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Abstract

In this paper, we tackle the issue of using semi super-
vised learning in classifying objects with tracking informa-
tion. Based off the earlier work of Teichman and Thrun, we
modify the approach using LIDAR data to extracting useful
object classification information from a single fixed camera
source.

Our track data comes from background subtraction and
segmentation of camera video data. Using semi supervised
method, a few objects are labeled. Consequently, a lot of
labeling data are obtained automatically using the track-
ing information and that data is used in training the object
classifier.

The classifier will be based on both positive and nega-
tive samples, and the resulting objects are further tested and
classified. Experiments are analyzed and the performance
of the classification of different object classes are evaluated.
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1. Introduction

Currently, there is a great need for high
throughput classification of video data. Rather
than manually hand labeling individual video
frames, we seek to automate the process through
model free segmentation and track classification.
In particular, we separate the process of learning
into three separate tasks.

Using background subtraction and bi-layer seg-
mentation, a user will hand label a few of those
objects and much more labeling data will be ob-
tained automatically using the tracking informa-
tion . The set of tracks are fed into a classifier

which will also classify future objects as being
part of that object class.

As seen in Teichman’s work [2], tracking based
semi supervised learning is surprisingly resilient
to noise and has an uncanny ability to learn new
useful instances of the classes.

Difficulties arise in proper background subtrac-
tion and proper handling of edge cases (e.g. inter-
secting tracks).

Accurate background subtraction will be vital
to identifying proper tracks. Due to the fixed
camera, we can obtain a background model easily
from the data. We will begin with using Gaus-
sian modeling for quick background subtraction.
Shah’s method of Bayesian object detection is re-
searched [7]. Pending background subtraction,
tracks of objects can be gleaned from each sam-
ple.

The classifier is an off the shelf classifier of
Felzenszwalb [13]. Once a series of training data
is sampled along the track of the object, new test-
ing frames of the class are identified,

2. Background and Related Work

This section will introduce the literary back-
ground in Teichman’s original project, back-
ground subtraction, and classification.

The project was extended from the Tracking-
based semi-supervised learning project by Alex
Teichman [1] at Stanford AI Lab. The origi-
nal project solved the problem of track classi-
fication in dense 3D range data [6, 5, 4, 2, 3].
The semi-supervised object recognition method
uses tracking information and dramatically re-



duces the amount of hand-labeled training data re-
quired to produce a reliable detector. The method
is based on EM algorithm. It runs iteratively be-
tween training a classifier and extracting useful
training examples from unlabeled data by exploit-
ing tracking information. The final result can
be based on three hand labeled training tracks of
each object class and reach a final accuracy com-
parable to that of the fully supervised equivalent.
But this project only used expensive laser range
finder on Stanford’s autonomous vehicle. In our
project, we extend to cheap camera-based sys-
tems, which is more possible to be installed on
vehicles.

In the part of background subtraction, we re-
search the work of Lo [17], Cucchiara [18],
Koller [19], Wren [20], Wang [9], Stauffer [21,
22], Criminisi [8], Elgammal [23], Han [24],
Oliver [25] and Seki [26].

In Lo’s paper [17], an automatic monitoring
system is proposed for detecting overcrowding
conditions in the platforms of underground train
services. The system is designed to use existing
closed circuit television (CCTV) cameras for ac-
quiring images of the platforms. In order to focus
on the passengers on the platform, background
subtraction is used. A variance filter is also in-
troduced to optimize the removal of background
pixels.

In Cucchiara’s paper [18], background subtrac-
tion methods researched to update the background
model and to deal with shadows. The algorithm
combines statistical assumptions with moving ob-
jects, apparent objects and shadows. Pixels be-
longing to such objects are processed differently
in order to supply an object-based selective up-
date. It also exploits color information to improve
object segmentation and background update.

The are quite a few innovations in Criminisi’s
paper [8]. In his paper, the pixel velocities are
not used, thus the need for optical flow estima-
tion is removed. Instead, an efficient motion vs
nonmotion classifier is trained to operate directly
and jointly on intensity-change and contrast. Its
output is then fused with colour information. The
prior on segmentation is represented by a second

order, temporal, Hidden Markov Model, together
with a spatial MRF favouring coherence except
where contrast is high. Thus the algorithm does
real-time separation of foreground from back-
ground in monocular video sequences.

In Wren’s paper [20], a real-time system for
tracking and interpretation of people is built on
a multi-class statistical model of color and shape.
The system obtains a 2-D representation of head
and hands.

In Wang’s paper [9], he talked about the au-
tomatic segmentation of foreground from back-
ground in video sequences by directly subtracting
a mean background image from each frame, and
retaining those parts of the frame that differ the
most from the background.

In Stauffer’s papers [21, 22], he talked about
a common method for real-time segmentation of
moving regions in image sequences by threshold-
ing the error between an estimate of the image
without moving objects and the current image.
The model treats each pixel as a mixture of Gaus-
sians and using an on-line approximation to up-
date the model. Then they are evaluated to deter-
mine which are most likely to result from a back-
ground process. Although the mixture of Gaus-
sians and kernel density estimation approach suf-
fer from the lack of flexibility by fixing limiting
the number of Gaussian components in the mix-
ture.

In Elgammal’s paper [23], he talked about
methods to segment moving regions in image se-
quences taken from a static camera by compar-
ing each new frame to a model of the scene back-
ground. The model is non-parametric and han-
dles the situation that the background is not com-
pletely static but contains small motions such as
tree branches and bushes. The model estimates
the probability of observing pixel intensity val-
ues based on a sample of intensity values for each
pixel. The model can also use color informa-
tion to suppress detection of shadows. It should
be noted that the system requires a large mem-
ory by maintaining a non-parametric representa-
tion of the density.

In Oliver’s paper [25], he talked about a real-



time computer vision and machine learning sys-
tem for modeling and recognizing human behav-
iors in a visual surveillance task. The system
deals in particularly with detecting when inter-
actions between people occur and classifying the
type of interaction.

In Seki’s paper [26], he presents a background
subtraction method for detecting foreground ob-
jects in dynamic scenes involving swaying trees
and fluttering flags. He tried to narrow the ranges
by analyzing input images and to improve the de-
tection sensitivity by employing the correlation of
image variations at neighboring image blocks in-
stead of chronological background image updat-
ing .

In the part of classification, we research the
work of Felzenszwalb [12, 14, 15, 13]. He de-
veloped a learning-based system for detecting and
localizing objects in images, representing objects
using mixtures of deformable part models. The
good part of the model is that they only needs
bounding boxes for the training of objects in an
image. The model is based on histograms of ori-
ented gradients (HOG) low-level features, picto-
rial structures of deformable part-based models
(as shown in Problem Set 4 of the class) and dis-
criminative learning with latent SVM.

3. Background Subtraction/Image Segmenta-
tion

3.1. Approach

Despite the multitudes of segmentation meth-
ods such as color or texture separation, they tend
to fail when deriving background models from
motion based video. These models typically de-
rive a ”mean” image based off the set of frames
and subtract individual frames by the mean image
to obtain the foreground objects.

The background subtraction method typically
fails for real world data. Items such as trees,
birds, and other variant objects can create false
positives. In other instances, false negatives arise
from collisions or occlusions of the species.

Because of those issues, our group decided to
base our work off an implementation of Billayer

Segmentation of Live Video by Criminisi, et al.
[8]. Criminisi’s approach uses a probabilistic
combination of motion, color, and contrast in a
Hidden Markov Model.

Our videos are first read by the matlab code and
transformed into a series of images:

z = z1, z2, · · · , zt (1)

The frames of images can be represented as
pixels:

z = z1, z2, · · · , zi, · · · , zn (2)

The derivatives of frame z is:

ż = ż1, ż2, · · · , żi, · · · , żn (3)

Therefore, the pixel derivative at time t is:

żti = |G(ztn)−G(zt−1
n )| (4)

where G is a Gaussian kernel with sigma σ.
We can denote the spatial gradients of the pix-

els as:

g = g1, g2, · · · , gi, · · · , gn (5)

, where gi = |∇zi|.
Therefore, the motion observables are:

m = g, ż (6)

Segmentation is denoted by α ∈ (F,B), where
F is foreground and B is background.

Using the notations shown above, we can use a
Conditional Random Field [27] posterior model:

p (α|z,m) ∝ exp−
[

t∑
t′=1

Et′
]

(7)

Where Et is the energy term [8]:

Et =Et(αt,αt−1,αt−2, zt,mt)

=V T (αt,αt−1,αt−2)

+ V S(αt, zt)

+ UC(αt, z)

+ UM(αt,αt−1,mt)

(8)



, where V T is the temporal prior.

V T (αt,αt−1,αt−2)

=η
n∑
i

[− log p
(
αt
n|αt−1

n , αt−2
n

)] (9)

p (αt
n|αt−1

n , αt−2
n ) are the probabilities of αt

with different combinations of αt−1 and αt−2. η
is the discount factor for non-independent pix-
els. p (αt

n|αt−1
n , αt−2

n ) can be trained from ground
truth.

In Eq. 8, V S is the spatial prior with Ising
term [28, 29] derived from the natural tendency
of segmentation boundaries with high image con-
trast:

V S(α, z)

=γ
∑

(m,n∈C)

[αm �= αn]

(
ε+ e−μ||zm−zn||2

1 + ε

)

(10)

In Eq. 8, UC is the log of color likelihood [30].

UC(α, z)

= −ρ
n∑
i

log p(zn|αn)
(11)

In Eq. 8, UM is the motion likelihood [8]. Each
time step’s motion model is augmented in order
to favor ”coherence” frame to frame and forgoes
traditional optical flow estimation.

UM(αt,αt−1,mt)

= −
∑
i

log p
(
mt

n|αt
n, α

t−1
n

) (12)

By using energy minimization [8], terms are
chosen in order to reduce the fragmentation of ob-
jects within the frames. The result of α is esti-
mated as:

(α̂1, α̂2, · · · , α̂t) = argmin
t∑

t′=1

Et′ (13)

3.2. Implementation

Instead of large amount of hand labeled train-
ing data in background subtraction, we use back-
ground subtraction technique, which was based
on Wang’s implementation of Bilayer Segmenta-
tion in live videos [9, 10]. So that we only need
initial hand labeled data of the desired species.

Wang’s implementation only tracks one object
throughout the sequence. In order to improve per-
formance, the ability to track multiple objects was
added.

Furthermore, the implementation did not keep
track of an object’s trajectory throughout the se-
quence. This meant that an object in one frame
did not have a sequence of events in history to
compare to. Thus an abstracted information to
keep object histories was added. Such informa-
tion was used to generate the bounding boxes with
images for the training of classification.

Finally, constraining filters to maintain the
bounding box to the object selected in the ini-
tial frame are added so that much more resulting
data from the bilayer segmentation can be used to
train the classifier. The Matlab code was devel-
oped based on Wang [9, 10] and Criminisi [8]’s
code.

In our model the following object classes has
been used:

1. pedestrain

2. biker

3. golf cart / mini van

4. bus / truck

Due to classification requirement of resolution,
some classes are more successful in testing than
others, which will be shown in the next section.
Objects of all four classes are labeled and a lot of
training data are obtained automatically.

130 minutes of video were fetched from the top
of Hoover Tower [11] on Stanford campus. FF-
MPEG [16] was used to compile the video into
useful movie clips with right format. The frame
per second (fps) is 30 and the resolution are com-
pressed to 480× 272 from 1920×1088 original



format to fit with the memory limitation of back-
ground subtraction code in Matlab.

(a) (b)

(c) (d)

Figure 1. Example of masks for pedestrain (a), a bicycle rider(b),

golf cart(c) and bus(d).

As shown in Fig. 1, the desired object in the
first frame of the movie clips are enclosed by a
polygon. The average length of the movie clips
is 20 seconds, which is 600 frame images in a 30
fps format. Instead of manually masking 600 for
the training set, we only need to mask one object
for each video. It is two orders as simply as the
traditional training process.

Both the background subtraction and classifi-
cation are done on the linux system Ubuntu 11.10
version with Matlab R2010B and GCC-4.4 com-
piler. Video processing functions of Matlab were
heavily used to decode the .avi and .mov files.
The energy minimization code of Criminisi [8] is
written in C++ and the Wang’s wrapper [10] com-
piles them in Matlab, so a huge amount of time is
saved comparing to pure Matlab processing code.

The tracking information of desired objects are
provided in an array and are fitted with the corre-
sponding pictorial information in time sequences.
Then all the training results from hundreds of
videos are exported in a unified numbering sys-
tem to be feed into the classifier. The tracking in-
formation includes the time stamp, object classes,
center position, bounding box generated from the
mask sequence and original pictures.

3.3. Segmentation Experiment Results

(a)

(b)

(c)

(d)

Figure 2. Some examples of mask results for pedestrain (a), a bi-

cycle rider(b), golf cart(c) and bus(d).

As seen in Fig. 2, there are still difficulties in
some proper segmentation. In Row (b), Though
the objects (bicyclists) are properly tracked, the
background is often added in as part of the se-
quence. Therefore, some fixes include utilizing
box detection and further localizing using time
stamp information are implementation.

Fig. 3 shows the result after utilizing the time
stamp information for proper bounding boxes.
The segmentation correctly tracks objects despite
changes to the frames such as rotation. We can see
from Fig. 3 that different objects move around the
circle with good tracking result.

4. Object Classification

Although the background subtraction algo-
rithm is invariant to rotation, the classifier is not.



(a) (b)

(c) (d)

Figure 3. Some examples of bounding boxes results for pedestrain

(a), a bicycle rider(b), golf cart(c) and bus(d) after time stamp cor-

rection.

We have to generate objects for each angle to pre-
cisely train the classifier. In the first section of
this study, we generated a training set with bound-
ing boxes assigned by the background subtraction
model. Then the rest of the frames are used for
the testing set.

Because the training process is time consum-
ing, we don’t need to generate all the frames. In-
stead, we generated one ground truth bounding
box for each m frames:

m =
t · fps · θ

deg
(14)

, where t is the time for the object to rotate deg
angles, fps = 30 is the frame per second, and θ is
the desired angle accuracy.

Figure 4. The rotation angle of objects is 90◦ in the scene.

As show in Fig. 4, deg = 90◦. Among all
videos, we have the average t̄ = 10s . Therefore,
with a desired degree step of θ = 3◦:

m =
t · fps · θ

deg

=
10× 30× 3

90
= 10(frames)

(15)

4.1. Approach - Discriminatively Trained Parted
Based Model

The classification coding was developed based
on the project of Felzenszwalb [12, 15, 13]. The
model involves linear filters and dense feature
maps. The linear filter is used to score the po-
sition (x, y). The dense feature map G is an array
of d-dimentional feature vectors computed from
the dense grid of the locations in an image.

The response or score [14]is defined as:

score(p0, · · · , pn)
=

∑
x′,y′

F [x′, y′] ·G [x+ x′, y + y′]

=
n∑

i=0

F ′
i · φ(H, pi)−

n∑
i=1

di · φd(dxi, dyi) + b,

(16)

, where pi = (xi, yi, li) defines the location and
level of the i-th filter. z = (p1, · · · , pn) forms a
pyramid of features.

The deformation features are :

φd(dx, dy) =
[
dx, dy, dx2, dy2

]
(17)

, where (dx, dy) is the displacement of i-th part
to base position:

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (18)

Furthermore the score of a pyramid z is ex-
pressed as the product of model parameter β and
a vector H as z = β · ψ(H, z):

β = (F ′
0, · · · , F ′

n, d1, · · · , dn, b) (19)



ψ(H, z)

= φ(H, p0), φ(H, p1), · · · , φ(H, pi), · · · , φ(H, pn),

− φd(dx1, dy1), · · · ,−φd(dxn, dyn), 1
(20)

By using the latent SVM model, we can get the
scoring function:

fβ(x) = max
z∈Z(x)

β ·Ψ(x, z) (21)

Here β is a vector of model parameters and z
are latent values [12]. The binary label for x is
obtained by thresholding the score.

β is first trained from labeled samples D by
minimizing:

LD(β) =
1

2
||β||2 + C

n∑
i=1

max(0, 1− yifβ(xi))

(22)

where max(0, 1 − yifβ(xi)) is the standard
hinge loss and C is the weight of the regulariza-
tion term.

4.2. Classification Experiment Results

Classification testing was performed both intra-
class and inter-class test samples. In practical
terms, images were divided into testing sets con-
taining individual classes as well as testing sets
containing multiple classes. Because of the in-
tense computational demands required in the clas-
sification, the classification tests were performed
for both Bus and Cart classes.

For single class tests, each image was given a
positive score (a bounding box covering at least
50% of the object was found) or a zero score (no
correct bounding box found for the object). For
multiple class testing, a third score was added for
negative classifications (the incorrect object was
classified).

Out of the 13 long movie clips in the bus testing
set, the classification results were very promising.

Class Positive Match No match

Bus 238 (89.47%) 28 (10.53%)

Cart 181 (42.99%) 240 (57.01%)

Table 1. Single-class Testing Results

Class Positive Match No match Negative Match

Bus 71 (79.78%) 6 (6.74%) 12 (13.48%)

Cart 30 (62.5%) 18 (37.5%) 0 (0.0%)

Table 2. Multi-class Testing Results

Due to the apparent size and ease in grabbing fea-
tures from the bus’s markings, the classifier per-
formed well. Most of the No-Match scores were
also well localized but failed to adequately cover
the bus area.

On the other hand, cart testing did not perform
well, most likely due to the small size of the ob-
jects.

Multiclass results for the bus were as expected.
The number of false negatives were high due
to feature similarity between the bus and cart
classes. Tests run without either buses or carts
yielded negligible false positives from the cart
and bus classes.

Figure 5. A multiclass test image in which the bus classifier chose

the cart object

The results of pedestrain and bike are not good
due to their smaller size in the image. The seg-
mentation process yielded bounding boxes that
were too small or too far localized from the actual
objects. For future results, these bounding boxes
would have to be manually manipulated (defeat-
ing the purpose of semi-supervised learning) or
improved with the segmentation code.



Figure 6. The classification testing result of bus in a movie clip.

The pictures are shown for every 5 frames starting from the 4th

frame.

Figure 7. The classification testing result of cart in a movie clip.

Less than half of the test cases are classified due to the small size

of the cart.

Figure 8. Another better classification testing result of cart in a

movie clip. In this case, cart is successfully classified from the bus

object. The last few frames were lost though due to the closeness

between cart and bus.

Figure 9. Another classification testing result of multiple classifi-

cations. In this case, truck is successfully classified from the cart

object and the classification are correct for all the frames. Because

this video clips is longer than others (due to the low speed of the

truck), the sample is one frame out of each 10 tested frames.

Class w̄ † h̄ †
√(

w
2wI

)2

+
(

h
2hI

)2 ‡

Pedestrain 12 17 0.0337

Biker 19 14 0.0325

Cart 34 37 0.0767

Bus 120 90 0.2074

†: w̄ and h̄ are the average width and height of all the bound-

ing boxes.

‡: wI and hI are the width and height of the frame.
Table 3. The bounding boxes actual size and relative size compared

with resolution of the video.

4.3. Invariant Discussion

The average bounding box sizes of different
object classes out of the 480 × 272 movie reso-
lution are shown in Table 3.

Therefore, the relative object size over the im-

age size should be
sizeobj
sizeimg

> 10% and the pixel

cluster should have at least 2000 pixels to get
good testing result in the classifier. It should be
noticed that the image was taken from the top of
the Hoover tower which is over 285 feet high.
However, when the camera are used in the vehi-
cles, the object will be much bigger and the result
will be better.

It is pertinent to note that the classifier was
highly variant to rotational transformations of the
objects. If the classifier was trained on a set of
images of a bus, then even for a 10◦ real-world



bus rotation, the classifier often did not detect the
bus. Therefore, we used θ = 3◦ in Equation 15.

Because of the HOG algorithm, the model is
invariant to illumination. Here are a few pictures
of the scenes in different weather condition. The
object of cart and bus can both be classification
sucessfully.

Figure 10. Random weather conditions make the movie clips dif-

ferent in illumination. Yet the BSC model can successfully classify

objects regardless of illumination changes.

5. Conclusion

The background subtraction/classifier (BSC)
model is researched in the report. First a large
amount of traffic videos at the Hoover tower were
processed. Second, the background of the videos
are subtracted by the semi-supervised method us-
ing the bi-layer segmentation model. Third, the
result of the bacground subtraction was treated
using the time stamp information to generate
thousands of accurate training smaples automat-
ically. Fourth, the discriminative trained part
based (DTPB) model is trained using the latent
SVM method . At last, new videos are tested us-
ing the DTPB model and the results are analyzed
based on their accuracy and performance.

The BSC model is robust on objects larger than
10% of the screen size and is potentially very use-
ful on the vehicle to replace the expensive laser
tracking sensor by the cheap CMOS-based cam-
eras.
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