
Optical Flow For Vision-Aided Navigation

Elizabeth Boroson
Stanford University

lboroson@stanford.edu

Abstract

In this project, I looked at the use of optical flow algo-
rithms to estimate displacements between images in naviga-
tion data. In navigation, computing power is often limited,
so feature-matching algorithms are not ideal. However, the
large displacements that are seen in this data require mod-
ifications to traditional optical flow algorithms. I reviewed
several optical flow algorithms that are optimized for larger
displacements. I implemented one of these, and compared
its results with the results of a feature-matching algorithm.
The optical flow algorithm performed fairly well on simu-
lated images in which the only difference was the displace-
ment, but did not perform as well on more realistic image
sets. In order to use optical flow for navigation data, the
algorithm used would need to be improved to be less sus-
ceptible to changes in illumination and image brightness.

Future Distribution Permission
The author(s) of this report give permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

A current subject of interest in navigation is
the use of vision as an aiding source. Most un-
manned aerial vehicles (UAVs) have a camera on-
board, so a navigation system with vision could
use these existing sensors instead of requiring that
new sensors be added, which would be an ad-
vantage when the space available for sensors is
limited. Some vision-aided navigation algorithms
that have been developed recently find displace-
ment between images by matching SIFT or SURF
features. However, this type of algorithm is usu-
ally computation-intensive, and most UAVs are
small and have very strict weight and power lim-

itations for the processors that can be used. An
alternative would be to use optical flow to find
displacement, which tends to have lower require-
ments for the processor. Unfortunately, the cam-
eras available on UAVs usually have relatively
low frame rates, and there is enough displace-
ment between images that typical optical flow al-
gorithms are not effective. For my project, I stud-
ied algorithms that apply optical flow techniques
to the type of data encountered in navigation.

2. Background

Most recently-developed vision-aiding algo-
rithms for navigation rely on matching SIFT or
SURF features between images to determine dis-
placement between them. For example, Mourikis
et al. [4] implemented a navigation algorithm in
which matched features are used to determine
constraints between two vehicle poses, and these
constraints can be used to improve the pose es-
timates. Though these features can be matched
between images with large displacements, they
are not ideal for this purpose due to both the high
computational cost of detecting and matching the
features and also the poor localization of feature
positions. In a UAV with a fairly low-resolution
camera, one pixel in an image could correspond
to several meters on the ground. A difference in
a feature position of a fraction of a pixel could
change the calculated displacement enough to im-
pact the quality of the camera as an aiding source.

However, optical flow techniques can also be
used to detect the displacement between two im-
ages. These techniques can be more accurate, and
they can also be much less computation-intensive

than feature detection and matching. In particu-
lar, the algorithms lend themselves to being im-
plemented in hardware, which would greatly de-
crease the weight and power requirements for the
computer on board the UAV.

Despite all of these advantages, traditional op-
tical flow techniques are not effective for the
large displacements seen in navigation data. They
use linearized equations which are only valid in
the regions where the image gradient is approxi-
mately linear, for displacements of less that one
pixel. For a UAV camera with a low frame rate,
the displacement may be several pixels, well out-
side this region.

Several algorithms have been proposed to im-
prove the performance of optical flow techniques
over large displacements. Some of these use the
technique of blurring and downsampling the im-
age to be able to apply the optical flow equations
at larger scales. By downsampling the image, the
region in which the linearized optical flow equa-
tion is valid increases, so the same technique can
be used even with larger displacements.

Another algorithm applies the optical flow
equations without linearizing them, so the equa-
tions are valid outside of the linear region [2].
The resulting equations from this technique are
much more complicated, but are valid for larger
displacements. In the algorithm of this type that I
studied, there is no closed-form solution to these
equations, but they can be solved iteratively.

There are also other recent techniques that are
not relevant to navigation data, but may still be in-
teresting. One of these, which would be useful for
images where different objects are moving at dif-
ferent rates, involves segmenting the image into
regions and applying optical flow to these regions
separately [1]. For each region in the image, a
descriptor is calculated. Assuming that each re-
gion looks the same in both images (or has only
been changed by an affine transformation), the re-
gions are matched, giving an estimate of the mo-
tion for each region. In navigation, we can gener-
ally assume that all motion is due to the motion of
the camera, so it is unusual for different regions
within an image to move separately. While this

technique is interesting, it would not be very use-
ful for navigation.

For my project, I implemented one of these
techniques in MATLAB and tested its perfor-
mance on images similar to those that would be
encountered in navigation. I also implemented
a SIFT-matching algorithm for comparison with
each of these new algorithms. I compared the al-
gorithms in both accuracy of the estimate, or how
close it was to truth, and consistency, or what the
distribution of estimates was for all pixels. In or-
der to use displacement calculated from optical
flow as an aiding source, we would want it to have
a Gaussian distribution with a fairly small stan-
dard deviation.

3. Approach

I’ve selected two of the algorithms that have
been proposed to improve the performance of op-
tical flow techniques in images with large dis-
placement. I’ve implemented these algorithms in
MATLAB, and have been able to test one of them
on images similar to those that would be encoun-
tered in navigation. I’ve also written MATLAB
code to extract and match SIFT features from the
images in order to compare the optical flow algo-
rithms with the current standard method.

The first optical flow algorithm that I have im-
plemented is a hierarchical standard optical flow
calculation, similar to the one which was dis-
cussed in lecture. In this algorithm, the images
are blurred and downsampled at several different
scales using a Gaussian pyramid approach. At the
largest scale, the displacement between the two
images is calculated using the optical flow equa-
tion:

Ix · u+ Iy · v + It = 0 (1)

The displacement is calculated at every pixel us-
ing a 5 × 5 window of pixels around that point.
This will enforce a smoothness constraint, since it
will prevent a pixel from having a drastically dif-
ferent displacement than its neighbors. A least-
squares solution to the optical flow equation is
used, as shown in Shi and Tomasi [5], so the so-

lution at each point is:[∑
IxIx

∑
IxIy∑

IxIy
∑
IyIy

] [
u
v

]
= −

[∑
IxIt∑
IyIt

]
(2)

where the sums are over all points in the window.
Once the displacement is calculated at each point
at a particular scale, the displacements of pixels in
the image are interpolated back to the original im-
age scale. The second image is shifted to account
for the aready-calculated displacement, then the
calculation is performed at the next smallest scale.
Using this technique, the displacement is in the
linear range at the largest scale. As it moves
to progressively smaller scales, the images are
shifted to be closer together, so the displacement
remains in the linear range even as this range gets
smaller. In the last iteration, at the original image
scale, it is only solving for subpixel motion.

The second algorithm is based on the one in
Brox et al. [2]. It is similar to the previous algo-
rithm, but does not use the linearization of the op-
tical flow equation given in Equation 1. Instead,
it applies several constraints which must be min-
imized at the correct displacement, and describes
a method to iteratively minimize these equations.

The three constraints which are used in this
technique are:

1. A brightness constancy assumption. This
constraint assumes that a given point has the
same intensity in all images. This is the con-
straint that, when linearized, gives the optical
flow equation given in Equation 1. The en-
ergy which must be minimized for this con-
straint is:

EBrightness(u, v) =

∫
Ω

(|I(x+w)− I(x)|2)dx
(3)

2. A gradient constancy assumption. This con-
straint assumes that a given point has the
same gradient in all images. The bright-
ness constancy assumption is very sensitive
to slight changes in the overall image bright-
ness. This constraint would not be nearly as
sensitive to small changes in brightness, and

would improve the performance of the algo-
rithm in situations where, for instance, there
was a slight change in illumination. The en-
ergy which must be minimized for this con-
straint is:

EGrad(u, v) =

∫
Ω

(|∇I(x+w)−∇I(x)|2)dx
(4)

3. A smoothness constraint. This ensures that
pixels near each other do not have drasti-
cally different displacement. In the previous
method, this constraint was enforced by us-
ing a window of nearby pixels to calculate the
displacement at any given point. Here, an en-
ergy describing the total variation of the flow
field must also be minimized:

ESmooth(u, v) =

∫
Ω

(|∇3u|2+ |∇3v|2)dx (5)

The total energy which is minimized in this
technique is a weighted sum of the three con-
straints:

ETotal = EBrightness + γEGrad + αESmooth (6)

The weights can be adjusted based on the type of
data. For example, if we know that the entire im-
age should have the same displacement, we can
weight the smoothness constraint heavily. If we
know that there will be variation in illumination,
we can weight the gradient constancy assump-
tion much more than the brightness constancy as-
sumption.

Brox et al. also describe an iterative technique
to find the displacement that minimizes this en-
ergy. The technique has two loops. The outer
loop iteratively finds the total displacement, w =
(u, v)T . Updates to w are calculated by the inner
loop, which finds the incremental displacement,
dw = (du, dv)T . On each iteration k + 1 of the
outer loop, wk+1 = wk + dw. On each iteration
l + 1 of the inner loop, dwl+1 is the solution to
the system of equations:

A · dwl+1 = b (7)

with

A11 =(ψk,l
Data) · (I

k
xI

k
x + γ(IkxxI

k
xx + IkxyI

k
xy))− α((ψS)x + 2ψS + (ψS)y)

A12 =(ψk,l
Data) · (I

k
xI

k
y + γ(IkxxI

k
xy + IkxyI

k
yy))

A21 =(ψk,l
Data) · (I

k
xI

k
y + γ(IkxxI

k
xy + IkxyI

k
yy))

A22 =(ψk,l
Data) · (I

k
y I

k
y + γ(IkyyI

k
yy + IkxyI

k
xy))− α((ψS)x + 2ψS + (ψS)y) (8)

b1 =α ∗ ((ψS)x(u
k(x, y)− uk(x− 1, y)− duk(x− 1, y))

+ ψS(u
k(x, y)− 2uk(x− 1, y) + uk(x− 2, y)− 2duk(x− 1, y) + duk(x− 2, y))

+ (ψS)y(u
k(x, y)− uk(x, y − 1)− duk(x, y − 1))

+ ψS(u
k(x, y)− 2uk(x, y − 1) + uk(x, y − 2)− 2du(x, y − 1) + du(x, y − 2)))

− (ψk,l
Data) · (I

k
xI

k
z + γ(IkxxI

k
xz + IkxyI

k
yz))

b2 =α ∗ ((ψS)x(v
k(x, y)− vk(x− 1, y)− dvk(x− 1, y))

+ ψS(v
k(x, y)− 2vk(x− 1, y) + vk(x− 2, y)− 2dvk(x− 1, y) + dvk(x− 2, y))

+ (ψS)y(v
k(x, y)− vk(x, y − 1)− dvk(x, y − 1))

+ ψS(v
k(x, y)− 2vk(x, y − 1) + vk(x, y − 2)− 2dv(x, y − 1) + dv(x, y − 2)))

− (ψk,l
Data) · (I

k
y I

k
z + γ(IkyyI

k
yz + IkxyI

k
xz)) (9)

ψData =(Iz + Ixdu+ Iydv)
2 + γ((Ixz + Ixxdu+ Ixydv)

2 + (Iyz + Ixydu+ Iyydv)
2) (10)

ψS =|∇3(u+ du)|2 + |∇3(v + dv)|2 (11)

Like the previous method, this technique is also
applied at different scales. The image is blurred
and downsampled, and the displacement is calcu-
lated at the largest scale. This displacement is in-
terpolated back to the original image scale, one of
the images is shifted by this displacement, and the
method is applied again at the next largest scale.

4. Experiment

4.1. Datasets

I have collected three datasets, each consist-
ing of several images from Google Earth over a
specific region. Each set of images is recorded
from an altitude that a UAV might fly at, and
there is slight motion between each image. Three
of the image sets are flat aerial images, taken
from between 500 and 1000 meters. One set was
recorded over Stanford, one over MIT, and one
over a fairly flat and uninhabited region slightly
northwest of Los Angeles. This region contains

a dirt road, some trees, and some variation in ter-
rain, but no man-made biuldings. These regions
will provide an interesting comparison, since I
have generally found that SIFT features can be
detected and matched much more accurately on
manmade sturctures than on natural structures and
terrain. Three consecutive images from the Stan-
ford dataset are shown in Figure 1 as an example
of the images I’ll be using.

4.2. Algorithms

I implemented the algorithms in MATLAB. For
the SIFT feature-matching method that I am us-
ing for comparison, I downloaded SIFT feature
extraction code for MATLAB from David Lowe’s
website.1 This code provides descriptors and key-
points for features found in each image. I follow
the matching technique described in Lowe [3]. I
match each feature in one image with a feature in
the next image by finding the feature in the sec-

1http://www.cs.ubc.ca/ lowe/keypoints/

Figure 1: Three consecutive images from the Stanford dataset.

ond image whose descriptor has the smallest Eu-
clidean distance from the original feature. If this
feature is significantly closer than the next closest
feature, I consider it to be a match. Matched fea-
tures between two consecutive images in the MIT
dataset are shown in Figure 2.

For this method, I generated the displacement
at each point in the image by finding the average
displacement of nearby features. At each pixel,
the displacement is the average of the displace-
ments of all features in a 5×5 window around the
pixel’s position in the first image. This allows me
to calculate a displacement even at points where
a feature is not detected, and imposes a weak
smoothness constraint, since any feature will af-
fect the displacement at all nearby points. How-
ever, this method is not ideal for a few reasons.
First, there are points that are not near any fea-
tures, and the displacement cannot be calculated
at these points. Second, any mismatched features
will have a disproportionate impact on the calcu-
lated displacements at nearby pixels. In naviga-
tion, these mismatches would not be a problem
because there would also be some information
available about the true displacement from other
sensors or by extrapolating from previous motion.
This additional information could be used to elim-
inate matches that were clearly incorrect. Further-
more, most navigation algorithms assume that all
motion is due to the motion of the camera, so they

would use all features to calculate a single dis-
placement, rather than finding the displacement
at each pixel.

I also successfully implemented the standard
optical flow technique in MATLAB, and have
compared it to the feature-matching technique.
Unfortunately, I was unable to get the non-
linearized optical flow technique working, though
the code that I wrote for that is also included. For
the optical flow technique, I blurred the image
with Gaussian kernels of width 2n, with n ∈ N. I
then downsampled the image by the same scales.
Starting from the largest scale, I calculated the
displacement, interpolated it back to the original
image scale, shifted one image to match the other,
and then repeated the process at the next smallest
scale. The total displacement was the output of
the final step, where I found the optical flow at
the original image scale.

I compared the algorithms based on the accu-
racy and consistency of the estimates. For the ini-
tial tests, where the true displacements are known,
the accuracy is the difference between the actual
displacement and the average displacement for all
pixels. The consistency is the percent of pixels
where the calculated displacement was within 3σ
of the average. These values only apply to pixels
where the displacement could be calculated. For
example, for the feature-matching technique, the
displacement was not calculated at certain pixels

Figure 2: SIFT features matched between two images in the MIT dataset.

because there were no nearby features. Similarly,
the optical flow equation cannot be solved in large
regions of the image with no variation. These pix-
els are not included in the results.

4.3. Baseline Comparison

In order to compare the performance of each
of the algorithms, I generated a set of small im-
ages with known displacements by taking parts
of the first image in the Stanford dataset. I took
one 256× 256 image, then shifted my window by
1 to 5 pixels in the horizontal and vertical direc-
tions to get images for comparison. In addition to
having known displacements, these images were
identical other than the small displacement. They
had identical brightness and illumination, and all
points in the images had identical displacements.
This was especially useful for testing the algo-
rithms, and also allowed me to compare the al-
gorithms based on only the displacement by elim-
inating any other possible differences between the
images.

For each shifted image, I ran each of my al-
gorithms (SIFT feature-matching and hierarchi-
cal optical flow) to find the displacement from the
original image. The results for each algorithm are

shown in Tables 1 and 2. For each algorithm, the
results are calculated using all pixels where a dis-
placement was found. The mean and standard de-
viation of the displacement solution in each di-
rection are given. Also, the percentage of points
within 3σ of the mean are given. This allows us
to understand the shape of the distribution. For a
Gaussian distribution, 99% of the points would
be in this range. Ideally, to use optical flow-
calculated displacement as an aiding source for
vision, we’d like to see a Gaussian distribution.

For these images, both algorithms gave results
that were fairly close to the true displacement.
The optical flow algorithm’s calculated displace-
ments were slightly closer to truth, but it also had
much larger standard deviations and many out-
liers. Figure 3 shows the displacement calcu-
lated at each point for a pair of images. From
this, it is clear that for the feature matching algo-
rithm, there are many points where the displace-
ment could not be calculated. However, for the
points where it was calculated, there are very few
outliers. For the optical flow algorithm, on the
other hand, there were certain areas of the images
where the optical flow could not be calculated
well. Outside of these regions, the flow is very

accurate and consistent. This algorithm would be
much more useful if those regions were detected
so they would not be used for the displacement
calculation. This is very similar to what Shi and
Tomasi do [5], and an algorithm like theirs could
be used to improve the optical flow solution.

4.4. Comparison Using Real Images

For the images that I collected from Google
Earth, I performed a similar comparison, though
there was no truth data. I ran each algorithm on
every pair of consecutive images for each dataset.
The resulting mean displacements and their stan-
dard deviations are shown in Tables 3-5. Since
there is no truth reference, we can only compare
the algorithm results to each other.

For all of these datasets, the displacements cal-
culated by the optical flow algorithm are in the
right direction, but much smaller than the true
displacements calculated by the feature match-
ing algorithm. There are some possible reasons
for this. First, the images may have been differ-
ent enough that the optical flow algorithm based
only on image brightness failed. Possible ways to
correct this might include normalizing the image
brightnesses or revising the algorithm to look at
the image gradient instead of instensity, like the
gradient constancy constraint in Brox et al. [2].
Also, some of the displacements may have been
too large for even the largest scale of the algo-
rithm. This could be solved by applying the algo-
rithm at larger scales.

4.5. Applying Navigation Constraints

As mentioned earlier, calculating the displace-
ment at individual pixels is not very relevant in
a navigation context. UAVs, where computing
speed and power is especially limited, do not
generally fly very close to other moving objects.
While there are exceptions, we can generally as-
sume that all motion in the images is due to the
motion of the vehicle itself. In this case, as long
as nearly everything in the image is at the same
depth, we only need to find one displacement for
the whole image.

In navigation we also have the added bene-
fit of additional information about our motion
from other sensors. While vision is very useful,
it would be used mainly as an aiding source to
improve measurements from inertial sensors and
GPS. We could use these sensors and information
about previous motion to constrain the displace-
ment that we calculate from the image, and even
to eliminate mismatched features. For example,
if we know that we’ve been moving forward, and
our sensors don’t show that we’ve changed direc-
tion, it’s safe to not use features or pixels that
show a large backwards or sideways motion. In
this case, the displacement that we get from our
images is used to refine our estimate of our mo-
tion, rather than being the initial estimate.

With all of this in mind, it makes the most sense
from a navigation perspective to look at the aver-
age displacement of all good pixels for each tech-
nique and their distribution. From the results of
the small displacement tests, it’s clear that while
the optical flow technique gives a slightly bet-
ter estimate of the displacement, this estimate is
much less consistent. The standard deviations on
the estimate are larger for this technique, and the
results are even more spread out, with typically
5-10% of the pixels having values outside the 3σ
bound. The feature-matching technique doesn’t
give perfect results either. Although the standard
deviations of the estimates are generally smaller
and the distributions are closer to Gaussian, the
mean estimates are less accurate.

For the larger images, we have even more out-
liers with the optical flow technique. Like with
the smaller images, it would be useful to deter-
mine the regions where the optical flow cannot be
calculated and ignore these regions in order to re-
duce the number of outliers. This would probably
improve both the accuracy and the distribution of
the solution, and could make an optical flow algo-
rithm a useful and efficent method for finding the
displacement between images in navigation.

Image True Displacement Mean σ % Points in 3σx y x y x y
1 pixel vertical 0 1 0.1859 0.7998 0.2870 0.3089 90.11
2 pixel vertical 0 2 0.3701 1.6151 0.5020 0.5623 94.21
3 pixel vertical 0 3 0.5780 2.3356 0.7413 0.8222 93.67
4 pixel vertical 0 4 0.7723 3.1404 0.9803 1.0838 95.18
5 pixel vertical 0 5 2.4281 5.3702 10.8590 10.5979 97.87

1 pixel horizontal 1 0 0.8131 0.2380 0.3372 0.3862 96.03
2 pixel horizontal 2 0 1.5998 0.3619 0.5506 0.4891 95.63
3 pixel horizontal 3 0 2.3818 0.5778 0.8097 0.7457 93.37
4 pixel horizontal 4 0 3.1479 0.7462 1.0820 0.9678 97.35
5 pixel horizontal 5 0 3.9492 0.9954 1.3424 1.2686 96.57

Table 1: Results of the feature-matching algorithm on the images with small known displacements

Image True Displacement Mean σ % Points in 3σx y x y x y
1 pixel vertical 0 1 -0.0869 0.8075 1.4063 1.4148 93.83
2 pixel vertical 0 2 -0.1530 2.1592 1.4539 1.7269 94.25
3 pixel vertical 0 3 -0.1054 2.7286 4.2426 4.5277 91.95
4 pixel vertical 0 4 -0.3483 3.3156 3.7681 4.2122 92.05
5 pixel vertical 0 5 -0.3348 4.0252 3.5875 3.5588 91.77

1 pixel horizontal 1 0 0.8221 -0.0045 2.4098 2.7696 94.03
2 pixel horizontal 2 0 2.1002 0.0691 2.2855 2.9317 94.27
3 pixel horizontal 3 0 2.7931 0.1942 3.8002 4.2296 91.27
4 pixel horizontal 4 0 3.1594 0.1151 4.9041 6.2516 92.47
5 pixel horizontal 5 0 4.1807 0.1164 3.9373 4.3918 92.22

Table 2: Results of the optical flow algorithm on the images with small known displacements

5. Conclusion

I was able to compare the hierarchical opti-
cal flow algorithm with a feature-matching al-
gorithm for estimating the displacement between
two images. While the results of initial tests were
promising, the optical flow algorithm did not per-

form very well when applied to more realistic im-
ages like those that would be used for naviga-
tion. This may be because of the algorithm’s de-
pendence on matching regions actually having the
same brightness. This is not always the case for
these images, since there may be differences in
illumination and also in the camera position and

Image Pair
Feature Matching Optical Flow

Displacement σ % Points in 3σ
Displacement σ % Points in 3σx y x y x y x y

1-2 -38.18 -29.30 19.89 18.28 96.17 -11.87 -6.76 18.30 16.57 85.05
2-3 -37.11 -15.11 15.47 14.84 61.75 -17.78 3.14 16.82 16.12 85.27
3-4 29.28 41.76 9.55 10.74 95.97 4.68 16.89 17.03 17.95 86.16
4-5 19.47 32.65 8.02 9.40 95.30 6.69 22.67 12.64 15.34 84.50
5-6 27.25 41.20 10.20 11.06 95.66 6.01 18.03 16.39 17.04 85.18

Table 3: Results of both algorithms on Stanford dataset

Image Pair
Feature Matching Optical Flow

Displacement σ % Points in 3σ
Displacement σ % Points in 3σx y x y x y x y

1-2 2.01 -16.12 27.66 29.58 98.64 7.50 -20.84 32.08 22.99 96.80
2-3 2.56 -24.63 26.35 26.26 97.98 6.26 -16.23 20.08 18.50 87.05
3-4 -4.28 -33.92 21.97 22.46 68.85 5.64 -15.53 23.62 23.30 86.46
4-5 -9.01 -31.01 16.07 16.68 65.98 5.43 -18.65 17.89 17.36 84.21
5-6 -13.03 -31.76 32.28 31.81 99.75 4.81 -17.17 20.07 17.74 86.78

Table 4: Results of both algorithms on MIT dataset

Image Pair
Feature Matching Optical Flow

Displacement σ % Points in 3σ
Displacement σ % Points in 3σx y x y x y x y

1-2 44.54 28.09 39.98 39.31 96.17 14.75 -2.18 26.77 26.19 81.96
2-3 69.62 52.95 74.38 78.32 95.40 11.01 4.26 32.75 29.91 81.38
3-4 68.47 40.74 48.54 43.44 93.38 7.58 6.81 33.78 30.67 84.46
4-5 60.37 34.44 27.24 24.85 95.92 6.93 5.22 33.08 30.14 84.26
5-6 71.43 38.92 44.10 41.36 96.78 4.41 5.19 35.20 33.17 84.45

Table 5: Results of both algorithms on rural dataset

orientation as the UAV it is on moves.
While this technique does show promise for use

on this type of data, these problems would need
to be solved first. Some simple steps, like nor-
malizing the image intensities, could be taken to
improve how well matching regions’ intensities
actually match. Additionally, a method like the
second algorithm (which I was unable to imple-
ment) might be more effective for matching navi-
gation images. The two-loop iterative method for
solving the optical flow equations would be fairly
slow, so it would probably not be very effective
when speed and computational power are limited.
However, the gradient constancy constraint that
this algorithm uses to reduce its dependence on
a region’s absolute intensity and rely more on its
gradient instead is promising, and could be incor-
porated into a more effective optical flow algo-
rithm in the future.

References
[1] T. Brox, C. Bregler, and J. Malik. Large displacement optical

flow. Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on, 0:41–48, 2009.

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.
In T. Pajdla and J. Matas, editors, Computer Vision - ECCV
2004, volume 3024 of Lecture Notes in Computer Science,
pages 25–36. Springer Berlin / Heidelberg, 2004.

[3] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–
110, 2004. 10.1023/B:VISI.0000029664.99615.94.

[4] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint
Kalman filter for vision-aided inertial navigation. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, pages 3565–3572, Rome, Italy, April 10-14
2007.

[5] J. Shi and C. Tomasi. Good features to track. In Computer Vi-
sion and Pattern Recognition, 1994. Proceedings CVPR ’94.,
1994 IEEE Computer Society Conference on, pages 593 –600,
jun 1994.

(a) Two images with a 5-pixel horizontal displacement
]

(b) Displacements between these images calculated with each algorithm
]

Figure 3: Small image displacements

