
CS231A Course Project Final Report
Sign Language Recognition with Unsupervised Feature Learning

Justin Chen
Stanford University

justinkchen@stanford.edu

Abstract

This paper focuses on experimenting with different seg-
mentation approaches and unsupervised learning algo-
rithms to create an accurate sign language recognition
model. To more easily approach the problem and obtain
reasonable results, we experimented with just up to 10 dif-
ferent classes/letters in the our self-made dataset instead of
all 26 possible letters. We collected 12000 RGB images and
their corresponding depth data using a Microsoft Kinect.
Up to half of the data was fed into the autoencoder to ex-
tract features while the other half was used for testing. We
achieved a classification accuracy of 98% on a randomly
selected set of test data using our trained model. In addi-
tion to the work we did on static images, we also created
a live demo version of the project which can be run at a
little less than 2 seconds per frame to classify signed hand
gestures from any person.

Future Distribution Permission
The author of this report gives permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

The problem we are investigating is sign lan-
guage recognition through unsupervised feature
learning. Being able to recognize sign lan-
guage is an interesting computer vision problem
while simultaneously being extremely useful for
deaf people to interact with people who don’t
know how to understand American Sign Lan-
guage (ASL).

Our approach was to first create a data set

showing the different hand gestures of the ASL
alphabet that we wished to classify. The next step
was to segment out only the hand region from
each image and then use this data for unsuper-
vised feature learning using an autoencoder, fol-
lowed by training a softmax classifier for mak-
ing a decision about which letter is being dis-
played. Many different segmentation approaches
were tried until we discovered that the skin color
and depth segmentation techniques worked most
consistently.

2. Methodology

2.1. Problem Statement

2.1.1 Background

The CVPR gesture workshop from 2011 provides
a great information on modern gesture recogni-
tion models as well as how to incorporate differ-
ent learning algorithms. There is some past work1

related to our project that we initially looked at
such as segmentation-robust modeling for sign
language recognition [3] and sign language and
human activity recognition [1], but we ended up
using mostly our own approach to sign language
recognition. Inspiration for our learning model
was drawn from the MNIST handwritten digits
recognition problem2 which also used a similar
unsupervised feature learning and classification
approach [2]. We also investigated the use of
convolutional neural networks for feature learn-
ing based on the visual document analysis paper

1http://clopinet.com/isabelle/Projects/CVPR2011/
2eblearn.sourceforge.net/demos/mnist/index.shtml



by the Microsoft Research group [4]. We felt that
a simpler approach, however, would still yield
competitive accuracy results.

2.1.2 Dataset

The data used for training and testing came from
our own self-made dataset. 1200 samples of each
of the 10 signed letters (a, b, c, d, e, f, g, h, i,
l) were collected using the Kinect including the
corresponding depth data. Each sample consists
of a person signing the corresponding letter while
facing directly at the Kinect camera. This dataset
consists of 6000 images used for training and an-
other 6000 images used for testing. The following
is a visualization of some of the unprocessed raw
images in the dataset:

Figure 1: Example Image in Dataset of (Top Left) letter ’F’, (Top
Right) letter ’L’, (Bottom Left) letter ’I’, (Bottom Right) letter

”D”

The depth data that was collected along with
the RGB data overlayed perfectly on top of the
original image and was helpful during the seg-
mentation section of the model. An example is
shown below:

Figure 2: Depth data overlayed on top of RGB data

2.2. Technical Approach

2.2.1 Segmentation Methods

We tried implementing many different versions
of quick image segmentation, in particular, hand
segmentation.

Edge Segmentation
One of the methods we tried was using a Canny

edge detector to find relevant ”objects” in the field
of view of the camera. The edges were then di-
lated, and then all remaining holes in the mask
were filled to create a solid, continuous mask.
Once this was done, only the largest areas were
taken in order to remove all the background clut-
ter objects. This approach makes the simplify-
ing assumption that the biggest objects seen in
segmentation are typically of the most interest as
well.

Figure 3: (Left) Edge detection results, (Right) Edge detection
mask applied to image shown by black outline

However, this approach did not always work
since there would be instances where the largest
”object” with distinguishable edges was not the
hand (or there was a busy background which clut-
tered the output) and therefore segment poorly.
We decided to move on to a simpler, but perhaps
more accurate method of segmentation using just
color.

Skin Color Segmentation
We tried out the two approaches for skin seg-

mentation using only color information. The first
approach involved modeling the skin color by
a 2D Gaussian curve and then using this fitted
Gaussian to estimate the likelihood of a given
color pixel being skin. First, we collected skin
patches from 40 random images from the inter-
net. Each skin patch was a contiguous rectangular



skin area. Skin patches were collected from peo-
ple belonging to different ethnicities so that our
model is able to correctly predict skin areas for a
wide variation of skin color. The colors were then
normalized as follows :

r = R
R+G+B

, b = B
R+G+B

.

The g component is ignored as it is linearly de-
pendent on the other two. The mean and covari-
ance matrix of the 2D Gaussian (with r, b as the
axes) is estimated as follows :

Mean m = E[x], where x = [r, b]T

Covariance C = E[(x−m)(x−m)T ].

Figure 4: (Top) Histogram of color distribution for skin patches,
(Bottom) Gaussian model fit

With this Gaussian fitted skin color model, the
likelihood of skin for any pixel of a given test im-
age can be obtained. If the pixel, has a chromatic
pair value of (r, b), then the likelihood of skin for
this pixel is given by:

Likelihood = e[−0.5(x−m)TC−1(x−m)], where
x = [r, b]T .

Finally, we thresholded the likelihood to clas-
sify it as skin or non-skin. However, this approach
did not give significantly good or consistent re-
sults and failed to detect dimly illuminated parts
of skin. These poor results did not meet the qual-
ity standard of hand segmentation we needed to
get a consistent feature extraction from the learn-
ing layer of the model.

The second approach which we used is moti-
vated by the paper [5], in which the authors first
transform the image from the RGB space to the
YIQ and YUQ color spaces. The authors then
compute the parameter

Θ = tan−1(V/U)

and combine it with the parameter I to define
the region to which skin pixels belong. Specifi-
cally, the authors called all pixels with 30 < I <
100 and 105o < Θ < 150o as skin. For our
experiments, we tweaked these thresholds a bit,
and found that the results were significantly bet-
ter than our Gaussian model in the previous ap-
proach. This might have been because of two rea-
sons:

1. The Gaussian model was trained using data
samples of insufficient variety and hence was in-
adequate to correctly detect skin pixels of darker
shades

2. Fitting the model in the RGB space performs
poorly as RGB doesnt capture the hue and satura-
tion information of each pixel separately.

Figure 5: (Left) Skin detected using Gaussian model, (Right)
Skin detected using YIQ and YUV color spaces



Having detected the skin regions quite accu-
rately, we then further filtered out the hand region
and eliminated the face/other background pixels
that might have been detected by using the corre-
sponding collected depth data. We assumed that
in any given frame, the hand was the object of in-
terest and therefore the closest skin-colored object
in the camera’s view. We then created a secondary
dataset out of this segmentation model which con-
sisted of hand gestures for ten letters of the ASL
alphabet. Each image was cropped and resized to
be a square 32x32 bounded area.

Figure 6: Visualization of processed database images

Further Segmentation Work
We explored further segmentation methods, but

eventually deemed them of less importance than
the original skin-color hand segmentation to get
an accurate ASL recognition system. One of the
other approaches was attempting to properly seg-
ment pointed fingers within the detected hand. In
order to segment out the fingers, we used convex
hull detections to find the possible ”fingers” af-
ter the hand has already been segmented out. The
fingers will ideally be oriented along the direction
from the convex hull point to the centroid of the
hand as seen in Figure 7.

Figure 7: (Left) Skin model segmentation, (Right) Using convex
hull detection to find potential ”fingers”

However, we never ended up using the detected
fingers as part of the classification approach be-
cause of the slightly unpredictable detections of
convex hulls in a hand image.

2.2.2 Feature Learning and Classification

The extracted data of hand images were fed into
an autoencoder in order to perform the actual
recognition training part of the project. This stage
implements an unsupervised learning algorithm.
We feed all the data samples into the sparse au-
toencoder. The input data from the segmentation
block are images of size 32x32 pixels. A sparse
autoencoder is chosen initially with an input layer
with 32x32 nodes and one hidden layer of 100
nodes. We used L-BFGS to optimize the cost
function. This was run for about 400 iterations to
obtain estimates of the weights. Now the autoen-
coder has learnt a set of features similar to edges.
A visualization of the learned features can be seen
below:

Figure 8: Visualization of sparse autoencoder features

The next step is to classify the 10 different
letters based on the features learnt by the autoen-
coder training. The output of the hidden layer of
the autoencoder is fed into a softmax classifier



to now classify the data into 10 categories. The
softmax classifier again learns using the L-BFGS
optimization function. This algorithm converges
after about 40 iterations. We tested the system

accuracy by using the remaining 600 images per
letter (for a total of 6000 images) as our test set.

An overall view of the system’s block diagram can be seen here:

Figure 9: Block diagram summarizing our approach for sign language recognition



3. Experimental Results and Discussions

In the previous sections, we have mentioned
details of our implementation of the hand segmen-
tation, unsupervised feature learning and classifi-
cation sub-blocks. In this section, we report the
performance of our system through tables and fig-
ures. Our primary evaluation metric is based on
classification accuracy. Given an unsegmented
image of a person signing a letter, we want to

see what the accuracy of our model is in clas-
sifying/predicting the signed letter in the image.
Achieving a classification accuracy around 98%
similar to many MNIST digit recognition scores
is desired.

As a preliminary diagnostic, we plotted a learn-
ing curve showing the training error and the test
error as a function of the size of the training set.
The following plot shows the learning curve we
obtained:

Figure 10: Learning curve of sign language recognition system

In our milestone report, we had used 50 hidden
units for our autoencoder. Analyzing our learning
curve, we observe that the training error and the
test error are close to each other (except for one
aberration at training set size 3000), and even the
training error is more than 1.5%, which is some-
what high. Hence suspecting that we might be in
the high bias region, we decided to increase the
size of our features by increasing the number of
hidden units of our autoencoder to 100. Our final
classification accuracy on the test set achieved us-
ing this 100 length feature vector was 98.2%.The

following table summarizes all our implementa-
tion details and reports the accuracy obtained :

Table 1: Classification Accuracy Evaluation Results on Test Set

The accuracy results that we obtained are com-
parable to the accuracy of digit recognition on the
MNIST dataset and therefore we believe that our



approach works relatively well.
As a finishing step to our project, we have suc-

cessfully created a real time implementation of
our entire system, so that hand gestures made in
front of the Kinect connected to our computer di-
rectly displayed the image captured by the kinect,
the segmented hand gesture and the output of our

classifier, which is one of the ten letters in our
dataset. The evaluation process takes less than 2
seconds per frame. The following figures show
screenshots of our real-time implementation and
the results obtained. In each screenshot, the origi-
nal image is shown with the result of the segmen-
tation and the predicted result to the right of it.

Figure 11: Example screenshots of real-time live demo sign language recognition system interface

4. Conclusion and Future Work

In this project, we have implemented an auto-
matic sign language gesture recognition system
in real-time, using tools learnt in computer vi-

sion and machine learning. We learned about
how sometimes basic approaches work better than
complicated approaches. Despite trying to use a
smart segmentation algorithm, the relatively ba-
sic skin segmentation model turned out to extract



the best skin masks. We also realized the time-
constraints and difficulties of creating a dataset
from scratch. Looking back, it would have been
nice to have had a dataset already to work off of.
Some letters were harder to classify in our live
demo such as ”a” vs ”i” since they only differ by
a very small edge (the ”i” has the pinky point-
ing up). Although our classification system works
quite well as has been demonstrated through ta-
bles and images, theres still a lot of scope for pos-
sible future work.

Possible extensions to this project would be ex-
tending the gesture recognition system to all al-
phabets of the ASL and other non-alphabet ges-
tures as well. Having used MATLAB as the plat-
form for implementation, we feel that we can also
improve upon the speed of our real-time system
by coding in C. The framework of this project can
also be extended to several other applications like
controlling robot navigation using hand gestures
and the like.

References
[1] D. Metaxas. Sign language and human activity recognition,

June 2011. CVPR Workshop on Gesture Recognition.
[2] M. Ranzato. Efcient learning of sparse representations with an

energy-based model, 2006. Courant Institute of Mathematical
Sciences.

[3] S. Sarkar. Segmentation-robust representations, matching,
and modeling for sign language recognition, June 2011.
CVPR Workshop on Gesture Recognition, Co-authors: Bar-
bara Loeding, Ruiduo Yang, Sunita Nayak, Ayush Parashar.

[4] P. Y. Simard. Best practices for convolutional neural networks
applied to visual document analysis, August 2003. Seventh
International Conference on Document Analysis and Recog-
nition.

[5] X. Teng. A hand gesture recognition system based on local
linear embedding, April 2005. Journal of Visual Languages
and Computing.

5. Appendix

This project is done in combination with the
CS229 Machine Learning final project. The
CS231A Computer Vision primary component is
the hand and finger segmentation using 3D cam-
era.


