendi

m=[mg .. mg]" later on.

T = (xfy v xfy 1y fx £) The video is first converted to a 3D array withsiethe
k=fi+xfi+yf, height, width,andtime This allows us to easily apply a

Sobel filter in thet-axis using MATLAB’s ‘imfilter’

The termd,, f,, andf, are partial differentials dfx, y, t). command. The magnitude of the resulting intensitg of

As long as the user selects a reasonably big region change at each spatial-temporal point is normalteeithie

interest, this minimization function is solvable. maximum and then a threshold value is applied twsicker

A coarse-to-fine scheme is adopted in order to egenp ~ only regions with a large amount of motion. Emgitiy, a
coarse movements efficiently. We use a 3-level Gans ~ Vvalue of around 0.15 to 0.25 works sufficiently el
Pyramid to give us better estimation for larger emaents.  Finally, the points above the threshold is dilatesing

We chose to use 3-levels because we know thatahees  ‘imdilate’ with a disk of radius 15px (usually ~10%lative
will be from the same scene, and a 3-level Gaussiarto the minimum of width and height of the video).
Pyramid should be sufficient to capture the canseekes, Any noise (now typically circles with radius of 2§dn
without causing a significant slowdown. the mask is blended away in the last step.
3.2.0bject Tracking 3.3.Two-Band Blending

To track the object through the scene, we used Scdle We implemented a modified version of the two-band
Invariant Feature Tracking (SIFT)[11] and Temporal blending algorithm proposed by Lowe et al. [4]. the
Gradient[10]. paper, blending was done only for overlapping regio

Our first attempt at tracking object was done using between two panorama images. Our modification @sabl
SIFT descriptor. We first compute keypoints of gver the user to blend bounding boxes onto a commonefram
frame in the video. Then, the user inputs the oali To blend the two frames, we first divide the franmato
bounding box of the object, and the bounding basaisked ~ its high frequency component and its low frequency
in the scene using SIFT. When no bounding boxes arecomponent. This is achieved using a simple two lleve
found, or if the bounding box is determined tomeoirect, ~ Gaussian Pyramid on both the outer frame and therin
the user reselects the bounding box of a scendefet an ~ frame, using the equations:
incorrect bounding box, we check for discontinuity
velocity, position, scale and rotation of the ohjdtis is LowFreq(x,y) = Image(x,y) * Gaussian(o, size)
because we know that the object must follow a tegath HighFreq(x,y) = Image(x,y) — LowFreq(x,y)



respectively, iteratively computing and solving the

The variablex, yrepresents the position of the pixel in the following set of equations.

blending region, while and sizeare parameters that the
user specifies. For our code, we use€.5 and size =
[33].

We combined the low frequency components using

linear interpolation over radius that is specifigdthe user.

LowFreqpiengea = LOWFreqouterrrame ¥ @
+ LOWFrdeqinnerFrame *(1-

@)

a=—
T

In this equationd is the distance to the inner frame ansl

Dy = |1 =1l
[1 11 1]
Wy=1[|- = = =
6 3 3 6
Dj; = Z Wi Diyp jri
k
" 1 \P : "
Di,j = (DL,]) + amkln Dj,k
Dij
PL,'I] = K . e_T
The matriced; andl; are the images at frameandj,
which can be used to calculate the cost matdx (The

the radius specified by the user. The low frequency vectorw is a set of weights for computing the cost matrix
component of the blended image is thus the two after considering preserving dynamids’). Finally, the

dimensional liner interpolation of the overlappiragion.
As described in the paper, the high frequency camapbis
not interpolated because we want to keep the deathihe
objects. We simply used the high frequency of baumd
box because it contains the details we want toepves
The overall blended frame will then be the combara

cost matrix that also considers future costs isutated as
D”. The probability of each transition is modelled
exponentially, and normalized such that each romssto
one.

This results in the 3D plots for probability of cha
transition shown in figure. This matrix is thertdiled for

of the low frequency component and high frequency local maxima, which will become our list of possibl

component.

BlendedImage(x,y)
= HighFreq(x,y) + LowFreq(x,y)

To accommodate for uneven shapes, we used a Regiobecause we must

of Interest (ROI) mask to indicate the blendingioeg.
This is an extension to the existing algorithm, the
existing algorithm only accounts for vertical seami¢e
dilated the original ROI with a radius specifiedthg user
to get the blending region. In other words, we edél the
ROI by radius amount while keeping the original gha
Blending is then done in this region outside thd.RO
Similar to the blending with bounding boxes, thghhi
frequency detail of the inner frame is kept, white low
frequency detail is linearly interpolated. Note ttithe

transitions. To make things interesting, we wolike [to
weight the probabilities by distance of each trémsi(in
indices from source to destination). This allowsaiprefer
multiple large jumps to many small transitions whaould
produce jittery motions in the animation. This isiasue
make deterministic rather than
probabilistic decisions on transitions.

Following analysis of transitions, we consider ottg
top 20 (or however many) transitions. These ara thsed
to find the optimal loop for up to a certain numbéframes,
with the lowest cost. This is optimized by dynamic
programming. With the optimal set of transitiong then
sequence them using the steps outlined in secti®ro#
Schodl’s paper [5] to generate the final sequefid@ames,
which is written to an animated GIF file.

weights of the low frequency components are now 4. Evaluation and Results

calculated based on the distance away from theesktar
pixel within the ROI, and the above equations &tilld.

3.4.Video Texturing

Given a series of frames, the objective now issioggate
an infinite loop of frames with minimal discontitieis
between frames. The video textures work by Arnoco8th
et al. can be applied to find the optimal transitidetween
non-continuous frames [5]. Since we are only comegr
with a subsample of each frame, video texturingiven
only a subsample of the whole video.

First, we compute the cost of a transition as bm
distances between thi and jth frame for all the frames.
This is saved as amby-n square matrix@;). Dynamics
preservation and future costs are also incorporatgd

Because our results are in animated GIF formagsgle
go to the following links to view the results. Theaginal
input GIF, taken by our smart phone and importetd in
Matlab, can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fagioal

.gif

4.1.Video Stabilization

The stabilized video can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fail.g
if.

There are still some movements in the non-sulgjeszs
of the image. However, this is a limitation of afi
transformations. A shaky camera still experiendaghts




perspective changes, which cannot be fixed witlaffine
transform.

Fig. 2 shows the results of our image stabilizatla this
image, the black region is the region selectechbyuser as
moving parts. This is a parameter that the useselatt, to
denote if the area selected is moving or stable.ifitensity
of the pixel represents the variance of the pixebss all
the frames. Thus, a pixel with high intensity haghh
variance, representing instability, while a pixethMow
intensity represents low variance, and hence, |gtabi
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Figure 2: Evaluation Results of Image Stabilization

The figure on the left is the output of the orainideo,
while the figure on the right is the output of ttabilized
video. From the figures, it is clear that the videa lot

Figure 4: Unblended image (left) and blended im@iggat) with
region of interest selection.

The images shown in figure 2 and figure 3 are¢iselts
of image blending an orange with an apple. Theimalg
image samples are taken from Lowe’s paper.

To evaluate the blending method, we used a Sdtezl f
to perform edge detection on the blended imageis. i$ta
good measure of image blending because a well-bténd
image will not have discontinuity at the blendirggions.
The blend is considered good when no edge is detexit
the edge of the region of interest, and when &lkoedges
previous present are preserved.

We blended 50 random images, creating 25 blended
images, similar to the ones above. In all our insage
discontinuity was detected at the region of interasd all
original edges were preserved.

We also evaluated the efficiency of our algorithirhe
bounding box blending took an average of 0.5 segond
while the ROI blending took an average of 30 sesdoda
738x502 pixel image. The huge disparity between the
bounding box blending and the ROI blending is duéhe
fact that in the ROI blending, the blending regisnno
longer uniformed. Thus, we are unable to perform
column-wise and row-wise operation, causing a §icamt
slowdown in our pipeline. Instead, each pixel was
calculated individually. We realize that there isade off
between efficiency and robustness, and we chodeeto
robust in our pipeline, since most natural objetdsnot
occur in uniform shapes.

more stable after stabilization, because the aeerag 4.3.0bject Tracking

intensity of the pixels is much lower.

However, the result of the stabilization technigse
heavily dependent on the user input. A bad seledtiothe
stable region might yield a worse output comparethé
original.

4.2.Two — Band Blending

Figure 3: Unblended image (left) and blended imiggat) with
bounding box blending

4.3.1 Scale Invariant Feature Tracking
We evaluated our SIFT-based tracking by countirg th
number of true positives, false negatives and false

positives. We know that there are no true negativesir
data set as the object is present through theeestiene.
Unfortunately, the SIFT-based tracking performedsego
than expected, detecting very few true positives.




4.4.Video Texturing

The following charts depict some of the intermesliat
variables and data used by video textures to daterthe
optimal transitions. Each local maximum is consider
good transitions to take. This is necessary becenagy
e ] e . local maxima are far lower in probability than fheaks in

8 B B o B : the center, but we still want to take distant titiorss, and
Figure 5: 12 Frames from the SIFT-based trackirtguiu not a lot of small steps.

Transition Probability

By displaying the tracked bounding box and thekea
center, we are able to identify true positivessdgbositives
and false negatives. We ran this algorithm on §igparate
files with 50 frames each, and realized that omaye, the
descriptor only yields 80% accuracy across all &#anT his
is even after discarding bounding boxes, which are
determined to be inaccurate.

Destination Frame Index

30

4.3.2 Temporal Gradient

A gradient with respect to time can produce aceurat
masks that capture the area of motion. Some naise i
produced due to unstable background images. Witiss
noisy video, such as one taken on a tripod, witly ¢me T
subject in motion, such noise in the mask doesppear. .

Dilating the mask helps to keep desired motion-dobas Figure 7: Probability of transition, modeled expotialy on the
below the threshold by taking advantage of theixjnity cost matrix, after considering dynamics preservatod future
to areas above the threshold. costs.

Some types of motion do not lend well to the intigns
gradient method. For example, shadows are low é&eqy
content, in both spatial and temporal dimensiorfsusT
they can be lost during thresholding. If we limitro
subjects to higher frequency content, such as ngovin
objects, this method will be sufficient.

w
&

We define a new metric in order to measure the
“performance” of a transition. A high performingsition
would take a longer jump, but still have very loast The
transition performance (TP) is defined as:

P — Distance (Length)of Transition

Cost of Transition

This effectively weights the farther transition“astter”
than very tiny transitions that only move back byea
frames. Such small jumps are unwanted because they
appear to have high frequency jittery motion that i
unappealing to the viewer. On the other hand, larg®s
usually contain some meaningful action appearingden
two transitions. In fig. 8,

Figure 6: Tracking mask overlay produced by temipgradient
method for two separate videos at four differeribfsoin time.
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Figure 8: Transition performance is defined aslémgth of the
loop created bthe transition divided by the cost of that trarmsi

4.5.Final Cinemagraph

The result after creating a seamlessly looping atent
GIF image using video textures can be found |
http://www.stanford.edu/~bsee/dgin/cs231a/fan/final.g

Qualitatively, the result looks like a seamlessnitdly
looping animation. Depending on the subject, ther usay
wish to insert motionless frames at the end to idea
pause between the amti This is purely an artistic decisic
and so it is not implemented here.

5. Conclusion

In conclusion, we have created a complete pipeliat
enables novice users to create cinemagraphs wi
laborious photo editing and careful setup. Eachoof
resuls were actually taken by hand using our smart phy
and we were still able to create cinemagre

We adopted various existing solution to help crehé
pipeline. First, we used the aff-approximation
stabilization technique proposed by Rawat anghai[2]
to stabilize the video. Next, if the target objisan motion,
we use motion tracking algorithm to track the obj
Although our attempt at SIFT[11fhiled, we achieved
good result using Temporal Gradigi]. We then blend
the region of integst using the Tw-Band Blending
proposed by Lowe et al[4Even though this technique w
originally used for ldimensional stitching, we extendec
to enable blending across a general shape. The
however, a tradeff between robustness and efficiy, as
we see that our runtime significantly increase wiitle
freehand blending. Lastly, we used video text,, a
technique by Schodl et al.[5lo create a seamless lo
between frames. This is necessary as cinemagraget
continuous and loops infinitely.

A typical cinemagraph of 400x300 pixels tal
approximately 5-7 minute® render from start to finish ¢
a 8GB 2.8Ghz Core iprocessor. It also requirtwo user

inputs: onefor stabilization andanother for blending
without motion.

6. Future Work

We realize that our output videos are in ¢-scale. One
obvious step forward is to extend this techniqualta3
color channels.

Also, we know that the bottle neck of our pipeliise
blending the image and creating the video texflihere is
definitely roan for improvement for the above techniq;

Lastly, in the future, we would like to include oo
filtering on the frames of the video. The «tone color
filter is what gives cinemagraphs a distinct look &eel for
it. Because our video lacks colorsere was no need for
duotone coloring. However, this is a feature thai
definitely nice to have.

7. Other Results

We have also created several other cinemagrapiest
our system. You can view the other cinemagraphghe
following links:

Figure 9:Ceiling Fai
Input:
http://www.stanford.edu/~bsee/-bin/cs231a/ceiling/orig
inal.qgif

Output:
http:/Avww.stanford.edu/~bsee/-bin/cs231a/ceiling/loop

qif

Figure 10: Curtains

Input:



http://www.stanford.edu/~bsee/dgin/cs231a/curtain/or

inal.gif
Output:
http://www.stanford.edu/~bsee/dgin/cs231a/curtain/fir

L.gif

Figure 11: Curtains
Input:
http://www.stanford.edu/~bsee/dgin/cs231a/curtain/or
inal.gif

Output:
http://www.stanford.edu/~bsee/dgin/cs231a/curtain/fir

12.qif
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