CS231A Course Project Proposal
Fully automated trimap generation for image matting with Kinect

Karen Cheng
kycheng@gmail.com

Abstract

This paper proposes a new way to perform digital mat-
ting, a process that extracts the foreground from the back-
ground. Typically, the estimation of foreground, back-
ground, and unknown pixels (trimap) is all done with RGB
data. In the first part of the paper, we introduce a novel way
of generating a trimap, by using a 3D camera. The depth
map is mapped to the RGB image using intrinsic and ex-
trinsic parameters obtained from stereo calibration. Then,
we apply K-means segmentation on the depth map, and ap-
ply additional assumptions to create the trimaps. The sec-
ond part of our paper presents our results and explains how
they are evaluated. Our results were compared with results
obtained with manually-generated trimaps. Our algorithm
performed well when the size of the unknown zone is bigger
than the precision of the Kinect, and when the details of the
object is fully captured by the Kinect’s resolution.

Future Distribution Permission

The author(s) of this report give permission
for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

Digital matting is a process that extracts the
foreground from the background. A commonly-
used method expresses each pixel value as a func-
tion of foreground color F', background color B,
and the opacity of the foreground object o, sum-
marized by the compositing equation:

C=aF+(1-a)B

Several approaches, such as the Bayesian or the
learning based approach require a trimap to pro-
vide an initial guess for foreground, background,
and unknown regions. The limitation of this ap-

Buu-Minh Ta

bmta@stanford.edu

proach is that the trimap is often generated man-
ually, and would be highly inefficient if one were
to implement matting on a video stream, and un-
feasible if you wanted to do it in real-time.

This problem could be circumvented with
depth map from a 3D camera — the Kinect, for ex-
ample. In this paper, we propose different meth-
ods that we will evaluate computation of trimaps
with the Kinect. They all rely on the depth map
to do a segmentation. The methods we consider
applying are based on k-means and Ncuts. In this
paper, we will demonstrate that depth data could
provide us with a more robust method to automate
the generation of trimap.

2. Related work

Curless & al. [1] and Zheng & al. [2] have
come up with two different methods to do digital
matting, both using a trimap. The first one maxi-
mizes the likelihood given the image, and assum-
ing Gaussian distributions of the foreground and
the background. The second treats the problem as
a semi-supervised learning task in machine learn-
ing. They both have satisfying results, but the user
need to provide a trimap so the algorithm knows
where to start. Finger & al. [3] introduces the use
of a depth map to generate a trimap, and then use
the Bayesian technique to solve the problem.

3. Approach

3.1. Calibration and image alignment

Data were collected using our own Kinect. Be-
fore the mapping of depth values to RGB pixels
takes place, the cameras were calibrated to ob-

tain the intrinsic and extrinsic parameters. The
intrinsic parameters define the optical and geo-
metrical properties of both cameras. The extrin-
sic parameters are what define the relationship
between the camera coordinates. Calibration is
done based on Zhengyou Zhang’s flexible cali-
bration method implemented in OpenCV, utiliz-
ing images of a checkerboard pattern at 8 differ-
ent orientations. To increase OpenCV’s cvFind-
ChessboardCorners’ accuracy in locating the cor-
ners, the checkerboard pattern was uniformly il-
luminated by a floodlight, and the IR projector
was covered to block the speckles it projects to
the scene. The results obtained were comparable
to findings from an online source [8].

3.1.1 Correspondence between RGB and depth

We determine the correspondence between depth
and RGB pixels by the first transforming 2D im-
age points from the depth camera, [u,v]?, to 3D
depth coordinate points [X.,Y,, Z]7 :

The 3D depth points then undergo rotation and
translation to transform into RGB space, and are
then projected onto the RGB image plane. Fi-
nally, the depth value at [u,v|ggp are matched
with the RGB values at [u, v]ggp. Depth values
are obtained by converting the raw 11-bit dispar-
ity values to distance values in centimeters.

3.1.2 Image alignment

In a case where the foreground can be easily sepa-
rated from the background, as on figure 1, we can
see that the correspondence depth is not correct.
The shape of the extracted foreground object (us-
ing k-means, as explained in next section) is cor-
rect, but is not at the correct location. This is an
issue we have not managed to solve, and we could
not figure its reason. The intrinsics paramaters
seem to be good, since the size of the shape is
correct (it is not before readujstment).

An ad-hoc solution was to try to manually align
the pictures from the Kinect. This allows us to
have a good enough correspondence, but makes
our procedure not fully automated.

3.1.3 Shadows from the Kinect projector

Another issue we ran into is unknown zones
where the Kinect cannot give information about
the depth. This is due to the way the Kinect
works, using a IR projector and a sensor. It might
happen that an object is occluding another object
from the projector, but looking from the sensor,
the second object might not be occluded. The
problem is that the sensor does not receive any in-
formation from the projector on this zone, which
makes "holes’ in the depth map.

There are different ways of interpreting these
zones in the process of generating the trimap. We
can basically say the are part of the foreground,
or part of the background. Generally, these zones
are around the object in the foreground we want
to extract, and attributing them to the foreground
would make it bigger than it really is. That’s
why we decided to "project’ these zones as for as
possible (concretely, set their value at 1 once the
depth has been normalized). However, in some
cases, we can see that those unknown zones actu-
ally give details about the foreground object. So
this choice make us lose some details, but is jus-
tified by the fact that the depth map is not that
precise, so those details would not be relevant.

3.2. Trimap generation by segmentation

The goal is to generate a trimap from the data
we acquired from the Kinect. This is basically a
segmentation problem, as we want to find 3 clus-
ters: a zone where we’re sure it’s the foreground,
a zone where we’re sure it’s the background, and
in the middle, a unknown zone where we apply a
matting algorithm. We tried two approaches, one
based on k-means, the other based on NCuts.

3.2.1 With k-means

We used k-means to find two clusters. We de-
fine the distance between two pixels as the differ-
ence of their depth. This is basically equivalent
to project the points in one dimension, the z-axis,
and segment using their depth as their position.
If the foreground is separable from the back-

ground, then k-means should find two clusters
that do not overlap. This is the easiest case, and
it worked as expected, as illustrated on figure 1.
The non trivial, and more interesting case is when
the depth of background from which we try to
separate the object overlaps with the foreground.
This might be the case if you’re in a corridor, or if
you’re in an angle. In those cases, the walls have
continuous depth, form ’far away’, to even closer
than the object we want to extract.

What we can do is to project the clusters onto
the image space, ie look at the cluster where each
pixel falls in the (x,y) dimensions. In the problem-
atic situations described above, the cluster corre-
sponding to the foreground would be discontin-
uous, and separated by the background. We can
assume that the object we’re interested in is near
the center of the image, and that it is continuous.
That way, we can correctly adjust the foreground
cluster by taking only the part that satisfy those
conditions.

More precisely, we look for the closest pixel
to the center of the image P that belongs to the
foreground cluster. The distance is the Euclidian
distance using pixel coordinates. This assump-
tion in kind of restrictive, but is also natural, as
the picture is most likely center around the object
you're interested in. We then extract the pixels
that fall into the foreground cluster one by one,
starting from P. We explore the continuous com-
ponent, by visiting neighbors than point we’ve al-
ready extracted; we basically perform a BFS. We
add one more restriction on the neighbors, which
is that they must be close enough in depth. This is
also natural, as the subject should also be contin-
uous in depth, so its corresponding pixels should
not make big jumps in that dimension (although
we are obviously limited by the resolution of the
depth map from the Kinect).

Trimap creation Once we have two clusters, we
have to build the trimap, and thus define the con-
fidence we have in each of the clusters. K-means
does not really allow us to do that, because it does
not give any probability of a point belonging to

a cluster. One way to build the unknown zone in
the trimap is to take the frontier between the back-
ground and foreground from our cluster in image
space, and expand it to give it some width. This
method is not very precise, but it follows the intu-
ition that the clusters might be off by some pixels
because of the segmentation, or that there might
be some noise in the data. The only parameter we
have in our method is the size of this unknown re-
gion we generate. We will discuss the impact of
this parameter further down.

3.2.2 Improving k-means?

In the previous section, the method we described
relied on using k-means with the depth informa-
tion we have, but we do not use any other geo-
metric information. An idea is to segment in a
3-d space. It could be the 3-d positions of the
points, that we can have as we do the calibration
process, or a simplified position with x and y be-
ing the pixel coordinates, and z the depth of the
pixel.

Let us consider the situation we described
above, where the object lies between two walls,
and shown on the second picture of figure 5. Ba-
sically, the top left corner is far away, and the bot-
tom right corner is at the same depth as the object,
or even closer. Using the distance in 3-d space
cannot make those two points belong to the same
cluster. Indeed, the bottom right corner is much
closer to the object than to the top left corner, and
the object is closer to the top left corner than the
bottom right corner. This means that the object is
approximately between those two interest zones,
so they cannot belong to the same cluster, without
the object in the cluster too, which we obviously
do not want.

This proves that in difficult situtations, adding
more geometric information does not really help.
Besides, k-means tends to give circular clusters,
which might result in the object being separated
between the two clusters. Thus, the first method
we described with k-means is better for our use.

3.2.3 With NCuts

Our depth-based image segmentation was based
on the Normalized Cuts algorithm formulated by
Shi and Malik in [5]. The idea of N-cuts is to
interpret image pixels as nodes, and the connec-
tions between nodes as edges. Weight values are
assigned to the edges as a measure of similarity
between nodes. For an m X n image, the weights
are stored in an m x n affinity matrix, W = {w;; },
where w;; is the weight value between node ¢ and
node j [5].

According to Shi and Malik, an optimal parti-
tion can be determined by solving a generalized
eigenvalue system:

(D= W)y =ADy

where D is an N x N diagonal matrix with d; =
> ; wi; where N is the number of pixels in the
image. ¥ is a binary indicator vector that indicates
whether the pixel belongs to group A or B [6].

Our depth-based image segmentation approach
expresses the affinity matrix W as a function of
depth. The code was adapted from Shi’s Normal-
ized Cut image segmentation MATLAB package
online [7]:

—lzi—z;%

2 - — .

wi =14 ¢ ° ‘1f |zi — 2] <r
0 otherwise

Trimap creation The trimap was generated by
taking the eigenvector corresponding to the
largest eigenvalue, as it showed the most detailed
segmentation of the foreground from the back-
ground. In a simple case with one foreground ob-
ject, the background pixels (one cluster) are iden-
tified as pixels with eigenvector entry < —0.90.
To further distinguish foreground pixels from un-
known pixels, we define the foreground pixel to
be [FG4-unknown pixels + O FG+unknown pixels» and the re-
maining unclassified pixels to be our unknown
pixels.

One of the biggest limitations of the N-cuts
algorithm in MATLAB is its inability to pro-
cess large images due to memory restriction. We
were only able to process at most a 6,400-pixel

image. N-cuts is effective at defining clusters
with well-defined shapes, however, our approach
breaks down with a large number of segments,
and with overlapping foreground and background
depth data. In those instances, some clusters
failed to distinguish between the foreground and
background, and would require additional human
processing to sort the clusters. Therefore, we de-
cided not to pursue this method.

3.3. Digital matting

We first tried to implement the Bayesian mat-
ting algorithm, as done in [3]. However, there
were some points that the paper [1] does not ad-
dress, in particular the initialization of the algo-
rithm, how to choose the size of the Gaussian, and
how is determined the neighborhood on which is
applied the iterative solving to optimize the like-
lihood, in order to find the alpha value of a pixel.

We instead use an implementation of [2] to do
the matting from the color image and the trimap
we generated in the previous step.

4. Experiment
4.1. Data set

We used our own Kinect to collect data. This
allowed us to have pictures that are relevant for
digital matting, with basically an object or a sub-
ject that constitutes the foreground, and that you
want to extract from the background.

We first encounter issues as we thought that
the Kinect was providing us with clean data, with
a depth map corresponding to the rgb picture,
meaning that the depth of a pixel (i, 7) in the rgb
picture was at the pixel (¢, 7) in the depth map.
We thus had to work on the calibration and imple-
mentation of the code to have the correspondence
we were expected.

After this operation, there are zones where we
do not know the depth. Those are generally at
the border at the image, so we set the normalized
depth to 1, as we did for unknown zones due to
occlusion that the Kinect gives us.

As we mentioned before, our correspondent
depth is off by about 40 pixels from the rgb im-

age. We had to manually shift it to get results.
Otherwise, the error is too big, and the trimap is
useless.

We selected different scenarios, and show the
results in the next section.

4.2. Evaluation metric

The innovative aspect of our project is the gen-
eration of a trimap using the depth map of the
kinect, and use it do digital matting. To evaluate
the quality of our depth-based trimaps, we gener-
ate ’ground truths’ by manually drawing a trimap
with a good precision. We then apply the same
matting algorithm with this trimap. The results
using this method are very good, and they extract
the foreground with very little error.

We believe our approach is more robust than
manually creating ground truths by hand, because
first it is difficult to set an alpha between 0 and
I (a human operator will likely set it to O or 1,
but not to something else), and second, it does not
rely too much on the performance of the matting
algorithm. However, it obviously does, because
if it can perform well with a bad trimap, then any
bad trimap can be given.

We used this method because you compare
since two different trimaps could give the same
result, so there’s no real absolute way to compare
trimaps. Since the goal is to do matting, it makes
sense to evaluate after this operation.

We first calculate the difference between the
alpha mask computed by the matting algorithm
from the generated trimap and the ground truth.
We thought it was more relevant to express the er-
ror as a percentage, so we divide the difference by
the sum of the values of the ground truth, which
is about the area of the foreground. It is better
than the actual area of foreground, because if the
alpha value of a pixel is low, which means there’s
almost no foreground on it, then it is not very im-
portant if you have the good value.

4.3. Results

On figure 1, the chair is supposed to be eas-
ily separable from the background. And we can

see, k-means correctly extracts the chair, and by
superimposing it to the rgb picture, we can see
it is almost an exact fit. The difference with the
ground truth shows that most of the error arises
from the legs of the chair. This can be explained
by the fact that the legs are thin, and that on the
generated trimap, the legs are almost entirely in
the unknown zone. It is then up to the matting
algorithm to determine that it is part of the chair,
which it seems to be really able to (which under-
standable given the colors) .

So we see that one potential problem is in the
way we generate the unknown zone in the trimap.
Because we do not have any information on the
probability that a pixel belongs to the foreground
or to the background, we have to assume a uni-
form zone. The impact of this is that finer fea-
tures easily fall into the unknown zone. Thus, we
might want to use a small unknown zone. This is
illustrated on figure 2.

However, because of the lack of precision of
the Kinect (the depth map is not precise up to one
pixel, but to 2 or 3 pixel on average), we have
to set the unknown zone to be big enough, oth-
erwise, the whole contour of the shape will be
wrong. The figure 3 shows this.

The figure 4 shows a case where the fore-
ground and the background are not easily sepa-
rable. There’s indeed a part of the wall on the left
and on the right, part of the table behind that falls
into the same cluster as the subject after apply-
ing k-means. Our method performs as expected,
and removes the wall because it is not continu-
ous with the subject, and removes the table be-
cause it’s depth is much different from the arm.
There are some holes in the result segment (in the
head...), but this is due to the imprecision of the
Kinect.

The table 1 shows some results we have, us-
ing the metric we defined earlier. We can see that
the error can vary a lot depending on the image.
This is mainly due to the actual size of the ob-
ject. Indeed, for an image with a person that fills
a lot of space, the error is relatively small, but
for an image with a small object, like the chair
(picture 4), the error is relatively much bigger, be-

Figure 1. Foreground and background are easy to separate. From left to right: clusters from k-means, foreground segment superimposed

to the rgb picture, generated trimap, difference with ground truth

Figure 2. Impact on the size of the unknown zone, equal to, from left to right 1, 3 and 5. The above line shows the trimaps, and the bottom

line the difference with the ground truth

cause it is defined as a percentage of the area of
the object (or something close, as we mentioned
before). This is also due to the fine details, that
the generated trimap cannot correctly isolate.

If we ignore this picture for which the error is
quite high, the error of the algorithm, compared
to the ground truth, is about 10%, or even 5% for
human subjects. Those results also show that a
width of 4 pixels is a good compromise for the
unknown zone. But for picture 4 for example, be-
cause of the skinny legs, the smaller the unknown
zone is, the better is the result.

5. Conclusion

In this paper we have shown that depth data
could provide useful information to solve the

| image [error (1) | error (3) [error (4) | error (5) |

€)) 0.0551 0.0443 0.0341 0.0404
) 0.1534 | 0.1196 | 0.0746 0.0454
3) 0.1163 0.1085 0.1067 0.1083
“) 0.2021 0.2637 0.2815 0.2867
5) 0.1051 0.0901 0.0794 0.0685
6) 0.0728 0.0643 0.0636 0.0644

Table 1. Results corresponding to the images from figure 5. Num-
ber in parenthesis is the size of the unknown region in the gener-
ated trimap

RGB matting problem. We do so by calibrating a
Kinect camera to obtain parameters that enable us
to map the depth image to the RGB image. With
the parameters, we then explored different seg-
mentation techniques, namely K-means and N-
cuts, to generate clusters with depth data. In im-

Figure 4. Foreground and background are difficult to separate. From left to right: rgb picture, clusters from k-means, segments to isolate

the subject of interest

ages where the foreground object is located at the
center of the image, we found that trimap gener-
ation with K-means worked fairly well when that
assumption is applied. In most cases, the error
was less than 10%. However, the generation of
the unknown zone in the trimap is the source of
undesirable results when fine details represent a
significant part of the foreground. One of the lim-
iting factors that undermines the performance of
our algorithm lies in the hardware. The coarse
resolution of the sensors, and the shadowing ef-
fect caused by the location of the sensor and pro-
jector increased the size of the unknown region in
the trimap. This led to a high error in some of our
test images. Another limiting factor is processing

speed, which is partly due to our MATLAB im-
plementation (we had to use some Java data struc-
tures, which slowed down the algorithm). We
could improve the performance by implementing
the code in another language. By overcoming the
above limitations, we would hope to apply our
approach to video matting on the xbox games,
which would greatly enhance gamer experience.

References

[1] A Bayesian approach to digital matting, B. Curless, D.
Salesin, R. Szeliski

[2] Learning based digital matting, Y. Zheng, C. Kambhamettu

[3] Video matting from depth maps, J. Finger, O. Wang

[4] A closed-form solution to natural image matting, A. Levin, D.
Lischinski, Y. Weiss

Figure 5. Results from a selection of pictures: rgb image, result using the automatically generated trimap and difference with ground truth

[5] Normalized Cuts and Image Segmentation, J. Shi, J. Malik

[6] A Normalized Cuts Based Image Segmentation Method, F.
Sun and J. He

[71 J. Shi MATLAB Normalized Cuts Segmentation Code,
http://www.cis.upenn.edu/ jshi/software/

[8] http://nicolas.burrus.name/index.php/
Research/KinectCalibration

[9] http://openkinect.org/wiki/Imaging_Information

[10] http://graphics.stanford.edu/ mdfisher/
Kinect.html

