
Semi-supervised learning for adaptive object recognition in RGBz images

Andrew Duchi
Stanford University
aduchi@stanford.edu

Abstract

In this project I focus on the problem of using depth data
to improve performance of object classification on RGB and
depth images on-the-fly, with no depth data in our training
set. I used both retraining of models with high confidence
images as well as outlier detection using both distance-
based and probabilistic metrics in hopes of increasing per-
formance. Outlier detection over the depth data offered no
improvement in performance, but training a new model to
incorporate depth data using only high-confidence classifi-
cations as ground truth provided modest improvement over
the RGB-only model. The results also seem to indicate that
improvement can be achieved for classification systems with
F1-scores on a given dataset down to .75 and possibly be-
low, giving between a .02 improvement and .1 improvement
in F1-score when the model was retrained. It also seems
that lower scores leave room for more improvement and can
benefit more from inclusion of depth data than classifiers
that are already functioning well. Next steps should include
creation of an additive model rather having to discard the
entire trained RGB model when we retrain.

Future Distribution Permission
The author of this report gives permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

Since the release of the Microsoft Kinect in
November of 2010, there has been an explosion
in the use of depth data in visual object recog-
nition. This change is because Kinect provided
the first low-cost, high-quality depth sensor that
made acquisition of reasonable quality depth
data feasible in a wide range of settings. These
sensors are especially useful in computer vision
because, even when two images may have differ-

ent colorations that cause confusion in a standard
RGB image, the depth image will be unaffected
and shape correspondences can be easily seen,
as in Figure 1. Despite the utility of depth data,
there is an unfortunately small amount of it
easily available as most capture devices are still
standard visual cameras and cheap depth sensors
were only recently made available.

While collection of depth data is starting to
ramp up, it still pales in comparison to the sheer
volume of standard RGB image data. For almost
any object type, one can recover a large corpus of
weakly supervised images via a standard image
search on any major internet search engine. RGB
image detection schemes can leverage this data
and, thus, be trained without a need to directly
collect and capture new data for each new object
type, but RGBz object detection schemes do not
currently share this convenience.

It is the goal of this paper to investigate ways
that we can leverage the large amount of labeled
RGB image data and the depth sensing ability of
technologies such as Kinect to improve object
recognition without a need to directly collect new
RGBz data. This could have applications in a
variety of tasks, such as robotics. For example,
imagine a robot with a depth sensor encountering
a novel object type: the robot can use a search
engine to generate weak images for that type
and build an RGB classifier,[4] but cannot do
supervised RGBz learning. The method I propose
will allow it to use an RGB model to do initial
classification of RGBz images and improve its

Figure 1. Examples of RGB and depth mug images

detection capabilities gradually over time with no
need for supervision.

The general framework I provide is to learn
an RGB object classifier. Use it to classify
objects until such time as we have a set of high-
confidence RGBz positive examples. Then train
a new classifier using our collected data.

2. Background/Related Work

One of the major components required in this
work is a visual descriptor for the objects. There
are a number of good candidates that have seen
success in the object classification task including
HAAR wavelets [10], SIFT keypoints [8], simple
Bag-of-Words models [2], and Histograms of
Oriented Gradients (HOG) [3]. In this project,
I use HOG features because they seem to offer
superior performance over these other image
features and are relatively straightforward to
implement[3]. These features are well suited to
object recognition because of how they capture
object shape well due to their gradient informa-
tion and are invariant to changes in brightness
due to the normalization of local descriptors.

Another important component of this project
was the use of depth features to include the

depth information available on non-training data.
Again, we decided to use HOG features as they
have been shown to work on a range of data
modalities aside from only RGB images. For
example, HOG features have been used with
both depth [7, 9] and infrared [11] image data
to improve detection. Thus, HOG features also
seem to fit as a good feature for extraction on the
depth images.

For classification of images after feature ex-
traction, we rely on the standard formulation
of a Support Vector Machine (SVM). SVMs
are commonly used as the machine learning
classifier for object recognition tasks with HOG
features and exhibited good performance on these
tasks[3, 7, 12]. These classifiers assign objects a
margin distance which, though not a normalized
probability of correctness, gives a rough estimate
of correctness likelihood with smaller margin dis-
tance implying lower classification confidence[5].

Given a classification based on the RGB in-
formation, our goal is to remove false positives
using the test set depth information. This problem
can be seen as one of outlier detection, where
we want to remove “abnormal” instances from
our set of positive classifications. There are
two main (related) metrics for outlier detection
and we investigate both: distance metrics and
probabilistic detection.

In distance detection we generally assume
that the true instances will be grouped “close
together” in some sense, while false detections
will be dispersed. One natural and common way
to define this distance is the L2 distance between
feature vectors. Given this, the metric used to
define an “outlier” can take on a number of forms.
Two standard approaches are either to look at
which instance has the largest nearest neighbor
distance, leveraging the fact that normal instance
will likely be close to other normal instance while
outliers will be dispersed. Another approach is to
use the average distance between each point and
all others, though this is more computationally

intensive[1].

Another form of outlier detection relies on
probabilistic modeling. In this case, it is com-
mon to model the data as coming from some
multivariate distribution (such as a multivariate
gaussian which, though not known to be correct
for our data, is often used in practice) and use
this to generate the probability density at each
data point. The probability density can then be
used to determine whether or not a point is an
outliers[1]. Such a model can easily be learned in
the Gaussian case using closed form maximum
likelihood estimation [6].

3. Approach

3.1. Visual and Depth Descriptors

As stated above, I use HOG features both as
visual descriptors and depth descriptors. I use
the standard implementation of bins over 9 rect-
angular blocks of pixels, each overlapping with
adjacent blocks by 1/2 its width or height, with
9 orientation bins per block. The one deviation I
make from the standard implementation is using
directional gradients rather than absolute magni-
tude as this has been noted to improve accuracy
on non-human objects [3]. Rather than rescaling
images to a fixed size and then applying the
descriptor, I apply the descriptor at varied scales
based on the image to avoid aliasing effects. This
will not cause issues due to normalization of the
descriptor blocks. Additionally, I experimented
with grids of HOG descriptors over the image
from a single HOG descriptor to a 2 by 2 grid and
so forth.

In addition to the HOG descriptor, I experi-
mented with using a raw depth mask that are
simple rescalings of the image to a smaller
resolution (ie. 5 by 5) as these will have shorter
descriptors than the HOG feature and I was con-
cerned about overfitting when using features on
test data. To generate the descriptor, I first rescale
the original depth image D∗ down to a fixed size
image D. Then, to avoid problems of objects

at varied distance not matching I normalize by
subtracting the central point from all others to
generate D′ as follows:

D′(x, y) = D(x, y)−D(
W

2
,
H

2
)

I also experimented with using a weighted depth
mask such that pixels far from the center (which
are likely less relevant) were downweighted and
would thus influence distance less.

D′(x, y) =
1√

2πσ2
e−

(x−W/2)2+(y−H/2)2

2σ2

(D(x, y)−D(
W

2
,
H

2
))

However, this did not impact performance so I
treat it in unison with the other depth descriptor
in my evaluation.

3.2. Outlier detection

In this document, I experimented with both
distance-based and probabilistic outlier detection.
For distance-based outlier detection I used a dis-
tance thresholding approach as follows:

1. Calculate the L2 distance d(x, y) between the
feature vectors of every pair of instances x
and y.

2. Calculate a score s(x) for each node x in the
set of instances current classified as positives,
P .

• If we are using average thresholding,
s(x) = 1

|P |−1

∑
y 6=x d(x, y)

• If we are using minimum thresholding,
s(x) = miny 6=x∈Pd(x, y).

3. For all x such that s(x) > thresh, reclassify
x as a negative.

In addition to this distance-based method, I tried
a simple multivariate Gaussian approach. It is
certainly true that the distribution of my features
need not be a Gaussian, but this is a reason-
able starting point and the Gaussian offers more
flexibility (automatically downweighting high-
variance elements) than a simple distance com-
parison. I attempted the following procedures

for outlier identification with a multivariate Gaus-
sian:

1. Fitting a Gaussian to the positive instances
and removing all those below some threshold.

2. Fitting distributions to both positive and neg-
ative examples (one each) and removing all
positive instances that had higher probability
under the negative example distribution.

3. Iteratively fitting, removing examples below
a threshold, and refitting as follows:

(a) M-step: Fit our mean and covariance
matrix for each class Ci

• µi = 1
|Ci|

∑
x∈Ci

x

• Σi(j, k) = 1
|Ci|

∑
x∈Ci

(x(j) −
µ

(j)
i)(x(k) − µ(k)

i)

(b) E-step: determine class assignments Ci

for each instance feature vector x. This
is done based on probability thresholding
(one class) or which class has a greater
probability density at that point.

3.3. SVM learning and re-learning

In this paper, we used a simple out-of-the-box
implementation of an SVM that was compatible
with MATLAB (a derivative of SVM-Lite). I
used the models suggested parameters of L2 reg-
ularization with an RBF kernel. The parameters
could certainly have been optimized further, but
there did not seem to be any need in this case as
it functioned relatively well and was not he core
of our investigation.

One important aspect of this project was the
process of relearning an image classifier to in-
clude depth data as another option separate from
outlier detection for performance improvement.
This procedure continues as follows:

1. Train an SVM on our RGB training set

2. Classify the Test set based on its RGB values
getting labels l for the Test set.

3. Discard all instances where the instance was
classified as positive, but does not meet some
threshold t. (ie. if instance i has 0 < li < t,
discard it)

4. Retrain our SVM on the RGB and depth data
(RGB HOG features concatenated with depth
HOG features) of Test instances that were not
discarded.

5. Reclassify the entire Test set (including pre-
viously discarded instances) using the new
RGBz model to get margin values (labels) l′.

6. Consider any instance j that has l′j > s for
some threshold s.

We choose s and t via validation on a validation
set before using them for the test set. The reason
we choose a threshold t to determine which in-
stances to discard is that the SVM margin gives
us a rough indicator of classification confidence,
so elements close to the margin have lower con-
fidence than those farther away. The basic idea
is that we can discard items that are close in the
RGB space to prevent corruption of the model
learned over the depth features and the depth fea-
tures will be robust enough to let us correct pre-
vious mistakes. Now we note that we need the
s threshold because we have removed the posi-
tive instances that created support vectors in the
original RGB model, so the dividing plane should
encroach on our higher confidence positive in-
stances and we will have to “push it back” to re-
cover the instances that were previously “harder”
and thus had lower margin. This process will not
just take us back to the original state because the
inclusion of our depth features will disambiguate
incorrect examples that were not obvious visually
but were obvious based on depth and push them
away from the margin and give them a negative
labeling.

4. Experiments

4.1. Dataset and Performance Metric

In this project, I used the “Large-Scale Multi-
View RGB-D Object Dataset” from Washington

University[7]. Unfortunately, the caching files
required plus the size of the images required a
great deal of size, so I was restricted to using
only approx. 15000 of the images from this
dataset and a subset of the object classes. I used
the following object classes as example images:
{apple, ball, banana, bell pepper, binder, bowl,
calculator, camera, cap, cell phone, cereal box,
coffee mug, comb, dry battery, flashlight, food
bag, and food box}. Of these object types, I used
the coffee mug as my classification objective due
to its relative invariance to rotation (sans its han-
dle and designs on the mug). Once this dataset
was constructed, I split it into train, validation,
and testing datasets with approximately 40%,
30% and 30% of the images in each. In addition
to randomly splitting object instances across all
3, I held out 25% of coffee mug instances (ie.
an instance being all pictures of the same real
mug) for each of the validation and test set. I
also held out 25% of object types for each set
so that, for example, banana never appeared in
the training set, but was in the validation set.
This decision was made to better simulate the
occurrence of novel objects in real-world data
where the learning algorithm will not have access
to examples of all object types as labeled data.

Another important starting point is that through-
out this paper I use F1-score as my performance
metric. The F1-score gives a succinct description
of performance based on the precision and recall
of our classification. This approach avoid the
problem of data set bias (having an uneven posi-
tive/negative split – as is the case with this data,
we have more negative images) influencing the
accuracy score. Additionally, F1-score seems to
be the standard score for use in retrieval tasks, as
we are doing in this instance of trying to correctly
retreive all coffee mugs from the data set.

4.2. Initial Performance and Feature Validation

As discussed above, I use HOG features over
varied granularities as the visual descriptors for
classification. I validated the granularity of my
HOG feature grid in order to determine what

feature setup to use for all subsequent classifica-
tion. In doing this validation I both demonstrated
that HOG features on visual and depth images
provide good features for classification and iden-
tified what granularity was best. A plot of the
results can be seen in Fig. 2.

At first glance we note that these features al-
lowed us to achieve F1-scores over .9 for both
training and validation sets, which is relatively
good performance and demonstrates that our
classifier is working well. These results show
that the training performance on both RGB
and depth images increases monotonically with
feature complexity (a denser grid/larger feature
vector) as does performance on depth images.
This is expected as higher dimensionality allows
our SVM more flexibility in fitting a separating
hyper-plane in the training data. On the other
hand, we see that performance of a model trained
on training data for classifying the validation
RGB images degrades after a grid density of 2.
This indicates that beyond a grid size of 2, we are
overfitting and adding noise to our model. Thus,
we choose to use a HOG grid of 2 features by 2
features for visual features in the remainder of
this project. Note that depth seems to increase up
to a grid of 4, but we will not have ground truth
depth training data, so we may not want to use
such a dense grid for fear of overfitting on noisy
data.

1 2 3 4
0.75

0.8

0.85

0.9

0.95

1

Grid Size

F
1−

sc
or

e

depth validation

RGB validation

depth train

RGB train

Figure 2. F1-score compared to feature granularity on validation
and training data

4.3. Outlier Detection

In performing detection of the outliers, I
attempted to use both distance-based and proba-
bilistic methods for detecting outliers. In using
the distance methods on the validation set, I
found that across all instances, the F1-score was
approximately .01 higher using average distance
than it was using closest neighbor distance. This
is not surprising as if we have two instances of
the same false positive object, they may be very
close though they are far from the majority of
our positive objects. The minimum distance will
not differentiate this from the distances for true
positives near other true positives, but the average
distance will see a high distance to the plurality
of points.

In terms of improvement, the only improve-
ment was using the smallest possible threshold
that actually eliminated one instance that was
labeled as positives, causing a bump in F1-score
from .9044 to .9047. This is not a large enough
difference to be considered anything more signif-
icant than a lucky change and indicates that these
distance based methods do not seem to work.
We can see in Figure 3 that the F1 score does
not recover as we decrease the threshold to some
distance, but in fact monotonically decreases as
we decrease our distance threshold for removal
(this specific instance is over depth HOG with
a 4 by 4 grid). Thus, it appears that using this
distance metric does not improve classification.

I also attempted to use fitting of a multivariate
Gaussian distribution to the positively classified
instances and use probabilistic thresholding. I
thought this would likely provide better perfor-
mance than the raw distance comparison as it
would essentially weight each element of the
feature vector based on its variance, so deviation
in small variance elements would be penalized
more than deviation in high variance elements
– potentially giving a better measure of how
“atypical” the values were. Unfortunately, as
with the raw distance metric, I could not find

10 15 20 25 30 35 40 45 50 55 60
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Average Distance

F
1−

sc
or

e

Figure 3. F1-score across different average distance thresholds for
removal

a threshold that improved the F1-score. Addi-
tionally, attempting to fit a distribution to the
negative data as well then comparing probability
densities and removing all those that had higher
density under the negative example distribution
did not cause any changes. This was because
the variance over the negative examples was dra-
matically higher, causing the probability density
to be much wider than the positive distribution,
so no previously positive examples had lower
probability under the positive distribution than
the negative distribution.

Thus, these simple outlier detection methods
over the depth information do not improve
detection.

4.4. SVM Relearning

In doing relearning of a model over the RGB
and depth data, I analyzed performance on the
validation set to see if I could identify thresh-
olding techniques that consistently improved
performance. I analyzed results using a 2 by 2
HOG grid on the visual features and using grid
sizes from one to four for the depth features.
The best F1-scores I received for the various grid
sizes can be seen in Figure 4.

We note that though our initial validation
indicated a four by four grid gave the best per-
formance on training data, we see that a two by

HOG grid 1 by 1 2 by 2 3 by 3 4 by 4
best F1-score .9237 .9309 .8922 .8937

Figure 4. F1-score of the relearned for varied HOG grid sizes used
for depth feature extraction

two grid performs best and then performance
drops off. This was true across all threshold
settings, not just the optimal setting for each.
Such a drop off seems to indicate that taking a
HOG grid of size larger than two by two causes
overfitting that does not generalize well back to
the low-confidence validation images.

While this does show an improved F1-score of
.9309 as compared to .9044 for the original RGB
model, we are just picking the best thresholds
for which data to exclude in retraining and what
margin boundary to use in final classification,
so it may seem that this should not generalize
well. In that vein, we note that the thresholds
were quite consistent across all four grid sizes,
with the optimal confidence window being the
top 20% or top 30% of the margin distance above
our margin. Additionally, all grids types achieved
maximal F1-score when we shifted the margin
toward the negative examples (decreased our
threshold for positive classification) by 30% of
the margin range (highest SVM score minus
lowest SVM score). Finally, we note that the
distribution over F1-scores across the threshold
values grid (of both the confidence level for
retraining and margin for final classification) was
relatively single peaked and exhibited a strong
global maximum for each grid size as seen in
figure 5. This indicates that the parameters were
displaying consistent behaviors as their values
changed, so our improved performance is likely
not just a “chance” good parameter setting.

4.5. Final Test Results

Given the performance on my validation data, I
decided to use the SVM retraining approach with
the two by two grid of visual HOG features con-
catenated with the two by two grid of depth HOG
features as the feature vector for each picture. For

Margin Cutoff Bucket

T
ra

in
in

g
C

on
fid

en
ce

 C
ut

of
f

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

7

8

9

10

Figure 5. F1-score across different thresholds for retraining.
Warmer colors indicate higher values

settings, I used a threshold of the top 30% of our
positive confidence range (ie. if the maximum
confidence was c, all values with margin distance
over .7c were used) as per the validation results.
For final classification, I used a margin that was
shifted 30% closer to the minimum margin value
(as per the validation dat performance).

These settings gave a test F1-score of .7822
which was .0266 or 3.5% higher than the F1-
score of .7556 given by the standard RGB model
trained on our training data. This demonstrates
that the proposed method can be used to improve
classification (as measured by F1-score). Also
note that .7822 was actually one of the lower
F1-scores using depth data, and many of the other
settings (different thresholds) achieved F1-scores
of over .8, with the maximum achieving .8494
– but we cannot consider that as a true result in
this experiment as it relies on non cross-validated
parameters that were picked after testing.

The difference in F1-score between our vali-
dation and test sets is due to the fact that I used
different unseen object classes and different mug
instances (different real world coffee mugs) in the
test, validation, and testing sets to keep the test set
as decoupled as possible from our optimizations
on the validation set. Thus, there just happened
to be more difficult objects in the test dataset,

causing this decrease in performance. Also,
note that the improvement on the test dataset
was equivalent to the validation set, but that
other parameters would have given even greater
improvement – perhaps indicating that when we
have worse RGB performance the depth data can
be even more valuable.

5. Conclusions and Future Work

This paper demonstrated that a classifier over
RGB and depth data can be learned on-the-fly
in test data for improved performance without
a need for depth data in the training set. The
performance increase is modest, but is certainly a
step in the right direction and indicates that there
may be large benefits to be had when we have
only mediocre classification accuracy with the
RGB classifier (F-score of .75 as in the test data
as opposed to a solid .9 as in the validation data).
I also noted that retraining of an SVM model
based on high confidence images is an effective
way to improve classification, while doing simple
outlier detection is not terribly effective.

A great deal of future work is left for fully
taking advantage of depth data in the training.
One low hanging fruit is likely optimization of
the threshold selection for retraining of the SVM
and deciding a classification margin. I suspect
that these margins are a function of the F1-score,
which cannot be directly inferred, but by looking
at the range of margin scores it may be possible
to do better selection. This is especially true
as the raw value of the confidence cutoff that
gave optimal score for the test data was closer
to the raw values of our thresholds than the
scaled threshold value (by raw value, I mean the
actually numerical margin as opposed to “30%
of the observed maximum margin”). Doing more
analysis of these thresholds would potentially
allow better performance on test data.

Another change that should be made to the
model is using a weighted combination model
(similar to boosting) rather than simply throwing

out the original RGB model. In this way, we
could scale the weighting of the original RGB
model and a learned RGBz model as we acquired
more test data so that we could quickly start
seeing improvements for any gross depth outliers
with only a small number of test images, while
still leveraging the RGB model for the vast
majority of cases.

Similarly, I would like to analyze of the learned
RGBz model with different numbers of test
instances. It seems clear that performance should
improve as we acquire more test data, but I did
not how much data is needed before it starts
providing improvement. In this study improve-
ment was seen with down to approximately 100
high confidence classifications–many of which
were the same object from different orientations,
which does not seem like an unreasonable level
for real world applications. However, it would be
interesting to see the specific impact of data set
size.

Also, despite my inability to get outlier de-
tection working, I still feel that there should be
some way to perform outlier detection in order to
remove bad examples, though this still may not
be better than the SVM model.

6. Notes on outside resources

The only pieces of code I used in this project
that I did not develop personally were built in
MATLAB functionality and a MATLAB MEX
interface of Thorsten Joachims’ SVM-Lite soft-
ware developed by Tom Briggs of Shippensburg
University.

This was a solitary project and I generated
the idea for the project, testing methodologies,
and analysis myself.

References
[1] I. Ben-Gal. Outlier detection, 2005.
[2] G. Csurka, C. Dance, L. Fan, J. Williamowksi, and C. Bray.

Visual categorization with bags of keypoints, 2004.

[3] N. Dalal and B. Triggs. Histogram of oriented gradients for
human detection, 2005.

[4] R. Fergus, P. Perona, and A. Zisserman. Weakly supervised
scale-invariant learning of models for visual recognition. In-
ternational Journal of Computer Vision, 71:273–303, 2007.

[5] B. Jian, X. Zhang, and T. Cai. Estimating the confidence
interval for prediction errors of support vector machine clas-
sifiers. Journal of Machine Learning Research, 9:521–540,
2008.

[6] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[7] K. Lai, L. Bo, X. Ren, and D. Fox. A large scale hierarchical
multi-view rgb-d object dataset, 2011.

[8] D. G. Lowe. Object recognition from local scale-invariant
features, 1999.

[9] M. Luber, L. Spinello, and K. O. Arras. Learning to detect
and track people in rgbd data, 2011.

[10] C. Papageorgiou and T. Poggio. A trainable system for object
detection. International Journal of Computer Vision, 38:15–
33, 2000. 10.1023/A:1008162616689.

[11] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi.
Pedestrian detection using infrared images and histograms of
oriented gradients, 2006.

[12] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast hu-
man detection using a cascade of histograms of oriented gra-
dients. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 2, pages
1491 – 1498, 2006.

