

Abstract

Object detection is a long standing problem in computer

vision. One of the common approaches to object detection

is to train with segmented images. Intuitively, isolated

foreground images should provide better training sets and

improve the performance of the detection system. However,

in practice, there are challenges associated with using

segmentation for training data. Features located along

segmentation borders in the training image assume for

clean backgrounds, which makes the resulting detection not

robust to noise in realistic images.

In this paper, we propose a way of excluding such

features in order to obtain a generalized object detector

that can perform cluttered background images by training

on segmented images. We demonstrate the effectiveness of

this approach by comparing the performance of our

detector against that of a detector trained using ordinary,

“dirty” background images.

1. Introduction

Object detection is one of the oldest problems in

computer vision. One of the simplest ways to approach this

problem is to training on a set of closely cropped images of

the object. However, this approach has the drawback of

including background pixels that are not necessarily a

relevant part of the object itself. The image noise tends to

degrade the performance of the detector. An alternative to

this approach is to use segmentation to tightly crop out the

object in the training set images and effectively remove the

background clutter. As long as a set of clean images were

chosen, it is possible to achieve a tight, accurate

segmentation using the state of the art segmentation

methods.

Unfortunately, there are also drawbacks associated with

using segmented images. Features that are detected along

the frame of the object, on its outer edges and corners,

detract from the performance of the detector. Training on

these features tunes the detector to clutter-free backgrounds.

When applied to normal, noisy environment images, the

detector performs poorly, even compared to a classifier that

was trained on non-segmented images.

 Our approach is to identify features (SIFT descriptors)

that are located around the perimeter of the object segment,

and exclude these from the training data. We hypothesize

that removing the detracting features will improve the

overall performance of the detector.

For the training set, we will use ImageNet to find

clutter-free pictures of the object to train on. ImageNet has

pre-categorizes images into “synsets,” or semantic

categories, that averages about 1000 images per category. A

significant portion of the images on ImageNet are clean

background images that will allow us to segment out the

object easily.

We will evaluate our performance by training a SVM

classifier on the modified set of features, and measuring the

precision and recall rates of detection on a test set images.

Additionally, we will also evaluate the performance of a

classifier trained on “dirty”, or non-segmented images, and

provide plots of the performance metrics of both detectors

for comparison. We hypothesize that our modified detector

will outperform the “dirty” classifier.

1.1. Related Work

For the task of object categorization, bag-of-features

methods have been successfully applied in many instances.

These approaches reduce an image into a collection of local

features without preserving the geometrical structure of the

underlying objects. This method is computationally

efficient and their application has largely been successful,

allowing them to outperform more sophisticated methods

that preserve the structure of objects [1, 2, 3]. However,

they carry limited descriptive data, containing no geometric

or part information, and are unable to distinguish an object

from its background. By first applying segmentation, then

excluding the “bad” features, our approach seeks to

improve on the bag-of-features methods.

2. Approach

In this paper, we choose several unrelated categories of

objects, and create a training set consisting only of clean

background images from each category of objects. We then

process the images to isolate out the object of interest from

Object Detection Using Segmented Images

Naran Bayanbat

Stanford University

Palo Alto, CA
naranb@stanford.edu

Jason Chen

Stanford University

Palo Alto, CA
jasonch@stanford.edu

its background. For each image, SIFT features that are

outside of the object’s segment is filtered out, and the

remaining SIFT descriptors are used to compute a

Bag-of-Words (BoW) histogram for that image. A

clustering algorithm is used to partition the SIFT features

into bins and build the BoW dictionary. Once the BoW

histograms are computed, a multi-class SVM classifier is

run on the training set to perform supervised learning.

To test the performance of our approach, we run the

classifier on a separate test set, consisting of images from

the same categories as the training set. The test set is not

constrained to clean background images. For these images,

we will similarly compute the histograms, and collect the

SVM’s predictions. We use the resulting data to compute a

precision and recall value for the performance of the

classifier.

2.1. Data

We use images provided by Image-Net.org. We chose

three unrelated synsets of objects to run train our detector.

The synsets were teapot (“n04398044”), revolver

(“n04086273”), and scissors (“n04148054”). Additionally,

we picked two other synsets, foldable chairs

(“n03376595”) and toyshop (“n04462240”) to create a

training set for negatives, when none of the objects we

trained on are present. We use the pre-computed densely

sampled SIFT features available on all of the synsets to

compute a histogram of words for each image.

2.2. Image Segmentation

We initially used a Normalized Cut algorithm

implementation made available for research use [Cour]. The

algorithm first resizes the image to a smaller, manageable

size (up to 240 pixels on one side), then uses the normalized

graph cut algorithm to segment the image. Since we are

dealing with clean-background images, and there is only

one subject on each of these images, and we configured the

algorithm for one cut (two segments). The result is a matrix

of segment labels corresponding to each pixel on the image.

Our heuristic for identifying the segment containing the

object is simple – we partition the image first, and use the

corner pixels to identify the background segment.

Unfortunately, normalized cut performs under

expectation even on images with clean backgrounds. A

valid segmentation is necessary to filtering the SIFT

descriptors and circumvent some of the challenges of using

a clean background image for object detection.

Some examples of normalized cut segmentation results

are shown in Figure 1. Image in (a) displays an example of a

successful cut. However, in many cases, segmentation

returns undesirable results. In (b), the object itself is

partitioned into two parts as parts of the object and the

background almost blend together. In (d), segmentation is

only partially successful, as it successfully partitions along

the object boundaries, although the result is not what we

expected.

Figure 1 Normalized cut segmentation results. From top left,

clockwise, (a), (b), (c), (d).

We resorted to an alternative method of segmentation

that proved more effective. Instead of running a

segmentation algorithm, we threshold SIFT descriptors

based on their norm values. In a clean background image,

higher norm values in descriptors generally correspond to

points of interest, while low norm values indicate low

energy, i.e. background areas or plain surface. By removing

low norm densely samples features points, we consistently

isolated out SIFT features corresponding to the shape of the

object. See Figure 2.

A potential drawback with this approach is a loss of

information regarding the texture of an object. For example,

if an object is of plain texture, and this information is critical

to describing the object, such as a refrigerator or a

blackboard, then we would have removed critical

information describing the object. However, this loss of

information comes as a consequence of improved ability to

detect objects of varying texture, such as teapots. In the case

of teapot and many others, shape is more invariant and

critical to the description of the object than texture, which

changes from one instance of an object to another.

 After the segmentation, we discard the part of image

without SIFT features. For example, Figure 2(a) would be

trimmed such that the image stretch from the leftmost SIFT

feature to the rightmost, leaving a bounding box of the

teapot. We believe this would improve the detection

classifier as it would be invariant to the size of and amount

of white space around the subject.

2.3. Histogram Computation

To compute the Bag-of-Words (BoW) histograms, we

first compute the vocabulary feature set. We do so by using

a clustering algorithm over a large number of randomly

sampled SIFT descriptors from the training and test images.

Each cluster centroid represents a visual word. Then, for

each image, we compute the BoW histogram over all the

features in the image, using L2 norm to find the closest

visual word from each feature. We use this histogram as an

image descriptor for training and testing.

We initially used mean-shift clustering to compute the

vocabulary set. However, with this approach, we observed a

proclivity to cluster most of the provided SIFT descriptors

around a single cluster point, with the outliers assigned to

significantly smaller clusters around it. We attributed this

problem to the fact that mean-shift clustering creates a

single cluster at a time. The first cluster will generally have

more points assigned to it than the subsequent ones,

therefore creating a single dominant cluster in the

beginning.

Our first attempted work-around this was to remove the

dominant cluster from the vocabulary, and use the rest of the

set. However, this approach brought inconclusive results.

The regular clusters largely corresponded to outliers in the

SIFT set, and did not provide sufficient description for

regular SIFT points. The resulting histograms brought poor

detection results.

Consequently, we switched to using k-means clustering

instead. Since k-means employs effective heuristics for

initializing clusters centers (k-means++), it is less prone to

creating a single dominant cluster. See Figure 3 for

comparison of histograms from vocabulary that used

k-means clustering against histograms that used mean-shift

clustered vocabulary.

Additionally, a spatial matching scheme as presented by

Lazebnik et al. was used. Each image is duplicated into

multiple layers. At each layer, the image is divided into

increasingly fine resolution grids, and the histograms of the

image in those bins were computed. Histograms at each

level were weighed appropriately (higher resolution

histograms weighted greater), and concatenated into

combined histograms that were used to perform supervised

learning.

To increase the robustness of the detection system, we

also trained on each image multiple times, each time slightly

shifting the object center around a 3x3 or a 5x5 grid. This

produces the effect of small obstruction of the object around

its edges, and allows the detection to become more robust to

viewpoint obstruction.

2.4. Training and Testing

For our investigation, we use Crammer and Singer’s

multiclass SVM classifier to evaluate our hypothesis. We

generate image histograms using the filtered SIFT features

of that image. Each category of objects are defined a class.

Additionally, we define one more class label for the folding

chairs and toyshop synsets. This label corresponds to our

detector not recognizing any of the other objects that it

trained on. Effectively, this is a “no detection” label.

We use a separate test image set to evaluate the

performance of our classifier. The images in the set also

belong to the same categories of objects as the training set;

however, they have arbitrary amounts of background

clutter, and may present occlusion, rotation, scaling,

illumination and viewpoint variations. The SVM

predictions on the test set are matched against the correct

labels of the set.

We define two other baselines to compare our method’s

performance. The first is to train our detector on clean

background images without using object segmentation. The

second baseline is to train our detector without the

constraint of clean backgrounds in the training set. We

predict that, in both cases, our approach will provide an

improvement over the baseline.

3. Evaluation

3.1. Metric of Analysis

The main metric for analyzing the performance of our

classifier is the accuracy of the multi-class SVM correctly

predicting the synset from which the test images are chosen.

Further, we compute the accuracy for our detection

algorithm as the number of images detected with an object

dividing the number of those from the synset.

Lastly, we compute rough bounding box for the desired

object based on the most-confident decision value returned

by the SVM model. Then we visually evaluate the result of

the detection algorithm.

 Note we also made the assumption that the algorithm’s

parameters are independent. Therefore, we can optimize the

accuracy over each parameter individually.

These metrics are compared against two baseline

algorithms. One, we run the same procedure except without

performing segmentation as described and, two, we train

only on images with cluttered background.

3.2. Clustering

As discussed in Section 2.3, for mapping the SIFT

features into BoW histograms, we examined using

mean-shift clustering or k-means clustering. Due to the

tendency for mean-shift to produce a single dominant

cluster, we decided to employ kmeans clustering for the

analysis. Figure 4 shows the change in classifier accuracy as

we tune number of clusters in k-means. Due to the time

constraint, we could not collect more data on the changing

number of clusters with k-means. Therefore, we concluded

a cluster number of 300 is optimal and would be used for

optimizing the other parameters.

Figure 4 K-means cluster parameter tuning

3.3. Levels of Spatial Pyramid

Another parameter to tune is the number of levels to

divide the training images into in computing the feature

histogram. The hypothesis is that, given more levels in

computing the spatial pyramid, more spatial information

will be preserved and therefore improving our accuracy. As

one can see from Figure 5, this is indeed the case. However,

since every subsequent level in the spatial pyramid

exponentially increases the number of dimensions in our

feature space, we decided to stop before level 4, where

number of dimensions would increase from 21 to 75, and

the marginal increase in accuracy is projected to be less than

one percent.

Figure 5 Levels of Spatial Pyramid parameter tuning

3.4. Jitter

We also experimented with different sizes of the jitter

grid, and the jitter amount. The result is summarized in

Table 1. We concluded that having jitter improves the

performance slightly, but the marginal increase is low and

the resulting is inconclusive given the amount of data.

Further, in depth analysis with more data is needed to

conclude the true optimal jitter grid size and jitter amount.

Jitter grid size Jitter Amount Accuracy

1 0.0625 54.4234%

3 0.0625 53.2647%

5 0.0625 55.1039%

5 0.05 56.7071%

Table 1 Effect of Jitter Parameters on Accuracy

3.5. Baseline Comparison

Table 2b shows the comparison of classifier accuracy

between the methods we have previously described.

Baseline 1 is the algorithm with norm threshold of zero, and

Baseline 2 is the algorithm trained on cluttered-background

images only. The accuracy of our implementation is based

on the optimized parameters summarized in Table 2a.

Parameter Optimal Value

K-means clusters 300

SIFT Norm threshold 4.3

Spatial pyramid levels 3

Jitter Grid Size 5

Jitter Amount 0.05

 Approach Baseline 1 Baseline 2

Classifier accuracy 56.707% 50.120% 29.323%

Table 2: (a) top, tuned parameters for the final

comparison (b) bottom, resulting classifier accuracy of

the algorithm and the baseline implementations

The poor performance of Baseline 2 is likely due to the

high amount of distraction in cluttered-background images.

With four classification labels, 29% is not significantly

better than random guessing. Since our target object is

highly variable (different shapes, design, texture), it is

difficult to find dominant feature to distinguish the subject

from the background.

The improvement in accuracy from filtering with a norm

threshold (Baseline 1) can be explained by spatial pyramid

scheme’s weak location constraints. Since a teapot can be

anywhere within a test image, without segmenting and

locating the features corresponding to the teapot, the

algorithm will be much more strict on the location of, and

amount of white space around, the object. This confirms our

original hypothesis.

Figure 6 shows the resulting bounding boxes from the

sliding-window detection algorithm. Since we are

approximating sliding-window by increasing the size of the

spatial pyramid grids such that they overlap, the actual

detected bounding boxes are 1/2 longer in each dimension.

Also note these bounding boxes are the “most confident”

locations of the teapots, and there may be other areas that

responded to detection.

As one can see, the algorithm detected fairly accurately in

Figure 6(a) and Figure 6(b), while less accurately in the

others. This is likely the artifact of two reasons. First, the

subject must conform to at least one of the sliding window

sizes to be detected. Additionally, if the sliding step, i.e.

overlap between the windows, is too wide, then subjects that

fall between two windows are unlikely to be detected. This

is further amplified by the decision to approximate sliding

window with spatial pyramid scheme.

Figure 6 from top left clockwise (a), (b), (c), (d).

Detected bounding boxes for teapots

4. Future Work

4.1. Improving the Model

Using grid-based spatial pyramid provides weak spatial

information and therefore preserves the relationship

between different parts of the subject. This is an

inexpensive way to improve performance of object

classification utilizing the speed of global descriptors.

However, this is at the cost of robustness against geometric

changes [1]. We hypothesize that, since we have an isolated

object, we can improve robustness against object rotation,

by choosing polar coordinate binning as described in Shape

Context [5].

4.2. Detection

For simplicity, we used SVM classifier with sliding

window detection, and additionally approximated

sliding-window detection by overlapping spatial pyramid

grids. We hypothesize that the object of interest in the test

image will match with one of the training image at some

scale. By leveraging the fact that our training image

contains no “distraction” and all features are from within the

object of interest, we can achieve scale invariance and find a

coarse bounding box of the object in our test image.

However, this method requires many levels of window sizes

to accommodate different possible sizes of the object

inquired, and is not robust to occlusion and objects lying

along the borders of these grids.

5. Conclusion

In this paper, we have discussed an algorithm using a

discriminatory classifier (multi-class SVM) trained on

segmented images to be used as an object detector. Our goal

is to compare the performance of such detector trained on

cluttered background images versus it trained on segmented

(foreground detected) images. The result is that training on

segmented images outperforms both training on cluttered

background images and on clean-background images

without segmentation. The conclusion would be helpful

because such detectors, using only global image cues, can

be inexpensively implemented compared to more

sophisticated part-base detectors.

Future Distribution Permission

The author(s) of this report give permission for this

document to be distributed to Stanford-affiliated students

taking future courses.

References

[1] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of

features: Spatial pyramid matching for recognizing natural

scene categories. In Proc. CVPR, 2006.

[2] C. Wallraven, B. Caputo, and A. Graf. Recognition with

local features: the kernel recipe. In Proc. ICCV, volume 1,

pages 257–264, 2003.

[3] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L.

Fan. Categorizing nine visual classes using local appearance

descriptors. In ICPR Workshop on Learning for Adaptable

Visual Systems, 2004.

[4] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.

2004. "GrabCut": interactive foreground extraction using

iterated graph cuts. In ACM SIGGRAPH 2004 Papers

(SIGGRAPH '04), Joe Marks (Ed.). ACM, New York, NY,

USA, 309-314. DOI=10.1145/1186562.1015720

http://doi.acm.org/10.1145/1186562.1015720

[5] Belongie, S.; Malik, J.; Puzicha, J.; , "Shape matching and

object recognition using shape contexts," Pattern Analysis

and Machine Intelligence, IEEE Transactions on , vol.24,

no.4, pp.509-522, Apr 2002

http://doi.acm.org/10.1145/1186562.1015720

6. Appendix

This project is part of the ImageNet research effort in

providing a large-scale image database for researchers and

educators around the world. The detection system

developed in this paper aims to improve the tagging of

relevant portions of the images in each semantic category

(“synsets”).

