
 

 

 
Abstract 

 
Given an indoor image, how to recover its depth 

information from one single image? This problem has 
been studied before for many years. But previous 
research mainly focused on using manually designed 
features, heuristics, or structure information. Lacking 
enough training data limits the methods that can be 
used to deal with this problem. However, with Kinect, 
it is now much cheaper to get ground truth depth 
information for indoor images. The purpose of this 
project is to use a lot of training data to obtain a more 
data-driven approach for recovering depth 
information given a single image. As a result we 
obtained a depth image of a single RGB image from 
other training images and this reconstructed image 
showed a similar pattern in its ground truth labels. 

Future Distribution Permission  
The author(s) of this report give permission for this 
document to be distributed to Stanford-affiliated students 
taking future courses. 

1. Introduction 
Depth estimation from images and reconstruction of 3D 

structure of the images has been of interest to computer 
vision researchers for many years. Saxena et al. [1][2] 
used Markov Random Field (MRF) to model the depths 
and relation between depths at different parts of the image.  
Scharstein and Szeliski [3] produced a dense disparity map 
using two-frame stereovision. Torralba and Oliva [4] 
proposed a way to obtain the properties of the structure in 
the image from Fourier spectrum and infer the depth from 
this information. Saxena, Chung, and Ng [5] inferred 
depth from monocular image features.  This project will 
use a MAP-MRF approach similar to [1], [2] and [6] and   
use massive amount of indoor images collected with 
Kinect [7] to infer the depth from a single image. 

2. Preliminary Experiment 
We will formulate the problem as an energy 

minimization problem as in [1], [2], [6] and [8] and before 
writing an energy function which consists of the unary 
term that models the relationship between the features in 
each pixel to the depth information and the pair-wise term 
that models the relationship between two neighboring 
pixels and depth information, we run some preliminary 
experiment to examine the properties of the unary term. 

2.1 Data 
 The images were collected with Microsoft Kinect [7] 
RGB camera and depth camera that contains the indoor 
images with 4 scene categories i.e., office, kitchen, 
bedroom, and living room. We collected 200 RGB images 
of these indoor sceneries and each RGB image has a 
corresponding ground truth depth image created with the 
Kinect depth camera. Since the Kinect depth camera 
measures the depth information accurately within ~5 
meters, indoor images seem to be more proper for this 
experiment than out door images that usually can have 
objects more than 5 meters away.  

  
                     (a)                                               (b) 
Figure 1: One sample image. The image on the left is an 
RGB image of ‘office’ scene category and the image of 
the right is the corresponding ground truth depth image.  

2.2 Unary term experiment 
Experiment Procedure  In this experiment we infer the 
depth of a test image from training images and compare 
the inferred depth with the ground truth depth. We select 
one image among 200 images to use it as a test image and 
use the remaining 199 images as training images. And we 
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scan the test image with 3 by 3 window size patch from 
the first pixel of the image until the end of the image 
without any overlapping patch. While this window slides 
over the entire pixels on the test image, for each patch we 
select a patch of the same size i.e., 3 by 3 patch from 
training images that shares the most similar features with 
the patch from the test image. As features we use RGB 
color by calculating how much the RGB values in test 
patch are different from the path in selected among the 
training patch. From training images we randomly select 
1000 patches for each 3 by 3 patch from the test image and 
finally choose only one patch among 1000 patches from 
training images as the best match to the test patch. We 
hypothesize that since these images are from similar 
indoor scenes if the patches have similar features in RGB 
images then their depth information would also share quite 
a lot of similarities.  To compare the RGB similarity 
between test patch and the training patch we use the 
formula (1)  
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where i by i is the size of the patch and Ctest is the color 
value i.e., RGB in test patch and Ctraining  is the color value 
in training patch. The training patch is chosen to be best 
match when it has the minimum value of formula (1) 
amongst all the training patches. 
 
Experiment result  Figure 2. shows the result of this 
experiment. The image on the left is the ground truth 
depth of the test image, the same image previously shown 
in Figure 1 on the right side and the image on the right 
side of the Figure 2 is the result obtained from this 
experiment. This result image was generated by 
concatenating patches from the training images that 
matched the best with each patch on the test image while 
the 3 by 3 patch was sliding over the test image. As we 
can see in Figure 2 we can find the patterns of the original 
image in Figure 2 (a) in the reconstructed image from the 
experiment in Figure 2 (b). Figure 2 (b) shows the shape 
of the chair and table from the original image. This result 
gives us intuitions that the depth information of a single 
still image previously unseen by training images can be 
inferred by selecting the depth from the similar patches in 
training images.  

  
               (a)                                               (b)  

Figure 2: Ground truth depth image on the left and the 
result image inferred on the right. 

We also use the norm-2 measurements of all the pixels in 
the ground truth depth image and the result image as in (2) 
to evaluate the result more quantitatively.  
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diff = sqrt( (G(x,y) − P(x,y))2
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where G(x,y) means the ground truth depth at  pixel (x,y) 
and P(x,y) is the inferred depth at pixel (x,y) in the result 
image such as Figure 2 (b). We should notice that in (2) 
we are summing over all the pixels except for the ones 
with depth values are zeros. This is because in the ground 
truth depth image such as Figure 3 there exist some pixels 
with error marked with black circles and ellipses in the 
Figure 3 and also the boundary of the ground truth image 
is surrounded with depth zeros regardless of what the 
ground truth depth values are. We exclude these pixels in 
our formula (2) to calculate the difference between the 
ground truth depth and the predicted depth from the 
training images. For the result image in Figure 2 (b) we 
obtained 921.7675 as an estimate using the formula (2).  
 

 
Figure 3. The pixels with error in depth information are 
marked with black circles and ellipses. 

3. Control Experiments 
From the preliminary experiment with one test image 

we could observe what we need to improve to make our 
energy minimization approach to work. We run control 
experiments for more test images by varying the patch size 
and the number of training patches. We use 3 images for 
each scene as test images. Since there are 4 scenes, i.e., 
office kitchen bedroom and living room, we use 12 images 
as test images. For each test image we run three kinds of 
experiments. In the first control experiment we use all the 
other 199 remaining images as training images. In the 
second control experiment we will use only the images in 
the same scene category as training images. Lastly we use 
the images in the different scene category as training 
images. We expect to see the second control experiment 
performed the best and the third one performs the worst. 
We also change the number of training patches from 1000 
to 3000 whereas we used only 1000 training patches in the 
preliminary experiment. And we also vary the size of the 



 

 

super pixels from 3 by 3 to 11 by 11 whereas we used only 
the 3 by 3 size patch in the preliminary experiment. 
 
Implementation The preliminary experiment was 
performed with MATLAB m-files and it took 5 hours to 
get one result image in Figure 2 (b) for one test image. 
Since we want to run more experiments with more images 
and run several control experiments we need to speed up 
the code. Therefore we implement the code in mex files 
that make the computation more efficient when we use 
for-loops and it takes only 3 minutes for each test image. 
For each control experiment the code was implemented 
using mex file and the specific implementation for each 
experiment is explained next.  
 
3.1 Control experiment 1: Depth inference from 
training images in all scene categories 
 
Implementation We implement the first control 
experiment using the algorithm illustrated in Algorithm 1. 
The controlled parameter is the scene category. Therefore 
in this experiment we use all images in the training images 
regardless of their scene category.  
 
Algorithm 1. Depth inference of a single still image 
from training patches in all scene categories 
Input a still RGB image without ground truth depth 
information 
Output inferred depth information of the input image 
Algorithm  
for each pixel (x,y) in the input image, make an i by i 
patch including neighboring pixels 
for this each patch obtained from the test image, 
randomly select the same size patch from training 
images that do not include the test image and from all 
scene categories and compare their RGB values using 
formula (1) 
Select the best match whose similarity using formula (1) 
has the minimum value amongst all the training patches 
Construct a depth image by concatenating the depth 
value of the center pixel in the training patch selected in 
the procedure above. 
Return the constructed depth image 
 
 
Experiment result  In this controlled experiment, we use 
3 by 3, 5 by 5 , 9 by 9 and 11 by 11 as patch sizes and fix 
the number of training patches as 1000 in Algorithm 1 and 
obtain the reconstructed depth image and measure the 
estimate using the formula (2). The results are shown in 
Figure 4. In the results in Figure 4 the x-axis indicates the 
patch size and the y-axis indicates the estimate. We 
measure the estimate for each scene category using the 
formula (2) and the estimates of two images i.e., image1 
and image10 from ‘office’ scene category tend to decrease 

as the patch size increases, the estimates of two images 
i.e., image114 and image154 from ‘kitchen’ scene 
category tend to decrease as the patch size increases, the 
estimate of one image, image180 from ‘bed room’ scene 
category decreases and the estimates of two images, 
image34 and image156 from ‘living room’ scene category 
tends to decrease as the patch size increases.  
 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4. Estimate of each test image of each scene 
category by varying the patch size (a) ‘office’ scene 
category (b) ‘kitchen’ scene category (c) ‘bed room’ scene 
category (d) ‘living room’ scene category 
 
This result agrees with our expectation since we expected 
that if the patch size becomes larger than the selected 
training patch is more similar to our test image patch and 



 

 

it is more probable that it comes from the similar part in 
their original images and it makes their depth more 
similar. Therefore 7 images out of 12 test images produced 
the result that agrees with our expectation. But 5 images 
out of 12 test images were increasing or repeating to 
increase or decrease and did not keep decreasing as the 
patch size increases. So we examine these unexpected 
results more carefully and image 166 seems to be a good 
candidate to examine this property but by mistake during 
the experiment we did not save the reconstructed image of 
image166 and we only recorded its estimate so we 
examine image 111 and image46 instead which we saved 
the reconstructed image successfully. For example, here 
we show the reconstructed depth image from image34 
which produces a very good performance in its estimate 
measurements.  
 

  
               (a)                                               (b)  

Figure 5: The reconstructed image with patch size 3 by 3 
for image 34 in ‘living room’ category on the left and the 
reconstructed image with patch size 11 by 11 for image 34 
in ‘living room’ category on the right1 
 
In Figure 5 we observe that for image 34 the reconstructed 
image with patch size 11 by 11 produces a better result 
which is much more similar to the ground truth depth 
image than the result with patch size 3 by 3. In Figure 5 
(b) we can see the shape of the chair and table more 
clearly than Figure 5 (a). Figure 5 (b) shows even more 
distinguished depth information of the clock on the wall 
than the ground truth depth in Figure 6 (a). 
 

  
               (a)                                               (b)  

Figure 6: The ground truth depth of image 34 in ‘living 
room’ category on the left and the corresponding RGB 
image on the right.  
 

1 Since the figure size attached in Figure 5 is too small to observe the 
result in original image size we attach the bigger size image in the 
Appendix. 

We compare this result with the estimates of image 46 
which stayed almost the same for patch size 3 by 3, 5 by 5 
and 11 by 11 and only slightly decreased for patch size 9 
by 9. Figure 7 shows the result obtained from image 46 in 
‘office’ scene category. Clockwise from Figure 7 (a) 
shows the reconstructed depth image from 3 by 3 patch 
size, 5 by 5, 9 by 9 and 11 by 11 patch size.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: The reconstructed depth image for image 46 in 
‘office’ category. (a) 3 by 3 patch size result (b) 5 by 5 
patch size result (c) 11 by 11 patch size result (d) 9 by 9 
patch size result. 
 
Compared to the reconstructed images for image34 
previously from Figure 7 we cannot guess how the ground 
truth depth image would look like by looking at these 
result images since we cannot see any patterns here. 
Therefore we can conclude that regardless of the size of 
the patch the depth inference was not successful for this 
image. Figure 8 shows the ground truth depth image of 
image 46 and its original RGB image.  
 

  
               (a)                                               (b)  

Figure 8: The ground truth depth of image 46 in ‘office’ 
category on the left and the corresponding RGB image on 
the right.  
 
One obvious difference we can observe is that from 
ground truth depth image of image 46 in Figure 8 (a) we 



 

 

can see that most of its pixels are blue whereas in Figure 7 
(a) most of the pixels are red or yellow. Therefore one 
assumption could be the range of the depth affect the 
performance of the depth inference. When we calculated 
the average ground truth depth value in Figure 6(a) the 
mean was 2295.3 and for Figure 8(a) the mean was 
1611.4. Therefore low ground depth value might not be 
good depth inference. However comparing two images is 
not enough to make this conclusion so we compare two 
more images in the same scene category, ‘office’ and for 
image 1 and image 10 as in Figure 9 we could observe 
most of yellow or red pixels for these two images as well 
and these two images showed decreasing tendency in its 
estimate when the patch size was increasing. Therefore the 
depth range might be the reason for the poor performance 
in image 46 but still comparing 4 images is too small size 
of images to make this conclusion. We need to further 
look into this property. As another assumption other 
features in the image such as corner or orientation of the 
patch might be the reason for the performance therefore it 
would be worthwhile to examine this property using SIFT 
features [10]. 
 

  
               (a)                                               (b)  

Figure 9: The ground truth depth of image 1 in ‘office’ 
category on the left and the ground truth depth of image 
10 in ‘office’ category on the right.  
 
We also vary the number of training patch size from 1000 
to 3000 fixing the patch size as 9 by 9. We tested the 
number of training patch size 1000, 2000 and 3000. And 
the results are shown below. In the results in Figure 10 the 
x-axis indicates the number of training patch and the 
y-axis indicates the estimate. We hypothesized that the 
estimate will decrease as the number of training patch size 
increases since as there are more number of patches to be 
the candidate for being a good match it is more probably 
to get better inference for the depth. All of the three test 
images in ‘office’ scene category produce the result that 
agrees with our hypothesis. In ‘kitchen’ category the 
estimate of image111 is increasing as the number of 
training patches increases and the estimate of image114 
increased slightly in the number of training patches is 
2000 but it is almost constant. For ‘bed room’ scene 
category the estimate of image 168 is increasing and 
image 184 in ‘living room’ category is also increasing. But 
the reconstructed images for image 168 and 184 were not 

saved during the experiment by mistake and we only 
recorded its estimate and image111 is the one obviously  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Estimate of each test image of each scene 
category by varying the number of training patches (a) 
‘office’ scene category (b) ‘kitchen’ scene category (c) 
‘bed room’ scene category (d) ‘living room’ scene 
category. 
 
increasing as the number of training patches increase so 
we analyze the reconstructed depth image of the image 
111 in detail. Even if we obtained decreasing estimate in 
Figure 10 (b) as the number of training patches increases 
for image 111 from Figure 11 we notice that the actual 
result of the reconstructed image gets better as the number 
of the training patches increases. When the number of the 
training patches is 3000 we can see the shape of the oven 
most clearly. This result seems to show that our estimate 



 

 

calculated using formula (2) is not always robust. 
Although it could be a good estimate to measure the 
difference in the original ground truth depth and the 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. The reconstructed depth image for image 111 in 
‘kitchen’ scene category. (a) the number of the training 
patches is 1000 (b) the number of the training patches is 
2000 (c) the number of the training patches is 3000.2 
 
reconstructed depth image in general it does not always 
give the best comparison since for example, in this case 
for image 111 the difference might have been large for 
other pixels in the regions that the inference was not good 
but for the regions with good inference such as the oven 
area, the result with the number of training patches with 
3000 was the best inference result when we actually 
observed the reconstructed depth image. 
 
3.2 Control experiment 2: Depth inference from 
training images in the same scene categories 
 
Implementation We implement the second control 
experiment using the algorithm illustrated in Algorithm 1. 
The controlled parameter is the scene category. Therefore 
in this experiment we use the images in the same scene 
category in the training images.  
 
Algorithm 2. Depth inference of a single still image from 
training patches in the same scene category 
Input a still RGB image without ground truth depth 
information 
Output inferred depth information of the input image 
Algorithm  
for each pixel (x,y) in the input image, make an i by i 
patch including neighboring pixels 
for this each patch obtained from the test image, randomly 
select the same size patch from training images that do not 
include the test image and from the same scene categories 
and compare their RGB values using formula (2) 
Select the best match whose similarity using formula (2) 
has the minimum value amongst all the training patches 
Construct a depth image by concatenating the depth value 
of the center pixel in the training patch selected in the 
procedure above. 

 
2 Since the figure size attached in Figure 11 is too small to observe the 

result in original image size we attach the bigger size image in the 
Appendix. 

 

Return the constructed depth image 
 
 
Experiment result We use 3 by 3, 5 by 5 , 9 by 9 and 11 
by 11 as patch sizes and fix the number of training patches 
as 1000 in Algorithm 2 and obtain the reconstructed depth 
image and measure the estimate using the formula (2). The 
results are shown in Figure 12. In the results in Figure 12 
the x-axis indicates the patch size and the y-axis indicates 
the estimate. We measure the estimate for each scene 
category using the formula (2). 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 12. Estimate of each test image of each scene 
category by varying the patch size (a) ‘office’ scene 
category (b) ‘kitchen’ scene category (c) ‘bed room’ scene 
category (d) ‘living room’ scene category 
 



 

 

When the training images are from the same scene 
category i.e., when we find the most similar patch and 
reconstruct the depth image we consider only the patches 
in the same scene category we expected to see the lowest 
estimate using formula (2). However as we can compare 
the estimates in Figure 12 to the estimates in Figure 4  the 
experiment with all scene categories and also the estimates 
in Figure 14 of the experiment with different scene 
categories, only the estimates for ‘kitchen’ scene category 
were lower than the estimated from other two 
experiments. This seems to be because other three 
categories, ‘office’, ‘bedroom’, and ‘living room’ share 
common indoor structure or furniture such as desks or 
chairs. Even if ‘kitchen’ scene category has a table similar 
to the desk and chair it also contains unique items such as 
oven, utensil, bottles, etc. Another interesting observation 
is that in this same scene category training images 
experiment the number of test images that showed the 
decreasing estimates as the patch size increases was the 
most. In all the test images the estimates show this 
tendency except for image111 and image 114. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 11. Estimate of each test image of each scene 
category by varying the number of training patches (a) 
‘office’ scene category (b) ‘kitchen’ scene category (c) 
‘bed room’ scene category (d) ‘living room’ scene 
category. 
 
3.3 Control experiment 3: Depth inference from 
training images in different scene categories 
 
We implement the third control experiment using the 
algorithm illustrated in Algorithm 3. In this experiment we 
use all images in the training images in different scene 
category.  
 
Algorithm 3. Depth inference of a single still image from 
training patches in different scene category 
Input a still RGB image without ground truth depth 
information 
Output inferred depth information of the input image 
Algorithm  
for each pixel (x,y) in the input image, make an i by i 
patch including neighboring pixels 
for this each patch obtained from the test image, randomly 
select the same size patch from training images that do not 
include the test image and from different scene categories 
and compare their RGB values using formula (2) 
Select the best match whose similarity using formula (2) 
has the minimum value amongst all the training patches 
Construct a depth image by concatenating the depth value 
of the center pixel in the training patch selected in the 
procedure above. 
Return the constructed depth image 
 
 
Experiment result We use 3 by 3, 5 by 5 , 9 by 9 and 11 
by 11 as patch sizes and fix the number of training patches 
as 1000 in Algorithm 3 and obtain the reconstructed depth 
image and measure the estimate using the formula (2). The 
results are shown in Figure 14 and Figure 15. In the results 
in Figure 12 the x-axis indicates the patch size and the 
y-axis indicates the estimate. We measure the estimate for 
each scene category using the formula (2). In the results in 
Figure 15 the x-axis indicates the number of training 
patches and the y-axis indicates the estimate. As we 



 

 

increase the number of training patches the estimate from 
the control experiment 3 decrease in ‘kitchen’ scene data 
and also in this experiment the estimates in ‘kitchen’ scene 
data are lower than the estimates in the control experiment 
1 or control experiment 2, which agree with our 
hypothesis.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 14. Estimate of each test image of each scene 
category by varying the patch size (a) ‘office’ scene 
category (b) ‘kitchen’ scene category (c) ‘bed room’ scene 
category (d) ‘living room’ scene category 
 
 

   
(a) 

   
(b) 

   
(c) 

 
(d) 

Figure 15. Estimate of each test image of each scene 
category by varying the number of training patches (a) 
‘office’ scene category (b) ‘kitchen’ scene category (c) 
‘bed room’ scene category (d) ‘living room’ scene 
category. 

4. Conclusion and Discussion 
We provided a method to infer depth information from a 
single still image without any ground truth labels. By 
running the experiments explained in Sec 2 and 3 we 
obtained a depth image for this RGB image and this image 
showed a similar pattern to the ground truth depth. We 
could confirm this result because our test image originally 
had ground truth labels but we did not use these labels for 
the depth inference and used these labels for the 
performance evaluation. As a future work we can try using 



 

 

SIFT[10] features to get the similar patches in the 
experiment. As a way to speed up our method constructing 
a tree using hierarchical clustering when we find the best 
match patch will be helpful when there are millions of 
data. 
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Figure 6(a) 
 

 
 
Figure 11 (a) 

 



 

 

Figure 11 (b) 

 
 
 
Figure 11 (c) 

 
 
 
 
 

 


