
 

 

Abstract 
 

Object detection is a long standing problem in computer 

vision. One of the common approaches to object detection 

is to train with segmented images. Intuitively, isolated 

foreground images should provide better training sets and 

improve the performance of the detection system.  However, 

in practice, there are challenges associated with using 

segmentation for training data. Features located along 

segmentation borders in the training image assume for 

clean backgrounds, which makes the resulting detection not 

robust to noise in realistic images.  

In this paper, we propose a way of excluding such 

features in order to obtain a generalized object detector 

that can perform cluttered background images by training 

on segmented images. We demonstrate the effectiveness of 

this approach by comparing the performance of our 

detector against that of a detector trained using ordinary, 

“dirty” background images.  

 

1. Introduction 

Object detection is one of the oldest problems in 

computer vision. One of the simplest ways to approach this 

problem is to training on a set of closely cropped images of 

the object. However, this approach has the drawback of 

including background pixels that are not necessarily a 

relevant part of the object itself. The image noise tends to 

degrade the performance of the detector. An alternative to 

this approach is to use segmentation to tightly crop out the 

object in the training set images and effectively remove the 

background clutter. As long as a set of clean images were 

chosen, it is possible to achieve a tight, accurate 

segmentation using the state of the art segmentation 

methods.  

Unfortunately, there are also drawbacks associated with 

using segmented images. Features that are detected along 

the frame of the object, on its outer edges and corners, 

detract from the performance of the detector. Training on 

these features tunes the detector to clutter-free backgrounds. 

When applied to normal, noisy environment images, the 

detector performs poorly, even compared to a classifier that 

was trained on non-segmented images.  

 Our approach is to identify features (SIFT descriptors) 

that are located around the perimeter of the object segment, 

and exclude these from the training data. We hypothesize 

that removing the detracting features will improve the 

overall performance of the detector.  

For the training set, we will use ImageNet to find 

clutter-free pictures of the object to train on. ImageNet has 

pre-categorizes images into “synsets,” or semantic 

categories, that averages about 1000 images per category. A 

significant portion of the images on ImageNet are clean 

background images that will allow us to segment out the 

object easily.   

We will evaluate our performance by training a SVM 

classifier on the modified set of features, and measuring the 

precision and recall rates of detection on a test set images. 

Additionally, we will also evaluate the performance of a 

classifier trained on “dirty”, or non-segmented images, and 

provide plots of the performance metrics of both detectors 

for comparison. We hypothesize that our modified detector 

will outperform the “dirty” classifier.   

1.1. Related Work 

For the task of object categorization, bag-of-features 

methods have been successfully applied in many instances. 

These approaches reduce an image into a collection of local 

features without preserving the geometrical structure of the 

underlying objects. This method is computationally 

efficient and their application has largely been successful, 

allowing them to outperform more sophisticated methods 

that preserve the structure of objects [1, 2, 3]. However, 

they carry limited descriptive data, containing no geometric 

or part information, and are unable to distinguish an object 

from its background. By first applying segmentation, then 

excluding the “bad” features, our approach seeks to 

improve on the bag-of-features methods. 

2. Approach  

In this paper, we choose several unrelated categories of 

objects, and create a training set consisting only of clean 

background images from each category of objects. We then 

process the images to isolate out the object of interest from 
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its background. For each image, SIFT features that are 

outside of the object’s segment is filtered out, and the 

remaining SIFT descriptors are used to compute a 

Bag-of-Words (BoW) histogram for that image. A 

clustering algorithm is used to partition the SIFT features 

into bins and build the BoW dictionary. Once the BoW 

histograms are computed, a multi-class SVM classifier is 

run on the training set to perform supervised learning. 

To test the performance of our approach, we run the 

classifier on a separate test set, consisting of images from 

the same categories as the training set. The test set is not 

constrained to clean background images. For these images, 

we will similarly compute the histograms, and collect the 

SVM’s predictions. We use the resulting data to compute a 

precision and recall value for the performance of the 

classifier. 

2.1. Data 

We use images provided by Image-Net.org. We chose 

three unrelated synsets of objects to run train our detector. 

The synsets were teapot (“n04398044”), revolver 

(“n04086273”), and scissors (“n04148054”). Additionally, 

we picked two other synsets, foldable chairs 

(“n03376595”) and toyshop (“n04462240”) to create a 

training set for negatives, when none of the objects we 

trained on are present. We use the pre-computed densely 

sampled SIFT features available on all of the synsets to 

compute a histogram of words for each image. 

2.2. Image Segmentation 

We initially used a Normalized Cut algorithm 

implementation made available for research use [Cour]. The 

algorithm first resizes the image to a smaller, manageable 

size (up to 240 pixels on one side), then uses the normalized 

graph cut algorithm to segment the image. Since we are 

dealing with clean-background images, and there is only 

one subject on each of these images, and we configured the 

algorithm for one cut (two segments). The result is a matrix 

of segment labels corresponding to each pixel on the image. 

Our heuristic for identifying the segment containing the 

object is simple – we partition the image first, and use the 

corner pixels to identify the background segment.  

Unfortunately, normalized cut performs under 

expectation even on images with clean backgrounds. A 

valid segmentation is necessary to filtering the SIFT 

descriptors and circumvent some of the challenges of using 

a clean background image for object detection.  

Some examples of normalized cut segmentation results 

are shown in Figure 1. Image in (a) displays an example of a 

successful cut. However, in many cases, segmentation 

returns undesirable results. In (b), the object itself is 

partitioned into two parts as parts of the object and the 

background almost blend together. In (d), segmentation is 

only partially successful, as it successfully partitions along 

the object boundaries, although the result is not what we 

expected.  

 
Figure 1 Normalized cut segmentation results. From top left, 

clockwise, (a), (b), (c), (d). 

 

We resorted to an alternative method of segmentation 

that proved more effective. Instead of running a 

segmentation algorithm, we threshold SIFT descriptors 

based on their norm values. In a clean background image, 

higher norm values in descriptors generally correspond to 

points of interest, while low norm values indicate low 

energy, i.e. background areas or plain surface. By removing 

low norm densely samples features points, we consistently 

isolated out SIFT features corresponding to the shape of the 

object. See Figure 2. 

A potential drawback with this approach is a loss of 

information regarding the texture of an object. For example, 

if an object is of plain texture, and this information is critical 

to describing the object, such as a refrigerator or a 

blackboard, then we would have removed critical 

information describing the object. However, this loss of 

information comes as a consequence of improved ability to 

detect objects of varying texture, such as teapots. In the case 

of teapot and many others, shape is more invariant and 

critical to the description of the object than texture, which 

changes from one instance of an object to another. 



 

 

 After the segmentation, we discard the part of image 

without SIFT features. For example, Figure 2(a) would be 

trimmed such that the image stretch from the leftmost SIFT 

feature to the rightmost, leaving a bounding box of the 

teapot. We believe this would improve the detection 

classifier as it would be invariant to the size of and amount 

of white space around the subject. 

2.3. Histogram Computation 

To compute the Bag-of-Words (BoW) histograms, we 

first compute the vocabulary feature set. We do so by using 

a clustering algorithm over a large number of randomly 

sampled SIFT descriptors from the training and test images.  

Each cluster centroid represents a visual word. Then, for 

each image, we compute the BoW histogram over all the 

features in the image, using L2 norm to find the closest 

visual word from each feature. We use this histogram as an 

image descriptor for training and testing.  

We initially used mean-shift clustering to compute the 

vocabulary set. However, with this approach, we observed a 

proclivity to cluster most of the provided SIFT descriptors 

around a single cluster point, with the outliers assigned to 

significantly smaller clusters around it. We attributed this 

problem to the fact that mean-shift clustering creates a 

single cluster at a time. The first cluster will generally have 

more points assigned to it than the subsequent ones, 

therefore creating a single dominant cluster in the 

beginning. 

Our first attempted work-around this was to remove the 

dominant cluster from the vocabulary, and use the rest of the 

set. However, this approach brought inconclusive results. 

The regular clusters largely corresponded to outliers in the 

SIFT set, and did not provide sufficient description for 

regular SIFT points. The resulting histograms brought poor 

detection results. 

Consequently, we switched to using k-means clustering 

instead. Since k-means employs effective heuristics for 

initializing clusters centers (k-means++), it is less prone to 

creating a single dominant cluster. See Figure 3 for 

comparison of histograms from vocabulary that used 



 

 

k-means clustering against histograms that used mean-shift 

clustered vocabulary. 

Additionally, a spatial matching scheme as presented by 

Lazebnik et al. was used. Each image is duplicated into 

multiple layers. At each layer, the image is divided into 

increasingly fine resolution grids, and the histograms of the 

image in those bins were computed. Histograms at each 

level were weighed appropriately (higher resolution 

histograms weighted greater), and concatenated into 

combined histograms that were used to perform supervised 

learning.

 

To increase the robustness of the detection system, we 

also trained on each image multiple times, each time slightly 

shifting the object center around a 3x3 or a 5x5 grid. This 

produces the effect of small obstruction of the object around 

its edges, and allows the detection to become more robust to 

viewpoint obstruction.  

2.4. Training and Testing 

For our investigation, we use Crammer and Singer’s 

multiclass SVM classifier to evaluate our hypothesis. We 

generate image histograms using the filtered SIFT features 

of that image. Each category of objects are defined a class. 

Additionally, we define one more class label for the folding 

chairs and toyshop synsets. This label corresponds to our 

detector not recognizing any of the other objects that it 

trained on. Effectively, this is a “no detection” label.  

We use a separate test image set to evaluate the 

performance of our classifier. The images in the set also 

belong to the same categories of objects as the training set; 

however, they have arbitrary amounts of background 

clutter, and may present occlusion, rotation, scaling, 

illumination and viewpoint variations. The SVM 

predictions on the test set are matched against the correct 

labels of the set.  

We define two other baselines to compare our method’s 

performance. The first is to train our detector on clean 

background images without using object segmentation. The 

second baseline is to train our detector without the 

constraint of clean backgrounds in the training set. We 

predict that, in both cases, our approach will provide an 

improvement over the baseline.  

3. Evaluation  

3.1. Metric of Analysis 

The main metric for analyzing the performance of our 

classifier is the accuracy of the multi-class SVM correctly 

predicting the synset from which the test images are chosen. 

Further, we compute the accuracy for our detection 

algorithm as the number of images detected with an object 

dividing the number of those from the synset.  

Lastly, we compute rough bounding box for the desired 

object based on the most-confident decision value returned 

by the SVM model. Then we visually evaluate the result of 

the detection algorithm.  

 Note we also made the assumption that the algorithm’s 

parameters are independent. Therefore, we can optimize the 

accuracy over each parameter individually. 

These metrics are compared against two baseline 

algorithms. One, we run the same procedure except without 

performing segmentation as described and, two, we train 

only on images with cluttered background. 



 

 

3.2. Clustering 

As discussed in Section 2.3, for mapping the SIFT 

features into BoW histograms, we examined using 

mean-shift clustering or k-means clustering. Due to the 

tendency for mean-shift to produce a single dominant 

cluster, we decided to employ kmeans clustering for the 

analysis. Figure 4 shows the change in classifier accuracy as 

we tune number of clusters in k-means. Due to the time 

constraint, we could not collect more data on the changing 

number of clusters with k-means. Therefore, we concluded 

a cluster number of 300 is optimal and would be used for 

optimizing the other parameters.  

 

 
Figure 4 K-means cluster parameter tuning 

3.3. Levels of Spatial Pyramid 

Another parameter to tune is the number of levels to 

divide the training images into in computing the feature 

histogram. The hypothesis is that, given more levels in 

computing the spatial pyramid, more spatial information 

will be preserved and therefore improving our accuracy. As 

one can see from Figure 5, this is indeed the case. However, 

since every subsequent level in the spatial pyramid 

exponentially increases the number of dimensions in our 

feature space, we decided to stop before level 4, where 

number of dimensions would increase from 21 to 75, and 

the marginal increase in accuracy is projected to be less than 

one percent.  

 
Figure 5 Levels of Spatial Pyramid parameter tuning 

3.4. Jitter  

We also experimented with different sizes of the jitter 

grid, and the jitter amount. The result is summarized in 

Table 1. We concluded that having jitter improves the 

performance slightly, but the marginal increase is low and 

the resulting is inconclusive given the amount of data. 

Further, in depth analysis with more data is needed to 

conclude the true optimal jitter grid size and jitter amount.  

 

Jitter grid size Jitter Amount Accuracy 

1 0.0625 54.4234% 

3 0.0625 53.2647% 

5 0.0625 55.1039% 

5 0.05 56.7071% 

Table 1 Effect of Jitter Parameters on Accuracy 

3.5. Baseline Comparison 

Table 2b shows the comparison of classifier accuracy 

between the methods we have previously described. 

Baseline 1 is the algorithm with norm threshold of zero, and 

Baseline 2 is the algorithm trained on cluttered-background 

images only. The accuracy of our implementation is based 

on the optimized parameters summarized in Table 2a.  

 

Parameter Optimal Value 

K-means clusters 300 

SIFT Norm threshold 4.3 

Spatial pyramid levels 3 

Jitter Grid Size 5 

Jitter Amount 0.05 

 

 Approach Baseline 1 Baseline 2 

Classifier accuracy  56.707% 50.120% 29.323% 

Table 2: (a) top, tuned parameters for the final 

comparison (b) bottom, resulting classifier accuracy of 

the algorithm and the baseline implementations  

 

The poor performance of Baseline 2 is likely due to the 

high amount of distraction in cluttered-background images. 

With four classification labels, 29% is not significantly 

better than random guessing. Since our target object is 

highly variable (different shapes, design, texture), it is 

difficult to find dominant feature to distinguish the subject 

from the background. 

The improvement in accuracy from filtering with a norm 

threshold (Baseline 1) can be explained by spatial pyramid 

scheme’s weak location constraints. Since a teapot can be 

anywhere within a test image, without segmenting and 

locating the features corresponding to the teapot, the 

algorithm will be much more strict on the location of, and 

amount of white space around, the object. This confirms our 

original hypothesis.   



 

 

Figure 6 shows the resulting bounding boxes from the 

sliding-window detection algorithm. Since we are 

approximating sliding-window by increasing the size of the 

spatial pyramid grids such that they overlap, the actual 

detected bounding boxes are 1/2 longer in each dimension. 

Also note these bounding boxes are the “most confident” 

locations of the teapots, and there may be other areas that 

responded to detection. 

As one can see, the algorithm detected fairly accurately in 

Figure 6(a) and Figure 6(b), while less accurately in the 

others. This is likely the artifact of two reasons. First, the 

subject must conform to at least one of the sliding window 

sizes to be detected.  Additionally, if the sliding step, i.e. 

overlap between the windows, is too wide, then subjects that 

fall between two windows are unlikely to be detected. This 

is further amplified by the decision to approximate sliding 

window with spatial pyramid scheme.  

 
Figure 6 from top left clockwise (a), (b), (c), (d). 

Detected bounding boxes for teapots 

4. Future Work 

4.1. Improving the Model  

Using grid-based spatial pyramid provides weak spatial 

information and therefore preserves the relationship 

between different parts of the subject. This is an 

inexpensive way to improve performance of object 

classification utilizing the speed of global descriptors. 

However, this is at the cost of robustness against geometric 

changes [1]. We hypothesize that, since we have an isolated 

object, we can improve robustness against object rotation, 

by choosing polar coordinate binning as described in Shape 

Context [5].  

4.2. Detection 

For simplicity, we used SVM classifier with sliding 

window detection, and additionally approximated 

sliding-window detection by overlapping spatial pyramid 

grids. We hypothesize that the object of interest in the test 

image will match with one of the training image at some 

scale. By leveraging the fact that our training image 

contains no “distraction” and all features are from within the 

object of interest, we can achieve scale invariance and find a 

coarse bounding box of the object in our test image.  

However, this method requires many levels of window sizes 

to accommodate different possible sizes of the object 

inquired, and is not robust to occlusion and objects lying 

along the borders of these grids.   

5. Conclusion 

In this paper, we have discussed an algorithm using a 

discriminatory classifier (multi-class SVM) trained on 

segmented images to be used as an object detector. Our goal 

is to compare the performance of such detector trained on 

cluttered background images versus it trained on segmented 

(foreground detected) images. The result is that training on 

segmented images outperforms both training on cluttered 

background images and on clean-background images 

without segmentation. The conclusion would be helpful 

because such detectors, using only global image cues, can 

be inexpensively implemented compared to more 

sophisticated part-base detectors.  

 

Future Distribution Permission  

The author(s) of this report give permission for this 

document to be distributed to Stanford-affiliated students 

taking future courses. 

 

References 

[1] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of 

features: Spatial pyramid matching for recognizing natural 

scene categories. In Proc. CVPR, 2006.  

[2] C. Wallraven, B. Caputo, and A. Graf. Recognition with 

local features: the kernel recipe. In Proc. ICCV, volume 1, 

pages 257–264, 2003. 

[3] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. 

Fan. Categorizing nine visual classes using local appearance 

descriptors. In ICPR Workshop on Learning for Adaptable 

Visual Systems, 2004. 

[4] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 

2004. "GrabCut": interactive foreground extraction using 

iterated graph cuts. In ACM SIGGRAPH 2004 Papers 

(SIGGRAPH '04), Joe Marks (Ed.). ACM, New York, NY, 

USA, 309-314. DOI=10.1145/1186562.1015720 

http://doi.acm.org/10.1145/1186562.1015720 

[5] Belongie, S.; Malik, J.; Puzicha, J.; , "Shape matching and 

object recognition using shape contexts," Pattern Analysis 

and Machine Intelligence, IEEE Transactions on , vol.24, 

no.4, pp.509-522, Apr 2002 

http://doi.acm.org/10.1145/1186562.1015720


 

 

6. Appendix 

This project is part of the ImageNet research effort in 

providing a large-scale image database for researchers and 

educators around the world. The detection system 

developed in this paper aims to improve the tagging of 

relevant portions of the images in each semantic category 

(“synsets”). 


