
 

 

 
Abstract 

 
We implement a method of automating the creation of 

cinemagraphs for an input video using stabilization, object 
tracking, image blending and video texturing. Currently, 
artists must carefully setup and edit the video to create a 
cinemagraph. This process is both tedious and 
time-consuming. Our method streamlines the pipeline to 
reduce the amount of work the user have to perform to 
create a cinemagraph. The only user input our method 
requires is a selection of four points for stabilization and 
tracking.  

Using the fact that the frames are highly similar, we 
adopted an affine model for stabilization for computation 
efficiency. Next, we use temporal gradients to track the 
object’s motion-subject region between frames. Then, an 
efficient two-band blending is used to blend across frames. 
Lastly, we adopted video texturing to find a good seamless 
loop for the GIF images. Our method will enable users to 
create cinemagraphs easily using videos captured from any 
devices, including their smart phones.  

Future Distribution Permission  
The author(s) of this report give permission for this 
document to be distributed to Stanford-affiliated students 
taking future courses. 

1. Introduction 
Cinemagraphs are short, repeating animated images of a 

mainly static scene with slight motions, usually in GIF 
format. It was first introduced by a professional 
photographer, on his blog in Tumblr [1]. As mentioned 
earlier, it is extremely difficult for a common user to create 
cinemagraph as it takes time, skills and equipment to create 
one. An artist must carefully set up a scene to create a 
cinemagraph, as any motion shake increases the complexity 
of creating cinemagraphs. Moreover, artists must manually 
select masks for the area in motion, and blend frames onto 
one another.  

Our novel system enables users to automate the creation 
process. The user can feed in a video recorded casually, 
removing the need to carefully set up the scene. We can 
thus assume that the frames will be highly similar, since the 

video is assumed to be taken from the same scene with 
roughly the same field of view.  

1.1. Method 

An overview of our system is as follows. Firstly, based 
on the review of stabilization techniques by Rawat and 
Singhi[2], we found out that the software stabilization 
technique proposed by Farid and Woodward[3] was best 
suited for our application. The algorithm is computationally 
efficient and its affine model captures sufficiently rich 
range of motion such as translation, rotation and scaling. 
The user’s input will serve as the region of interest for 
video stabilization. Since as mentioned before, the video is 
assumed to be taken from the same scene, this method is 
well-suited for our needs.  

Originally, we used a SIFT descriptor to find the 
bounding box of the tracked object through the scene. In 
this step, we require the user to select the bounding box for 
tracking. The user can choose to skip this step if the change 
in the object’s position is lower than a threshold. However, 
this method was very inaccurate and we had to switch to 
motion tracking using Temporal Gradient. This filter tracks 
moving objects and returns a mask of the areas with large 
fluctuations in intensity. 

After tracking the bounding box, we blend the bounding 
boxes of subsequent frames onto the first frame using the 
two-band blending algorithm proposed by Lowe[4]. This 
method fast and provides a good result for highly similar 
frames.  

Lastly, we implemented techniques for transforming 
normal videos into video textures [5] to create a seamless 
endless loop for our video. These techniques include 
methods of calculating transition cost and probability, 
optimizing loops for minimum cost, and sequencing a list 
of transitions into a loop for GIF format. Due to a lack of a 
video texture format, we settled on producing an animated 
GIF format image file. Although this loses the randomness 
of true video textures, this is coherent with how 
cinemagraphs are generated. 

1.2. Data Set 

We intend to record video using any digital camcorder. 
Our sample size should be at least five videos of different 
scenes. Sample data will include approximately 
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Figure 1: Pipeline of our system. 
A video is first fed into our system. The user then selects a region that is not moving in the video, and chooses if the 
object of interest is moving. If it is not, we simply blend the region of interest selected by the user. If it is, we apply 
motion tracking to track the region of interest before blending the frames. The last step of our pipeline is to create 
an infinite look using video texturing, 

Algorithm determines region of interest 

five-second clips of mostly static scenery. For each video, 
there must be a segment with static scenery for image 
stabilization. The tracked object can be either stationary or 
moving through the scene.  

1.3. Evaluation 

Evaluation of a piece of art is usually taken qualitatively. 
We will visually evaluate the final animated image and 
grade it based on smoothness of frame transitions, and the 
smoothness of blending with background image. However, 
some quantitative measurements can be employed to 
evaluate the results. 

Intermediate results are produced by each subsystem, 
and evaluated individually. First, the video stabilization 
system can be evaluated by considering the complete video 
excluding the region of interest of the subject. The average 
standard deviation in pixel intensities can be used to 
compare the difference between the original video and the 
stabilized video. 

Second, the object tracking and pyramid blending 
systems can be hard to quantify. But we can overlay a 
highlighting color over the tracked region of interest, and 
generate an animation over all the frames. A human user 
can evaluate all frames and count the number of frames 
with a correct and complete highlighting overlay. 

Third, the two-band image blending step is also difficult 
to quantify. On the one hand, sharp edges due to image 
boundaries are unwanted. On the other hand, we do not 
want to blend away important subject features. Image 
overlay boundaries can be detected using edge detection. 
The presence of edges as an outline around the object 
signifies a non-optimal blending scheme. Faded features 

sometimes may be necessary to reduce sharp jumps in loop 
transitions, and thus unavoidable. 

Finally, video textures can be evaluated based on total 
loop length, total cost of transitions in final animation (in 
comparison with other possible transitions not used), and 
the loop performance, which is an aggregate metric defined 
as length divided by cost. 

2. Related Work 
 Previous related works to automate the process use video 
texturing to continuously loop through a video at selected 
regions [6]. However, their method does not track objects 
in motion, but instead consider regions containing dynamic 
objects. This loses the context of the scene as the regions 
are considered independent of each other. Also, this means 
that dynamic scenes with many moving objects will not be 
handled well. 
 In this paper, we aim to overcome this by using object 
tracking. Instead of creating the blending area based just on 
using changes between frames, we use tracking to 
determine the blending area across frames. This accounts 
for translational movement, and thus is more robust than 
the pipeline proposed by James et al.  
 We also referred closely to the works and tutorials by 
artists [7-9], to understand how cinemagraphs are 
traditionally created.  



 

 

3. Technical Approach 

3.1. Video Stabilization 

To stabilize the video, we modelled the camera 
movement between two frames using a 2x2 affine matrix, 
and a 2x1 translational vector, as described by Farid and 
Woodward [3] via the equation:  
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The variables m1, m2, m3, m4 form the 2 × 2 affine matrix A 
and m5 and m6 the translation vector T. 

We solve for these 6 unknown variables by minimizing 
the quadratic error between the two frames.  
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The ROI is the region of interest. Using the Taylor expansion, 
and discarding high order terms, we can solve the 
minimization function efficiently.  
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The terms fx, fy,, and ft are partial differentials of f(x, y, t). 
As long as the user selects a reasonably big region of 

interest, this minimization function is solvable.  
A coarse-to-fine scheme is adopted in order to compute 

coarse movements efficiently. We use a 3-level Gaussian 
Pyramid to give us better estimation for larger movements. 
We chose to use 3-levels because we know that the frames 
will be from the same scene, and a 3-level Gaussian 
Pyramid should be sufficient to capture the camera shakes, 
without causing a significant slowdown. 

3.2. Object Tracking 

To track the object through the scene, we used both Scale 
Invariant Feature Tracking (SIFT)[11] and Temporal 
Gradient[10].  

Our first attempt at tracking object was done using a 
SIFT descriptor. We first compute keypoints of every 
frame in the video. Then, the user inputs the original 
bounding box of the object, and the bounding box is tracked 
in the scene using SIFT. When no bounding boxes are 
found, or if the bounding box is determined to be incorrect, 
the user reselects the bounding box of a scene. To detect an 
incorrect bounding box, we check for discontinuity in 
velocity, position, scale and rotation of the object. This is 
because we know that the object must follow a certain path 

in the scene. A scene of about 50 frames typically requires 
the user to reselect the bounding box 3 times. However, we 
realized that this method gives us a significant number of 
false positives, claiming that a match has been found, and 
giving incorrect positions. This is especially true during 
frames where the object is blurred due to motion. Because 
of the blur, we lose important keypoints and edges of the 
object, either causing a false negative or a false positive.  
 Also, it was extremely difficult to find a frame with good 
keypoints because in most frames, the object is in motion. 
A possible way to detect good frames is to use 
Sum-Modified Laplacian[12], that gives an estimate on 
how sharp the image is. However, we felt that overall, SIFT 
will not work well in this situation.  

To overcome this, we switched to intensity gradients 
with respect to time to identify areas with motion. Here, we 
are under the assumption that a change in pixel intensity is 
equivalent to some form of motion. To reduce the 
possibility of missing important regions of interest, we do 
not apply a Gaussian blur first. We find that a Gaussian blur 
simply reduces our chances of finding the areas of motion. 
However, this introduces the possibility of higher noise in 
our result. Since we do not plan on using excessively noisy 
video in the system, this is not an issue. Any noise at the 
edges of motion is suppressed by a dilation of the edges 
created motion-tracking mask, and background-blending 
later on. 

The video is first converted to a 3D array with axes in the 
height, width, and time. This allows us to easily apply a 
Sobel filter in the t-axis using MATLAB’s ‘imfilter’ 
command. The magnitude of the resulting intensity rate of 
change at each spatial-temporal point is normalized to the 
maximum and then a threshold value is applied to consider 
only regions with a large amount of motion. Empirically, a 
value of around 0.15 to 0.25 works sufficiently well. 
Finally, the points above the threshold is dilated using 
‘imdilate’ with a disk of radius 15px (usually ~10% relative 
to the minimum of width and height of the video). 

Any noise (now typically circles with radius of 15px) in 
the mask is blended away in the last step. 

3.3. Two-Band Blending 

We implemented a modified version of the two-band 
blending algorithm proposed by Lowe et al. [4]. In the 
paper, blending was done only for overlapping regions 
between two panorama images. Our modification enables 
the user to blend bounding boxes onto a common frame.  
 To blend the two frames, we first divide the frames into 
its high frequency component and its low frequency 
component. This is achieved using a simple two level 
Gaussian Pyramid on both the outer frame and the inner 
frame, using the equations: 
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The variables x, y represents the position of the pixel in the 
blending region, while 8 and 569-are parameters that the 
user specifies. For our code, we used = 0.5 and 569- =[3 3] . 

We combined the low frequency components using 
linear interpolation over radius that is specified by the user.  

 ()*+,-.CDEFGEG = ()*+,-.HIJEKLKMNE ∗  O+  ()*+,-.PFFEKLKMNE ∗ �1 − O� 

O = Q, 

 
In this equation, d is the distance to the inner frame and r is 
the radius specified by the user. The low frequency 
component of the blended image is thus the two 
dimensional liner interpolation of the overlapping region. 
As described in the paper, the high frequency component is 
not interpolated because we want to keep the details of the 
objects. We simply used the high frequency of bounding 
box because it contains the details we want to preserve.  
 The overall blended frame will then be the combination 
of the low frequency component and high frequency 
component.  
 RS-7Q-Q/	01-��, ��= :61ℎ+,-.��, �� +  ()*+,-.��, �� 
 

To accommodate for uneven shapes, we used a Region 
of Interest (ROI) mask to indicate the blending regions. 
This is an extension to the existing algorithm, as the 
existing algorithm only accounts for vertical seams. We 
dilated the original ROI with a radius specified by the user 
to get the blending region. In other words, we extended the 
ROI by radius amount while keeping the original shape. 
Blending is then done in this region outside the ROI.  

Similar to the blending with bounding boxes, the high 
frequency detail of the inner frame is kept, while the low 
frequency detail is linearly interpolated. Note that the 
weights of the low frequency components are now 
calculated based on the distance away from the nearest 
pixel within the ROI, and the above equations still hold.  

3.4. Video Texturing 

Given a series of frames, the objective now is to generate 
an infinite loop of frames with minimal discontinuities 
between frames. The video textures work by Arno Schodl, 
et al. can be applied to find the optimal transitions between 
non-continuous frames [5]. Since we are only concerned 
with a subsample of each frame, video texturing is given 
only a subsample of the whole video. 
 First, we compute the cost of a transition as L2-norm 
distances between the ith and  jth frame for all the frames. 
This is saved as an n-by-n square matrix (Dij). Dynamics 
preservation and future costs are also incorporated by, 

respectively, iteratively computing and solving the 
following set of equations. 

 TP,U = V/P − /UV� 
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The matrices I i and I j  are the images at frame i and j, 
which can be used to calculate the cost matrix (D). The 
vector w is a set of weights for computing the cost matrix 
after considering preserving dynamics (D’ ). Finally, the 
cost matrix that also considers future costs is calculated as 
D” . The probability of each transition is modelled 
exponentially, and normalized such that each row sums to 
one. 
 This results in the 3D plots for probability of each 
transition shown in figure. This matrix is then filtered for 
local maxima, which will become our list of possible 
transitions. To make things interesting, we would like to 
weight the probabilities by distance of each transition (in 
indices from source to destination). This allows us to prefer 
multiple large jumps to many small transitions which could 
produce jittery motions in the animation. This is an issue 
because we must make deterministic rather than 
probabilistic decisions on transitions. 

Following analysis of transitions, we consider only the 
top 20 (or however many) transitions. These are then used 
to find the optimal loop for up to a certain number of frames, 
with the lowest cost. This is optimized by dynamic 
programming. With the optimal set of transitions, we then 
sequence them using the steps outlined in section 4.3 of 
Schodl’s paper [5] to generate the final sequence of frames, 
which is written to an animated GIF file. 

4. Evaluation and Results 
Because our results are in animated GIF format, please 

go to the following links to view the results. The original 
input GIF, taken by our smart phone and imported into 
Matlab, can be found here: 
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/original
.gif 

4.1. Video Stabilization 

The stabilized video can be found here: 
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/stable.g
if . 
 There are still some movements in the non-subject areas 
of the image. However, this is a limitation of affine 
transformations. A shaky camera still experiences slight 



 

 

perspective changes, which cannot be fixed with an affine 
transform.  
 Fig. 2 shows the results of our image stabilization. In this 
image, the black region is the region selected by the user as 
moving parts. This is a parameter that the user can select, to 
denote if the area selected is moving or stable. The intensity 
of the pixel represents the variance of the pixel across all 
the frames. Thus, a pixel with high intensity has high 
variance, representing instability, while a pixel with low 
intensity represents low variance, and hence, stability.  

 
Figure 2: Evaluation Results of Image Stabilization 

 
 The figure on the left is the output of the original video, 
while the figure on the right is the output of the stabilized 
video. From the figures, it is clear that the video is a lot 
more stable after stabilization, because the average 
intensity of the pixels is much lower.  
 However, the result of the stabilization technique is 
heavily dependent on the user input. A bad selection for the 
stable region might yield a worse output compared to the 
original. 

4.2. Two – Band Blending 

 
Figure 3: Unblended image (left) and blended image (right) with 
bounding box blending 

  

Figure 4: Unblended image (left) and blended image (right) with 
region of interest selection. 

 
 The images shown in figure 2 and figure 3 are the results 
of image blending an orange with an apple. The original 
image samples are taken from Lowe’s paper. 
 To evaluate the blending method, we used a Sobel filter 
to perform edge detection on the blended images. This is a 
good measure of image blending because a well-blended 
image will not have discontinuity at the blending regions. 
The blend is considered good when no edge is detected at 
the edge of the region of interest, and when all other edges 
previous present are preserved.  
 We blended 50 random images, creating 25 blended 
images, similar to the ones above. In all our images, no 
discontinuity was detected at the region of interest, and all 
original edges were preserved.  
 We also evaluated the efficiency of our algorithm. The 
bounding box blending took an average of 0.5 seconds, 
while the ROI blending took an average of 30 seconds for a 
738x502 pixel image. The huge disparity between the 
bounding box blending and the ROI blending is due to the 
fact that in the ROI blending, the blending region is no 
longer uniformed. Thus, we are unable to perform 
column-wise and row-wise operation, causing a significant 
slowdown in our pipeline. Instead, each pixel was 
calculated individually. We realize that there is a trade off 
between efficiency and robustness, and we chose to be 
robust in our pipeline, since most natural objects do not 
occur in uniform shapes. 

4.3. Object Tracking 

4.3.1 Scale Invariant Feature Tracking 
We evaluated our SIFT-based tracking by counting the 

number of true positives, false negatives and false 
positives. We know that there are no true negatives in our 
data set as the object is present through the entire scene. 
Unfortunately, the SIFT-based tracking performed worse 
than expected, detecting very few true positives. 

 



 

 

 
Figure 5: 12 Frames from the SIFT-based tracking output. 
 
 By displaying the tracked bounding box and the tracked 
center, we are able to identify true positives, false positives 
and false negatives. We ran this algorithm on five separate 
files with 50 frames each, and realized that on average, the 
descriptor only yields 80% accuracy across all frames. This 
is even after discarding bounding boxes, which are 
determined to be inaccurate.   
 
4.3.2 Temporal Gradient 

A gradient with respect to time can produce accurate 
masks that capture the area of motion. Some noise is 
produced due to unstable background images. With a less 
noisy video, such as one taken on a tripod, with only the 
subject in motion, such noise in the mask does not appear. 
Dilating the mask helps to keep desired motion-rich areas 
below the threshold by taking advantage of their proximity 
to areas above the threshold. 

Some types of motion do not lend well to the intensity 
gradient method. For example, shadows are low frequency 
content, in both spatial and temporal dimensions. Thus, 
they can be lost during thresholding. If we limit our 
subjects to higher frequency content, such as moving 
objects, this method will be sufficient. 

 

 
Figure 6: Tracking mask overlay produced by temporal gradient 
method for two separate videos at four different points in time.  

4.4. Video Texturing 

The following charts depict some of the intermediate 
variables and data used by video textures to determine the 
optimal transitions. Each local maximum is considered 
good transitions to take. This is necessary because many 
local maxima are far lower in probability than the peaks in 
the center, but we still want to take distant transitions, and 
not a lot of small steps.  

 
Figure 7: Probability of transition, modeled exponentially on the 
cost matrix, after considering dynamics preservation and future 
costs. 
 
 We define a new metric in order to measure the 
“performance” of a transition. A high performing transition 
would take a longer jump, but still have very low cost. The 
transition performance (TP) is defined as: 
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 This effectively weights the farther transition as “better” 
than very tiny transitions that only move back by a few 
frames. Such small jumps are unwanted because they 
appear to have high frequency jittery motion that is 
unappealing to the viewer. On the other hand, large jumps 
usually contain some meaningful action appearing between 
two transitions. In fig. 8,  



Figure 8: Transition performance is defined as the length of the 
loop created by the transition divided by the cost of that transition.
 

4.5. Final Cinemagraph 

The result after creating a seamlessly looping animated 
GIF image using video textures can be found here:
http://www.stanford.edu/~bsee/cgi-bin/cs231a/fan/final.gif
 Qualitatively, the result looks like a seamless infinitely 
looping animation. Depending on the subject, the user may 
wish to insert motionless frames at the end to provide a 
pause between the action. This is purely an artistic decision, 
and so it is not implemented here. 

5. Conclusion 
In conclusion, we have created a complete pipeline that 

enables novice users to create cinemagraphs without 
laborious photo editing and careful setup. Each of our 
results were actually taken by hand using our smart phones, 
and we were still able to create cinemagraphs.

We adopted various existing solution to help create the 
pipeline. First, we used the affine
stabilization technique proposed by Rawat and Sin
to stabilize the video. Next, if the target object is in motion, 
we use motion tracking algorithm to track the object. 
Although our attempt at SIFT[11] failed, we achieved a 
good result using Temporal Gradient[10]
the region of interest using the Two
proposed by Lowe et al[4]. Even though this technique was 
originally used for 1-dimensional stitching, we extended it 
to enable blending across a general shape. There is, 
however, a trade-off between robustness and efficienc
we see that our runtime significantly increase with the 
freehand blending. Lastly, we used video texturing
technique by Schodl et al.[5]. to create a seamless loop 
between frames. This is necessary as cinemagraphs are 
continuous and loops infinitely.  

A typical cinemagraph of 400x300 pixels takes 
approximately 5-7 minutes to render from start to finish on 
a 8GB 2.8Ghz Core i7 processor. It also requires 

 

 

 
Figure 8: Transition performance is defined as the length of the 

the transition divided by the cost of that transition. 

The result after creating a seamlessly looping animated 
GIF image using video textures can be found here: 

bin/cs231a/fan/final.gif 
Qualitatively, the result looks like a seamless infinitely 

looping animation. Depending on the subject, the user may 
wish to insert motionless frames at the end to provide a 

on. This is purely an artistic decision, 

In conclusion, we have created a complete pipeline that 
enables novice users to create cinemagraphs without 
laborious photo editing and careful setup. Each of our 

s were actually taken by hand using our smart phones, 
and we were still able to create cinemagraphs. 

We adopted various existing solution to help create the 
pipeline. First, we used the affine-approximation 
stabilization technique proposed by Rawat and Singhai[2] 
to stabilize the video. Next, if the target object is in motion, 
we use motion tracking algorithm to track the object. 

failed, we achieved a 
[10]. We then blend 

est using the Two-Band Blending 
. Even though this technique was 

dimensional stitching, we extended it 
to enable blending across a general shape. There is, 

off between robustness and efficiency, as 
we see that our runtime significantly increase with the 
freehand blending. Lastly, we used video texturing, a 

to create a seamless loop 
between frames. This is necessary as cinemagraphs are 

A typical cinemagraph of 400x300 pixels takes 
to render from start to finish on 

processor. It also requires two user 

inputs: one for stabilization and 
without motion. 

6. Future Work 
We realize that our output videos are in grey

obvious step forward is to extend this technique to all 3 
color channels.  

Also, we know that the bottle neck of our pipeline is 
blending the image and creating the video texture. There is 
definitely room for improvement for the above techniques.

Lastly, in the future, we would like to include color 
filtering on the frames of the video. The duo
filter is what gives cinemagraphs a distinct look and feel for 
it. Because our video lacks colors, th
duo-tone coloring. However, this is a feature that is 
definitely nice to have.  

7. Other Results 
We have also created several other cinemagraphs to test 

our system. You can view the other cinemagraphs via the 
following links: 

Figure 9: Ceiling Fan
Input: 
http://www.stanford.edu/~bsee/cgi
inal.gif 
Output: 
http://www.stanford.edu/~bsee/cgi
.gif 

 

Figure 10: Curtains I
Input: 

for stabilization and another for blending 
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Ceiling Fan 

http://www.stanford.edu/~bsee/cgi-bin/cs231a/ceiling/orig

www.stanford.edu/~bsee/cgi-bin/cs231a/ceiling/loop

 
Figure 10: Curtains I 



http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/orig
inal.gif 
Output:  
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/fina
l.gif  

 

Figure 11: Curtains II
Input: 
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/orig
inal.gif 
Output: 
http://www.stanford.edu/~bsee/cgi-bin/cs231a/curtain/fina
l2.gif 
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