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Abstract

Image segmentation is a fundamental preprocessing step
to other vision tasks such as object recognition. Our project
focusses on using depth information from a Kinect depth
sensor as an additional feature to aid in segmenting an im-
age. Using a bottom-up approach, we use a set of geometric
metrics derived from Kinect RGB-Z data to make decisions
whether or not two regions in a scene should be merged.
We evaluate our results and demonstrate that there are ad-
vantages in considering depth as an additional feature in
real-world cluttered environments and scenes.
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1. Introduction

Segmentation of objects in a cluttered scene is
a critically important pre-processing step in robot
perception. Even without knowing the semantics
of objects in the scene, robots need to know the
boundaries of an object to manipulate the objects
effectively. In cluttered scenes however, the prob-
lem of object segmentation becomes more chal-
lenging due to factors like occluded objects, and
shadows, which add spurious information to algo-
rithms that rely on traditional Gestalt cues (color,
brightness, texture). The depth dimension might
be a really useful feature in such scenarios to dif-
ferentiate between 2 objects in the same scene.
The availability of inexpensive commercial depth
sensors such as the Kinect, when compared to 3D
laser range scanners, have very high frame rates
of 30Hz. vs. 1 Hz. for the scanners, and have a
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reasonable accuracy at low ranges (few meters).
The Kinect can acquire both an RGB image as
well as depth information at the same time which
makes it attractive to incorporate both features.
There is a body of work using the depth informa-
tion provided by the Kinect to segment images of
scenes [3][9].

To approach this problem, we first over-
segment the image into superpixels. Then we
will use both the RGB information as well as
depth to derive a feature vector representation
based on several geometric features we define for
each segment. We define a similarity measure be-
tween segments and iteratively merge segments
together. In essence our algorithm is completely
unsupervised. As described in Section 5 we use
an open Kinect dataset for testing our algorithm.

Our contributions in this project are: a formu-
lation of a feature representation of a segment,
pre-processing of the depth image, and extensive
fine tuning of our algorithm, and the evaluation
against previous work done in [7]. We also for-
mulate a method to visualize normals from depth
images.

As shown in the Experiments section, we find
that our method performs better than the baseline
superpixel algorithm by Ren and Malik in terms
of the Entropy metric.

2. Related Work

The central idea in modern work on image seg-
mentation is the graph representation of an im-
age. In this graph, the nodes are the image pixels
and edges are drawn between adjacent pixels. An



affinity value represents the weight of each edge.
The task in segmentation is to find a cut in the
graph which will represent the clusters in the im-
age. The Normalized cut algorithm [8] was an
influential algorithm in image segmentation that
overcame the short-comings of min-cut. It tries
to find the min cut normalized by the volume of
each cluster as:
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Ncut(A, B) = cut(A, B) x (

In other work [9], a top down approach to seg-
mentation is used, by using a combination of a
Canny detector, a Delawney Triangulations and
modified Normalized Cut. Another interesting
approach proposed by Arbelaez et al [1] is hier-
archical segmentation using a high performance
contour detectors which takes into account local
and global cues. Holz et al([3]) focus on segment-
ing planes in real time using the kinect depth sen-
sor describes various top-down heuristics for real-
time segmentation of a scene into a set of planes.
Holz et al derive scene geometry from RGB-Z
data and using a bunch of clustering methods,
cluster points in the scene first according to nor-
mal orientation and then, into different planes us-
ing distance of plane from frame center.

There has also been some work on feature rep-
resentation of image clusters in a classification
framework (Ren and Malik, [6]). In this work,
they use contour and texture cues to generate an
affinity matrix with local connections only. Using
normalized-cuts([8]) on this, they generate over-
segmented images where each segment is referred
to as a superpixel. Then, merging is done using
the classification framework.

Our method differs from these other methods
since it is a bottom-up approach to constructing
meaningful segments of pixels , it is completely
unsupervised, and it incorporates depth informa-
tion. In comparison to the test cases used in
[6], we use those with cluttered scenes a scenario
where depth information would be valuable. We
also incorporate some of their insights and draw
on ideas from [3], [8] and [6] to develop our
framework.

3. Approach

In this section we present the algorithm we
use to incorporate depth features in segmenta-
tion. Our algorithm involves computing features
for each cluster, and then iteratively merging clus-
ters with maximum similarity at each step. Thus,
we will formulate the geometric features we use
to incorporate depth information into cluster, dis-
cuss some of the similarity measures we used for
merging clusters.

(a) NCuts with about 1000 segments

(b) With about 250 segments

3.1. Preprocessing Heuristics

3.1.1 Depth as a feature

As a starting point, we applied the algorithm in
[6] to divide the image into superpixel regions
and used some publicly available code [5] to do
that. As shown in figure sink image without
depth, the super-pixels cluster the image well,
however the algorithm makes mistakes in regions
that have similar color, but that have a clear dif-
ference in depth, as seen in the depth map in fig-
ure depthmap of sink in the sink region. Since
we use a bottom-up approach (we merge smaller
segments) using a highly over-segmented starting
point, it is important that each segment here cor-
respond to only one object / region.

The superpixel algorithm [6] encodes contour
and texture cues as a property of the cluster. Our
first pass at incorporating depth, was to modify
the super-pixel code to include depth at the pixel
location as an additional feature within the super-
pixel representation. Thus we take depth into ac-
count while calculating the affinity matrix of the
image graph. This is formulated as:



F=[C D] (1)

euc(F;, F;) = euc(Cy, Cy) + (D; — Dj)2 2)

Where F; is the feature vector of superpixel
1, C' is the feature vector corresponding to con-
tour and texture as computed by the superpixel
scheme. Here, euc is the function to evaluate Eu-
clidean distance between 2 vectors. D is the depth
feature we introduce which we obtain from the
depth map which is the depths of all the pixels in
the cluster. As seen in equation 2, it would accen-
tuate the distance between the segments depend-
ing on the depth difference between the segments.
In figure below, we observe that this modification
results in the sink being segmented better.

Figure 1: Depth Map of image of sink

3.1.2 Increasing Depth Map

We obtain depth values from smoothed depth im-
ages. Thus the neighboring pixels have a small
depth difference. To accentuate this difference,
we experimented with increasing the contrast of
the depth map to get better defined depth discon-
tinuity at edges. However, in practice we noticed
that this did not necessarily give us an increase in
performance. Our assessment was that although
depth edges (where color difference was low) got

Figure 2: Segmentation with depth feature

Figure 3: Segmentation without depth feature

highlighted, this also increased the depth-distance
between adjacent regions (especially when the
size was big enough for there to be a big varia-
tion of depth across the region).

3.2. 3D coordinates and Plane-Fitting

Instead of including the depth of each pixel as a
feature of its own, if we compute a plane that fits
all the points in a particular cluster, we could im-
prove our measure of similarity between clusters.
To do this, we need to compute the coordinates
of a particular location in 3-D space and then fit
a plane to it. As we describe in dataset section,




the dataset we use does not provide us with the
calibration parameters for the RGB camera of the
kinect. Thus to find the 3-D location, we assume
a pinhole model for the camera.

World point
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Figure 4: Calculation of world coordinates. d’ =
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Where z,y are the pixel coordinates; d is the
depth value at that pixel location is the depth map.
X,Y, Z are the world coordinates of the point in
the world corresponding to the pixel.

We formulate the problem of plane fitting as the
least squares solution to:
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constrained by: ||A| =1

Where A = [ab cd] contains the parameters of
the plane. We compute the SVD of Z = UXVT.
The solution to the constrained least squares prob-
lem, A, = [ s bis ¢ dis ] is the last col-
umn of V/, i.e. the right singular vector of Z, hav-
ing the least singular value. To make this proce-
dure fast, we perform an optimization which we
describe in the Implementation section.

3.3. Geometric Properties

We consider several geometric properties of a
superpixel region to incorporate as features:

Plane Normals Average plane normal to the
plane for the superpixel. This is obtained
from the first three coordinates of Aj,, i.e.
in the direction of ai + bj + ck. We nor-
malize to make it a unit vector. We devel-
oped a way to visualize the normal direc-
tions. To manage the £ degeneracy (nor-
mal pointing in opposite directions are ac-
tually the same), we make all the normals
choose the orientation which is towards the
camera. The colors below are computed by:
(r,9,b) = (0.5,0.5,0.5) + (ng, ny, ns)

Figure 5: We can notice some noise but this conveys a good
sense of the relative normal directions of adjacent segments

Regression Error Root mean square distance of
the points in the cluster from the fitted plane.

6:H Z*Als (5)
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This is an important feature which informs us
about the feasibility of merging 2 neighbor-
ing segments. If the error after merging the 2
segments is high, then it is not a good merge.
For our qualitative analysis, we visualize the
errors in different segments as shown below.

Centroid Centroid of the world points corre-
sponding to the pixels in a superpixel. A
good indicator of whether or not objects cor-
responding to 2 neighboring superpixels are
the same or not. If there is too much of a dif-
ference, they are not the same object.



Figure 6: The redder the region the higher the normalized
error. There is some noise here simply because segments
are actually not planar. This is also one of the reasons why
we do not use this value in wB.

Boundary Depth Difference (BDD) This is a
binary feature defined for a pair of superpix-
els ¢+ and j. For the 2 clusters the BDD is
computed as difference in depth between the
boundary pixels of the superpixels 7 and j. A
boundary is defined to be a list of pairs of ad-
jacent pixels where one pixels belongs to seg-
ment ¢, and the other belongs to segment j.
We represent the kth pixel in the boundary of
1 and 7 on the side of 7 as bj.

BDD.. — 2ok depth(ba) — depth(by,)|
“ #boundary-points

(6)
To make sure that this measure is not noisy,
instead of just selecting pairs of pixels on
the boundary, we select small region-pairs
around those pixels. So, depth(b;), is the
averaged-out depth in a region around this
pixel in the j** superpixel.

3.4. Similarity of segments

Given our geometric features, we worked with
a variety of similarity metrics, that will give a high
similarity score, if the pixels in the 2 segments
have a high probability of belonging to the same
object, and lower score, if they are on different
objects. Since the superpixel algorithm already
accounts for RGB based features, the similarity

metrics we define in this section and the algorith-
mic framework we use are mainly dependant on
the Z (depth) features formulated in the previous
section.

In the following, c¢;, n; refer to the centroid in
world co-ordinates, the plane normal at segment
© respectively. ¢;; refers to the regression error
of the resulting segment after merging segments ¢
and j.

Metricl (wl) We started with using the weight
metric defined in [7].
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This metric gives a low score when the re-
gression error of merging two superpixels is
high and in the case the displacement be-
tween the centroids of the segments are in
the direction of the normals. This is, in gen-
eral, a good way to avoid merging parallel
planes displaced in space. Since this method
of scoring does not explicitly include differ-
ence or a dot-product between n; and n;, we
noticed that there was a chance that this scor-
ing would give a high weight to adjacent per-
pendicular segments.

Figure 7: Laptop merges with wall even with a lot of clus-
ters

Boundary Metric (wB) To overcome the short-
coming mentioned above, we experimented
with a simpler metric (W2):
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The results were not encouraging simply be-
cause this metric missed the advantage that
w1 offered. A closed laptop on the table got
merged with the table-top. We had even more
problems when the object was farther from
the camera because of reduced accuracy of
the depth map.

Figure 8: Laptop, ruler and calculator merge with table-top
but laptop is separate from wall.
So, we decided to work on a richer metric:
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The intuition here is that discontinuity be-
tween segments is best defined at the bound-
ary. We compute BDD;; as described be-
fore. This would down-weight segment-
pairs which have a depth discontinuity at the
boundary between the segments. We also use
normals to avoid merging of segments which
have different orientation even though they
might be neighbors in world space. Besides,
this metric would also give low weights par-
allel segments which are displaced from each
other - a desirable property that metric wl
had.

We feel that this is metric provides a rich
characterization of segment-distance or the
probability of merging 2 given segments.

Invariance of the weight metrics The metrics
mentioned above are scale independent as long as
we are not changing scales along the Z-axis (or il-
lumination intensities of the depth maps) in which

case the weight values computed would vary in
the case of wB (BDD values would change) and
wl(difference in segment centers would change).
But even with this, our scheme is invariant since
the monotonicity or ordering among segment-
pairs in terms of weights would not change.

The metrics are definitely invariant to transla-
tions and rotations since they do not depend on
explicit directions on the vectors concerned but
their relative orientation with each other.

The metrics are however not invariant to noisy
variations in depth-map intensity values(a point
which we talk about later in the report). We how-
ever make an attempt to make BDD values robust
to small variations by smoothing.

3.5. Our Algorithm

Our algorithm consists of the following steps:

1. We use the implementation provided ([5]) to
get an over-segmented image with ~ 250 su-
perpixels.

2. Using the segmentation map, we compute the
normals, regression errors, centroids for all
the superpixel segments.

3. Generate adjacency matrix (adj) and
segment-pair boundaries.  So, adj; =
adjj; = 1 if segments 4 and j share a bound-
ary pixel. Also, we compute the boundary
pixels as described above Vi,j such that
adjij =1.

4. Compute weights for all the possible
segment-pairs that we can merge. We
use either of the two metrics (wl or wB)
explained above.

5. Select the pair with the highest weight and
merge the segments.

6. Recompute geometrical properties mentioned
in Step 2.

7. Recompute those segment-pair weights
which need to be recomputed based on the
geometrical properties of the new bigger
segment.



8. Repeat steps 5 - 7.

4. Implementation

We exclusively used MATLAB for this project.
4.1. Priority Queue

We used matrices to implement the segment-
pair priority queue. After finding the segment-
pair (7,7) with maximum weight, we eliminate
entries corresponding to segments ¢ and j in the
system. We assign the newly-created segment the
number ¢ and set the adjacency vector of the new
segment the bitwise OR of the adjacency rows
(in ady) of segments ¢ and j. We recompute the
boundaries and segment-pair weights.

4.2. Setting F for the Camera

As explained later, we experimented with im-
ages provided in a couple of datasets. The cam-
era calibration parameters for camera orientation
were provided. However, the distance of the im-
age plane from the camera center () was not pro-
vided. In [[7]], the author sets the value to be 1.
We, however, found that using our formulation in
Equation 3, a value of 1 makes almost all normals
in the Z-direction as can be seen in the image be-
low. The color values are close to (0.5, 0.5, 0).

Figure 9: All the normals are along -ve Z-axis

The reason that this happens is because the val-
ues and the variation in Z obtained using Eq. 3
are 2 orders lesser than the values obtained by
X and Y. So, we decided to use a much higher
value of F. In practice, a values in the range of
100-500 seemed work well. We use 400. The
resultant normals are shown in Figure 5. As we
can see, the results are a lot better though there
are still noise induced differences between certain
segments which should have the same normals.

4.3. Optimization

Caching To avoid repeated computations at ev-
ery step, we cache the plane parameters, all
candidate segment-pair errors (and weights)
and superpixel centroids. The computation
of these parameters again and again in ev-
ery iteration was not feasible. Another ma-
jor optimization was achieved by computing
all these parameters only for neighboring seg-
ments and not all possible pairs of segments.
This made algorithmic sense too because we
are attempting to merge neighboring super-
pixels at every step of the iteration.

Besides, we optimize determination of
segment-pair boundaries iteration after itera-
tion by caching the boundaries of the present
segments with their neighbors. Then, when
a merge of segment ¢ and j happens, we
concatenate the boundaries of these segments
with their neighbors to get the boundaries of
the newly-created segment with its neighbors.

SVD Computation A major bottleneck of the al-
gorithm was multiple singular value compu-
tations (O(n?) for n points in the segment)
that we had to do at every iteration for ev-
ery neighbor of the newly-created segment
(to compute the regression errors and nor-
mals of the new segment-pair possibilities).
This especially gets infeasible when the seg-
ments grow large after lots of iterations. To
speed this up, we choose a limited number of
uniformly-distributed sample points from the
regions. Setting the limit to about 500 points
worked really well for us. This decreases the
time taken per iteration a great deal.

5. Experiments

Dataset We use 2 data-sets we for our experi-
ments: namely the NYU kinect depth dataset
[2] and select images from the Berkeley 3DO
project [4]. These data sets contain RGB im-
ages, and their corresponding depth images
taken from a kinect camera. These datasets
contains both smoothed as well as raw ver-



sions of the depth images and for our experi-
ments in this report, we use the smoothed ver-
sion.

(a) Original

(b) True-value Segmentation

Figure 10: True-value segmentation manually created on
Photoshop

In the NYU dataset, we are also provided
with a ground truth labeling of each scene,
with a semantic label for each segment. We
also created hand labeled ground truth seg-
mentations for the images we used during
testing on the 3DO dataset.

Evaluation Methodology To evaluate the per-

formance of the proposed approach against
the baseline superpixel algorithm, we per-
form 2 types of evaluations:

e We analyse the entropy values obtained
by using the 2 similarity metrics against
the entropy obtained by the superpixel
algorithm. The results for this are shown
in table 1.

e We also evaluate how different number
of iterations during the merging algo-
rithm affect the entropy. This gives us
a good idea of the stopping condition to
employ during testing of the algorithm.
The results are presented in Table 2.

Apart from the quantitative analysis per-
formed above, we also analyse the perfor-
mance of both the baseline superpixel algo-
rithm as well as our algorithm on interesting

We do not use the semantic label informa- test images.

tion, but compare our segmentation against
the ground truth segmentation. However, we
are not provided with the intrinsic camera
parameters for the camera that collected the
data. As a result of this, we have to approxi-
mate for f during plane fitting.

Here are some of the test images:

Evaluation Metric To evaluate our method
against the gold standard segmentation as
well against the baseline superpixel algo-
rithm in [6], we use Entropy as a measure
of the goodness of segmentation. Entropy is
defined as:

[= _% « SN Pinp;  (10)
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(b) True-value Segmentation

Where F;; is the percentage of Label j in seg-
ment 7. Sy is all the ground truth segments.
This is powerful metric which penalizes seg-
mentations with segments overlapping mul-
tiple objects in the scene as well as over-
segmentation. The lower the value of the en-
tropy, the better the segmentation score.

et
(d) With 79 segments

Evaluation on different similarity metrics Eval-
uation on different number of clusters Compari-
son of Entropy of Malik vs us.



Metric | Iterations | Entropy
85 -1.59
115 -1.97
wB 135 -2.39
185 -4.27
85 -1.56
wl 115 -1.96
135 -2.37
185 -4.25

Table 1: Results comparing the entropy for similarity met-
rics wl and wB

Metric Entropy
wB -9.7
wl -9.42
Superpixel | -8.88

Table 2: Results comparing the 3 methods at 40 clusters

6. Conclusion

Our observations showed that segmentation
was effective and entropy decreased with greater
number of iterations. When we compared wB
against wl , both of which are run after running
the preprocessing heuristics, we find that we per-
form better in terms of entropy measure. We
also find that we score better than the supervised
framework proposed by Ren and Malik. How-
ever, further qualitative analysis indicated that
running the 2nd phase of the algorithm only on
depth and geometry was not necessarily good be-
cause of a very practical consideration: the res-
olution and accuracy of the depth maps. Thus
because of this limitation, in other datasets, Ren
and Malik’s algorithm might perform better. The
distant part of the scene is not reliable and thus,
computing depth difference would probably be a
lot more robust if it was also done on the basis of
color difference. We believe this heuristic would
go a long way in achieving much greater accuracy
even in an unsupervised model.

After this, a next step would be to incor-
porate supervised learning using a big dataset
with ground-truths as achieved by Ren and Ma-
lik in [6]. The probabilistic model would be a
little more involved with parameters for depth-

information obtained from the depth map as well.
As future work we would like to also develop a
model to predict the iterations required for seg-
mentation apriori, or on the fly.
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