
Exploring Features for Classification with Accuracy Guarantees

Jonathan Krause
Computer Science Department, Stanford University

Stanford, CA
jkrause@cs.stanford.edu

Abstract

In this work we explore the choice of features in the task
of classification with accuracy guarantees. That is, given a
semantic hierarchy and the ability to predict non-leaf nodes,
what is the most informative set of features to use? We
examine dense SIFT, LBP, BRIEF, and Object Bank fea-
tures and investigate how to combine them in order to ob-
tain a classifier that does as well as possible on this non-
traditional classification task. We also investigate the ad-
vantages of using color and, in the end, beat a strong dense
SIFT with LLC pooling and SPM baseline. Our features
are evaluated on a subset of ImageNet consisting of 57 cat-
egories with hundreds of images per class.

1. Introduction
Object classification is one of the central problems in

computer vision. To date, slow but steady progress has been
made on the problem. However, in order to actually make a
useful system out of today’s classifiers, a different approach
must be taken. Indeed, it is too much to ask for perfect
classification accuracy at a detailed level from any system
currently available today. However, what would happen if
we were to relax the constraint that classifiers give detailed
information about the type of an object – is it possible to
create a classification system that has arbitrarily high accu-
racy at the expense of reducing the amount of information
contained in a classification response?

The answer to that question is a resounding “yes”. The
key insight to make is that real-world objects implicitly
form a semantic hierarchy and that, for any given class, it is
also correct to say that it is a member of any of its ancestors
in the hierarchy. For example, a Persian Cat is also a Cat,
a Mammal, an Animal, and an Entity. In fact, everything
is an Entity! This leads us to a better question: is it possi-
ble to maximize the amount of information contained in a
prediction subject to an arbitrary accuracy constraint?

An informative and accurate classification system would
have major implications in the field of large-scale classifica-

tion. Current state-of-the-art at 10,000-way classification is
a paltry 16.7% [17]. However, consider the following: can
a random human remember or even be aware of all 10,000
classes? This is doubtful, when such classes can include
such obscurities as “trimaran”, “Egyptian cat”, “Rhodesian
ridgeback”, and “jelly fungus”, as is the case in the most
prominent large-scale dataset, ImageNet [5]. In the absense
of super-human accuracy, then, a reasonable compromise
would be to provide correct information, even if it be not as
detailed as other wrong information.

Fortunately, the answer as to whether we can maxi-
mize information while still maintaining accuracy guaran-
tees is also a resounding “yes”. The previously developed
DARTS (Dual Accuracy Reward Tradeoff Search) algo-
rithm does just that. However, DARTS is somewhat of a
meta-algorithm – its inputs are posterior probabilities ob-
tained in a completely free way, and in return it maximizes
expected information gain subject to an arbitrary accuracy
requirement. When viewed in this light, there is clear room
for improvement in obtaining posterior probabilities. More
specifically, we can decompose the problem of finding pos-
teriors into two steps: (1) obtaining discriminative features,
and (2) converting features into probabilities. Problem (2)
can be reasonably solved using e.g Platt scaling [16]. (1)
is harder. Note that we demand that features be discrimi-
native; it is easy to generate probabilties that are perfectly
accurate by simply giving all images the exact same fea-
ture representation! Such an approach is of no use. To this
end, in this work we push forward in obtaining discrimini-
tive features for the problem of classification with accuracy
guarantees.

In total, our contributions in this paper are an examina-
tion of different baseline features, including the dense SIFT
[12] that DARTS used, LBP [15], BRIEF [2], and Object
Bank [11], an evaluation on the effects of color information
on a subset of these baselines, and three different boosting
schemes, with the end result that we beat the dense SIFT
baseline both in terms of flat accuracy and also when con-
sidering information gain in the classification task with ac-
curacy guarantees.

2. Related Work
The task of classification with accuracy guarantees has

its roots in hierarchical classification [18, 8, 9] and classifi-
cation with a reject option [1]. The major distinction is that
no prior work optimizes the information/accuracy tradeoff,
which is what the DARTS algorithm does. It is also re-
lated to large-scale classification [4] and fine-grained clas-
sification [13] in that as the hierarchy gets very semantically
dense leaf classes become harder to classify but optimizing
the tradeoff remains feasible. In fact, with a very dense hi-
erarchy the internal (non-leaf) nodes become more semanti-
cally meaningful, in a sense, which only helps in optimizing
information gain.

Choosing discriminative features is an active area of re-
search in computer vision. The yearly PASCAL challenge
[7] regularly showcases state-of-the-art features and boost-
ing techniques. Many modern systems include one of either
SIFT [12] or HOG [3] features. There also exists a variety
of texture-base features [14] which are complementary to
SIFT and HOG in that they do not explicitly consider gradi-
ents, thus making them promising candidates for boosting.

3. Problem Statement
Formally, let G = (V,E) be a directed acyclic graph

(DAG) representing a semantic hierarchy on a given set of
classes. One can think of E as describing all of the ‘is-a’
relationships in the graph – i.e. x1 → x2 ∈ E if class x2 is
a subclass of x1. Although G need not be represented using
this ‘is-a’ relationship, it is perhaps the most natural choice
of relation to choose in a semantic hierarchy.

Let X ∼ X be a random variable correponding to the
feature representation of an image and the corresponding
distribution over such representations. Let Y ∼ Y be the
ground truth leaf-node (i.e. most specific) label of X . De-
fine π(Y) as the path of nodes going up the DAG from the
leaf node Y . For example, if Y is “German Shepherd”, then
π(Y) might include “dog”, “mammal”, “animal”, and “en-
tity”. In this formulation, only the nodes in π(Y) are con-
sidered to be a correct classification – i.e. only correct in-
formation is deemed valuable; no matter how close the node
of an inaccurate prediction is to any node in π(Y), if it is
not actually in π(Y), it is not correct.

Let f : X → V be an arbitrary classifier. Define

Φ(f) = E[f(X) ∈ π(Y)] (1)

to be the accuracy of f . Let r : V → R+ ∪ {0} be an
arbitrary non-negative reward function, and denote rv =
r(v) for convenience. For our reward function, we shall use
information gain (the decrease in entropy between the prior
and posterior distributions), the it should be emphasized that
r(v) is completely arbitrary. The expected reward is

R(f) = E
(
rf(X)[f(X) ∈ π(Y)]

)
(2)

Let ε ∈ [0, 1] be a specified maximum allowed error rate,
so that we must have accuracy at least 1− ε. The optimiza-
tion problem, then, is

maximize
f

R(f)

subject to Φ(f) ≥ 1− ε.
(OP1)

Let f∗ε be an (optimal) solution to OP1. Then it is easy
to show thatR(f∗ε) is non-decreasing in ε, simply by noting
that, for ε > ε′, f∗ε′ is a (not necessarily optimal) solution
to OP1. This also makes intuitive sense: the stricter the
accuracy guarantee, the less flexibility a classifier has in op-
timizing reward.

This optimization is solved under practical conditions by
the DARTS algorithm. However, there is a less-obvious
problem lurking within OP1 – namely, the entire problem
setup assumes that X is already given in terms of features,
not in terms of a raw image. OP1 optimizes over the clas-
sifier, but leaves the choice of feature representation com-
pletely open. With that in mind, the problem addressed by
this paper is this: What is the most informative feature rep-
resentation X for an image?

4. DARTS Algorithm
For completeness, we give a brief description of the

DARTS (Dual Accuracy Reward Trade-off Search) algo-
rithm, which, under practical conditions, is optimal for
OP1. DARTS is a primal dual algorithm based on the gen-
eralized Lagrange multiplier method [6]. The Lagrangian
is

L(f, λ) = E(rf(X) + λ)[f(X) ∈ π(Y)] + λ(ε− 1) (3)

For a particular λ, fλ maximizing the Lagrangian is
given by

fλ(x) = arg max
v∈V

(rv + λ)p
Y |X (v|x) (4)

with p
Y |X (v|x) = Pr(v ∈ π(Y)|X = x). Also define

rmax = maxv rv and let v̂ be the root of G. Let ε̃ be some
tolerance for how close Φ(f) is allowed to get to 1− ε upon
completion; i.e. Φ(f)− (1− ε) ≥ ε̃ upon termination.

With all definitions in place, the DARTS algorithm is
given in Algorithm 1.
5. Features

The choice of image representation is absolutely crit-
ical for any classification task. Given a sufficiently dis-
criminative representation, classification can be trivial, and
given a poor representation, a classifier can be reduced to
random guessing. Current state of the art computer vi-
sion features are not perfect, which means that considerable

Algorithm 1 DARTS

1. Obtain p
Y |X (y|x), y ∈ Y .

2. p
Y |X (v|x)←

∑
y∈Y [v ∈ π(y)]p

Y |X (y|x),∀v ∈ V .

3. f0 ← arg maxv∈V rvpY |X (v|x).

4. If Φ(f0) ≥ 1− ε, return f0.

5. λ̄← (rmax(1− ε)− rv̂)/ε.

6. Binary search for a λ ∈ (0, λ̄] until 0 ≤ Φ(fλ) − 1 +
ε ≤ ε̃, for a maximum of T iterations. Return fλ.

thought should be put into choosing features which max-
imize performance. The original DARTS algorithm used
densely-sampled SIFT features, combined with Locality-
constrained Linear Coding (LLC) [21] without exploring
other options. Although these features are both strong and
efficient, they are not the be-all and end-all representation
of images, which is a sufficient reason to consider other
features. In addition, since OP1 is not the traditional flat
(in the sense of occupying only the bottom/leaf level of G,
which includes only nodes of a single height) classifica-
tion challenge, it may be the case that the most discrimina-
tive features in the flat classification challenge are not also
the reward-maximizing features for OP1. Intuition suggests
that the two problems go hand-in-hand, but it is worth it to
question this assumption.

5.1. Dense SIFT

Dense SIFT features, as their name suggests, consist of
sampling SIFT features [12] in a regular grid over an im-
age, optionally at multiple scales or resolutions. This is the
technique used in the original DARTS algorithm. They use
dense SIFT features as implemented by [20], as do we.

5.2. Dense SIFT w/Colors

Regular dense SIFT features only operate on a grayscale
image. This trivial extension operates on each of the RGB
levels separately, and merely concatenates the features at
each point in the dense grid. Using color representations
other than RGB is certainly possible, but we shall focus on
RGB here for simplicity.

5.3. Local Binary Patterns

Local binary patterns (LBP) have shown to be a robust
descriptor for texture classification [15]. Given a 3 × 3
grayscale image patch, they work by comparing the inten-
sity of the center pixel in the patch to each of its surrounding
pixels, forming a binary vector of length 8, as illustrated in
Figure 1. This can be generalized to patches larger than

2 87

6 5 2

6 7 4

0 11

1 0

1 1 0

Figure 1. An illustration of the conversion of a 3× 3 image patch
into LBP features.

3 × 3, either by doing comparisons to more than just the
immediate surrounding pixels or by aggregating these local
binary vectors into a larger vector. The latter approach is
the one taken by [20], which is the implementation we use.

Like dense SIFT features, LBP can also be trivially
adapted to operate on each of the RGB layers separately.

5.4. BRIEF

Binary Robust Independent Elementary Features
(BRIEF) [2] are a more modern generalization of LBP.
Like LBP, BRIEF descriptors are essentially comprised of
many comparisons, concatenated into a single binary vector
(which occupy very little memory, hence the name BRIEF).
Unlike LBP, they do not simply use the surrounding pixels
for comparisons. Rather, BRIEF descriptors pick arbitrary
pairs of pixels within each patch (illustrated in Figure 2),
using the same locations between patches. [2] compares
several different methods for choosing these pairs of points.
Interestingly, the method that most closely resembles LBP
performs worst! We use the second method in [2], in which
points within a patch are choosen by

(X,Y) ∼ i.i.d.N(0,
1

25
S2) (5)

where S is the sidelength of an image patch, each patch
is centered at 0, and points falling outside the patch are
clamped to the edges. As usual, incorporating color is also
easy. We use our own implementation of BRIEF descrip-
tors.

5.5. Object Bank

Object Bank (OB) [11] is a recognition system target-
ing scene classification. It consists of a collection of pre-
trained object detectors, then uses SPM and a variety of
sparsity-inducing regularization techniques to combine the
outputs of each of the detectors. This allows it to obtain
state-of-the-art performance on a number of scene recog-
nition datasets. Although we do not consider scene classi-
fication in our work here, it is an interesting experiment to
see whether their performance in scene classification carries
over into object classification and whether OB features be-
have in any significantly different way when working with

Figure 2. An example of pairs of points selected for comparisons
when making BRIEF features.

accuracy guarantees. In any case, testing OB is relatively
simple due to the implementation provided by the authors.

5.6. Boosting

Boosting is an incredibly generic and powerful class of
meta-algorithms that combine some amount of (weak) clas-
sifiers into a single strong classifier. Boosted classifiers rou-
tinely win the PASCAL challenge [7]. Thus, if we desire to
improve upon the SIFT baseline, boosting is a very natural
technique to use. We must be careful with how we approach
the matter, though. We can combine features at potentially
any phase of the classification pipeline – from before we
even make a codebook, including using separate codebooks
for two different features, to simply voting with classifiers
at the end.

We explore three such options here: combining features
(SIFT and BRIEF) from the very beginning when doing a
dense sampling, using a variation of multi-class AdaBoost
[22] with all four of our classifiers, and training an SVM
using the classification values of the other classifiers as fea-
tures. The slight twist to AdaBoost that we use is, rather
than combining the classifiers in a way that uses only the
actual class output, we combine them using their (normal-
ized) prediction values for each class. This lets us obtain
overall prediction values for all the classes on each exam-
ple, which is necessary for the DARTS algorithm to run,
although it is somewhat of a hack because the weights used
on the classifiers are determined (via AdaBoost) solely by
the class they predict, not their prediction values.

The rationale behind using SVM outputs as inputs into

another SVM is that not only allows us to take into account
what the output of the individual classifiers was, it also takes
into account the confidence of each of them, as represented
by the classification values themselves (i.e. the distances
from the margin). Contrast this with AdaBoost, which only
accounts for the binary output of each of its input classi-
fiers. Since our classifiers are relatively strong (compared to
e.g. decision stumps), we expect that traditional AdaBoost
would not perform as well as explicitly taking into account
the actual decision values. Note that, in any case, appropri-
ate normalization must be done so that undue influence is
not given to any set of features without just cause.

5.7. LLC

Locality-constrained Linear Coding (LLC) [21] is a
state-of-the-art coding scheme which not only allows for de-
scriptors to be represented as a linear combination of mul-
tiple codewords, unlike hard vector quantization, but also
explicitly encourages the selected codewords for a particu-
lar descriptor to be close to the descriptor in feature-space.
The optimization problem solved by LLC coding is:

min
C

N∑
i=1

‖xi −Bci‖2 + λ‖di� ci‖2

s.t.1T ci = 1,∀i

(6)

where C = [c1, . . . , cN] is the coded version of each all of
the descriptors, xi is a descriptor feature, B is a codebook,
di describes the distance between xi and each of the code-
words, and � is element-wise multiplication. The term di
is useful as it directly forces the encoded descriptors to be
represented with nearby codewords. Otherwise, it might be
the case that we could end up with a representation consist-
ing of a deceptive mixture of codewords. For example, if
a we were trying to encode the number 10 using the code-
book {−100, 5, 20, 120}, it would be much better to use a
mixture 2

3 · 5 + 1
3 · 20 than to use 1

2 ·−100 + 1
2 · 120, since 5

and 20 are much more representative of the number 10 than
either -100 or 120. This example is very much artificial, be-
ing one-dimensional, but the idea easily extends to higher
dimensions.

6. Dataset

We use the ILSCVRC65 dataset, illustrated in Figure 3.
It consists of 57 leaf classes and 8 internal nodes. For each
class, there are 100 training images, 50 validation images,
and 150 test images, for a total of 17,100 images in the en-
tire dataset. All images were drawn from ImageNet [5].
Note that the Dog subtree was intentionally made large in
order to mimic types of skewness present in the full Ima-
geNet dataset.

Bird
Cat Dog

Animal
Boat Car

Entity

Figure 3. The tree structure of ILSVRC65.

7. Experiments
In all cases in our experiments (except for OB, which

has its feature-producing code provided with it), we densely
sample the descriptors at multiple resolutions, use LLC for
coding with a codebook size of 10,000, and use two levels
of spatial pyramid (1 × 1 and 3 × 3) [10], which results in
features of size 10, 000 · (1 + 32) = 100, 000. Fortunately,
LLC pooling gives us the benefit of sparsity, which, com-
bined with judicious regularization, prevents overfitting. In
all cases except for OB and the boosted methods, we use
`2-normalized linear 1-vs-all SVMs as our classifiers. We
use Platt scaling [16] to obtain posterior probabilities, as re-
quired by the DARTS algorithm. Platt scaling is done on a
set of cross-validated decision values from the training set,
using 10 folds. The validation set is used to determine λ†,
the optimal value of the dual variable λ. For all non-OB fea-
tures, we also get features in each component of the RGB
space separately.

For OB, following the lead of [11], we use `1-normalized
logistic regression. This shifts the gains of sparsity from the
features to the classifier. This is also the best-performing
method for BOOST-SVM.

The features are summarized in Table 1. Unfortunately,
there seems to have been an as-yet unidentified issue in the
grayscale BRIEF features or testing, which has not been ex-
amined due to time – creating one set of features for the
dataset takes several hours on a cluster, and training takes
anywhere from half a day to several days. A large part of
this is due to the cross-validation done on the training set,
which increases training time by roughly a factor of 10, but
is necessary for the DARTS algorithm to work well.

Also plain just from examining the flat accuracies is that
the dense SIFT baseline is remarkably strong, particularly
when compared to the other non-boosted classifiers.

7.1. Effects of Color

First we examine how much performance we can gain
from incorporating color information. Note first that our
treatment of color is incredibly simplistic – much more
complex descriptors can be made which incorporate color
information [19]. Note second that, regardless of this fact,
in both the SIFT and LBP cases including RGB informa-
tion boosts flat accuracy by 1-3%. When transferred into
the setting with accuracy guarantees, this relation holds, as
illustrated by Figures 4 and 5. Plotted there is test accuracy
vs information gain, normalized to be in [0, 1], where each
data point is determined by choosing the parameter set that

Feature Size Density Flat Acc.
SIFT 100k .2869 .3871

SIFT-RGB 100k .2770 .4027
LBP 100k .3014 .2765

LBP-RGB 100k .2632 .3164
BRIEF 100k .3259 .0182

BRIEF-RGB 100k .3360 .2531
OB 44,604 1.0000 .2608

SIFT-BRIEF 100k .3627 .3896
BOOST-ADA n/a n/a .4178
BOOST-SVM 228 1.0000 .4229

Table 1. Summary of information about features. Size is the total
dimension of a feature vector for a single image, Density is the av-
erage fraction of non-zero elements, and Flat Acc. is the accuracy
when restricted to the leaf nodes of the hierarchy.

0.5 0.6 0.7 0.8 0.9 1
0.15[31.1]

0.2[25.4]

0.25[20.7]

0.3[16.9]

0.35[13.8]

0.4[11.3]

0.45[9.2]

Accuracy

In
fo

. G
ai

n[

C
la

ss
es

]

SIFT
SIFT−COLOR

Figure 4. The effects of color on SIFT features. In brackets on
the Y-axis is the equivalent number of classes that an example has
been narrowed down to in the sense of expected information gain.

performed best on the validation set and is evaluated on the
test set. Also note that we determine ε̃ by computing a 95%
confidence interval around the validation accuracy in order
to ensure that the test accuracy is above the guarantee 1− ε
with high probability.

We can also see the effects of color by looking at how
the distribution of predictions over the various node heights,
displayed in Figure 6. Focusing on SIFT, there are very few
differences between SIFT and SIFT-COLOR. This can par-
tially be attributed to the only modest gains of 1.5% in flat
accuracy. However, we can also see that SIFT-COLOR pre-
dicts very slightly (.65 %) more examples at the leaf level.
When we turn to LBP, the differences are far more dras-
tic. Adding color information to LBP allows it to be more
confident about a significantly larger number of examples,
boosting the portion predicted at the leaf level up by 5.6%.

0.5 0.6 0.7 0.8 0.9 1
0.1[38.0]

0.15[31.1]

0.2[25.4]

0.25[20.7]

0.3[16.9]

0.35[13.8]

0.4[11.3]

Accuracy

In
fo

. G
ai

n[

C
la

ss
es

]

LBP
LBP−COLOR

Figure 5. The effects of color on LBP features.

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Node Height

%
 P

re
di

ct
io

ns

SIFT
SIFT−COLOR
LBP
LBP−COLOR

Figure 6. Histogram of node height vs portion of test examples
predicted at that height, with an accuracy guarantee of .9

7.2. Comparison of Methods

Figure 7 plots all of the methods which have not been
shown to be completely outclassed already (e.g. LBP when
compared to LBP-COLOR). There are many interesting
points we can make from this figure:

• The dense SIFT (DSIFT) baseline remains quite good.
It is consistently much better than all of the other base-
lines and is very close to the boosted methods, indicat-
ing that boosting is serving only to add a comparatively
small amount of performance.

• The comparison between BRIEF descriptors and
SURF and an LBP-like desriptor in [2] does not hold
here. It is possible that the implementation of BRIEF
we used was too simplistic, or perhaps its parameters
needed more tuning. For example, the image patches
used in [2] were much larger than those used in our

0.5 0.6 0.7 0.8 0.9 1
0.1[38.0]

0.15[31.1]

0.2[25.4]

0.25[20.7]

0.3[16.9]

0.35[13.8]

0.4[11.3]

0.45[9.2]

Accuracy

In
fo

. G
ai

n[

C
la

ss
es

]

SIFT (BASELINE)
SIFT−COLOR
LBP−COLOR
BRIEF−COLOR
OB
SIFT−BRIEF
BOOST−ADA
BOOST−SVM

Figure 7. Accuracy vs. normalized information gain for all reason-
able methods.

dense sampling. It might also be the case that the task
of multiple-viewpoint matching considered in [2] is
not comparable with our object recognition task. To
make conclusive statements about BRIEF descriptors
would require further experiments.

• Object Bank does not fair as well when considered in
for object classification. To be fair, OB does have a
feature vector more than a factor of two smaller than
the other baselines, and adding more objects detec-
tors to its bank may help. Also, anecdotally, OB took
longer to train, likely due to the density of its features.

• Not all methods of boosting work! This is evident in
the plot for SIFT-BRIEF, which is on-par to actually
worse than plain old SIFT. It might be that the higher
dimension of the raw features for SIFT-BRIEF neces-
sitates a larger codebook or more training examples.
It also could be the case that, since BRIEF-COLOR is
so much worse than SIFT, BRIEF-COLOR is almost
acting as noise (one hopes this is not the case, though).

• Differences in flat accuracy do not always hold when
considered in the classification with accuracy guaran-
tee framework. Case in point: BOOST-SVM has a
higher flat accuracy than BOOST-ADA, but BOOST-
ADA consistently has slightly higher amounts of in-
formation gain. On a similar note, this indicates that
there is more work to be done in developing boosting
algorithms, since determining the weights in BOOST-
ADA did not take into account the numerical predic-
tion values of the individual classifiers used – it only
considered the final predicted classes.

Now, for completeness, we compare the distribution of
predictions of our best classifier, BOOST-ADA, and the ini-
tial baseline, SIFT, in Figure 8. Some interesting trends:

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Node Height

%
 P

re
di

ct
io

ns

SIFT
BOOST−ADA

Figure 8. Histogram of node height vs portion of test examples
predicted at that height, with an accuracy guarantee of .9, for the
SIFT baseline and BOOST-ADA.

SIFT actually has more predictions at the leaf level than
BOOST-ADA, despite being worse in terms of information
gain. Despite this, it seems that combining several classi-
fiers has allowed BOOST-ADA to become more confident
about the examples that SIFT was not very confident at
all about, as indicated by the larger portion of predictions
BOOST-ADA makes at height 1 and the smaller number of
predictions made at heights 2 and 3. This also serves to
illustrate the importance of using a meaningful semantic hi-
erarchy – without one, or with a hierarchy with very weak
relations, BOOST-ADA would not have been able to take
advantage of the information that can be gained at the inter-
nal nodes.

8. Future Work
Work on more informative visual features for classifica-

tion is neverending, and there are a number of points in this
work which warrant further exploration. Out treatment of
color has been incredibly simple, and further gains in per-
formance are expected with a more sophisticated approach.
Furthermore, there is the unenviable task of further fine-
tuning parameters, which we were unable to do to our satis-
faction in this work due to the size of the dataset and the ex-
tensive training time. In particular, one simple experiment
would be to vary the codebook size over a given range, com-
paring the types of curves obtained for the baselines with
e.g. SIFT-BRIEF. Another simple method to investigate
is using a kernelized SVM, especially for the approaches
which use LLC features. Although this further boosts the
training time and memory costs, there is reason to believe
that explicitly using a histogram-interesection or χ2 kernel
can help.

Tangentially, even the choice of classifier used in the

DARTS algorithm could be modified to improve perfor-
mance. More specifically, SVMs use a hinge loss, but we
suspect that other loss functions may be more suited for the
task of classification with accuracy guarantees. For exam-
ple, it could be worth it to structure a loss function such that
we trade off examples in which we have only weak con-
fidence in order to get more confidence on other examples.
The key idea here is that in a setting where information gain
matters, losing small bits of information on examples where
we were not going to get much in the way of information
gain anyway can be offset by pushing some examples down
the tree to the higher-reward nodes.

More directly related to our work, we have only exam-
ined the fact that incorporating color and more features aids
in classification, but we have not examined where it helps.
Doing so, besides being interesting in its own right, could
point to directions for further work and improvements.

9. Conclusions
In this work we have examined the problem of chosing

features in the unique task of object classification with ac-
curacy guarantees. We have looked at SIFT, LBP, BRIEF,
and Object Bank features, as well as 3 very different boost-
ing strategies and the addition of color, and improved upon
the dense SIFT baseline both in terms of flat accuracy and in
terms of information gain across a range of accuracy guar-
antees.

References
[1] P. L. Bartlett and M. H. Wegkamp. Classification with a re-

ject option using a hinge loss. Technical report, U.C. Berke-
ley, 2006.

[2] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF : Bi-
nary Robust Independent Elementary Features. pages 778–
792, 2010.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. Ieee, 2005.

[4] J. Deng, A. C. Berg, K. Li, and L. Fei-fei. What Does Clas-
sifying More Than 10,000 Image Categories Tell Us ? pages
71–84, 2010.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[6] H. Everett III. Generalized lagrange multiplier method for
solving problems of optimum allocation of resources. Oper-
ations Research, pages 399–417, 1963.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.

[8] T. Gao and D. Koller. Discriminative learning of relaxed
hierarchy for large-scale visual recognition. In ICCV, 2011.

[9] G. Griffin and P. Perona. Learning and using taxonomies for
fast visual categorization. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE, 2008.

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natu-
ral Scene Categories. 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition - Volume
2 (CVPR’06), 2:2169–2178, 2005.

[11] L.-j. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object Bank : A
High-Level Image Representation for Scene Classification &
Semantic Feature Sparsification. Machine Learning, pages
1–9, 2010.

[12] D. G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, Nov. 2004.

[13] G. Martinez-Munoz, N. Larios, E. Mortensen, W. Zhang,
A. Yamamuro, R. Paasch, N. Payet, D. Lytle, L. Shapiro,
S. Todorovic, et al. Dictionary-free categorization of very
similar objects via stacked evidence trees. In Computer Vi-
sion and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 549–556. IEEE, 2009.

[14] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative
study of texture measures with classification based on fea-
tured distributions. Pattern recognition, 29(1):51–59, 1996.

[15] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):971–987, July 2002.

[16] J. Platt et al. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods.
Advances in large margin classifiers, 10(3):61–74, 1999.

[17] J. Sánchez and F. Perronnin. High-dimensional signature
compression for large-scale image classification. In Com-
puter Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 1665–1672. IEEE, 2011.

[18] A.-M. Tousch, S. Herbin, and J.-Y. Audibert. Semantic hi-
erarchies for image annotation: A survey. Pattern Recogn.,
45:333–345, January 2012.

[19] K. Van de Sande, T. Gevers, and C. Snoek. Evaluation of
color descriptors for object and scene recognition. In Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. Ieee, 2008.

[20] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable
library of computer vision algorithms. In Proceedings of the
international conference on Multimedia, pages 1469–1472.
ACM, 2010.

[21] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained Linear Coding for Image Classifica-
tion. CVPR, 2010.

[22] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class ad-
aboost. Ann Arbor, 1001(48109):1612, 2006.

10. Appendix
1. All components of this project are computer vision

components. Some of the techniques used may be gen-

eralizable to other areas of ML, but in my mind, that’s
an advantage.

2. Contributions in this project:

(a) Ideas: The idea of classification with accuracy
guarantees was not originally thought of by me,
and I don’t make that claim. Jia Deng urged
me to consider boosting and focus on improv-
ing performance (which was an idea for the focus
of the paper that I was already considering), but
that’s nothing particularly new, just an idea for
the project. Andrej Karpathy mentioned BRIEF
descriptors to me in passing, which made me
check out the BRIEF paper and try it out.

(b) Formulations of algorithms: The DARTS al-
gorithm was mostly-entirely thought of by Jia
Deng, who consulted me during its development.
I also had several discussions about boosting with
Ben Poole, though I don’t think we both ended up
implementing the same thing at all.

(c) Software and coding: There was some amount
of code already written (presumably by Jia) for
the purpose of testing on the toy dataset. As time
went on a larger and larger fraction of all the code
was written by me. In terms of feature extraction,
that had been entirely done by Jia until I started
this project (i.e. post-CVPR paper). So there was
a bit to learn there, and I used some code that he
had written for extracting dense SIFT features,
though that all had to be changed for each of the
different features. The boosting methods were
coded entirely by me. I’ve also indicated where I
got each of the feature implementations from in
the Features section of the paper.

(d) Designs of experiments: Not too much to say
here, the design is pretty straightforward – try
some methods, then combine them. To that sim-
ple extent, I’ve done all of the work.

(e) Analysis of experiments: Again, this has been
only me. Admittedly I wish I could give them a
more scientific treatment, optimizing over all pa-
rameters, etc., etc., but that would take an incred-
ible long amount of time (see the portion of the
Experiments section where I give running time
estimates). On a similar note, there are always
technical difficulties that have nothing to do with
the experiments explicitly but always slow things
down (e.g. nodes in the cluster running out of
disk space, cryptic Hadoop error messages, etc.).

3. Verify and confirm that you (and your partner currently
taking CS231A) are the sole author(s) of the writeup.

I’d cite the paper Jia and I worked on for CVPR, but
that hasn’t been published, or even accepted, techni-
cally, so I can’t. It’s available upon request. The pri-
mary part of that paper that I took was the DARTS
algorithm, which I think is reasonable. I also copied
over Figure 3, which I figure is ok since I made it in
the first place.

Future Distribution Permission
The author(s) of this report give permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

