Lecture 9: Epipolar Geometry

Professor Fei-Fei Li

Stanford Vision Lab

What we will learn today?

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F (Problem Set 2 (Q2))
- Rectification

$$
10: 20 \mathrm{am}
$$

Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10

Recovering structure from a single view

Why is it so difficult?
Intrinsic ambiguity of the mapping from 3D to image (2D)

Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)

Two eyes help!

Two eyes help!

Triangulation

- Find X that minimizes $d^{2}\left(x_{1}, P_{1} X\right)+d^{2}\left(x_{2}, P_{2} X\right)$

Stereo-view geometry

- Correspondence: Given a point in one image, how can I find the corresponding point x ' in another one?
- Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.
- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.

This lecture (\#9)

Stereo-view geometry

Next lecture (\#10)

- Correspondence: Given a point in one image, how can I find the corresponding point x^{\prime} in another one?
- Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.
- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.

What we will learn today?

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F
- Rectification

Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10

Epipolar geometry

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles $\mathrm{e}_{1}, \mathrm{e}_{2}$
= intersections of baseline with image planes
= projections of the other camera center
$=$ vanishing points of camera motion direction

Example: Converging image planes

Example: Parallel image planes

- Baseline intersects the image plane at infinity
- Epipoles are at infinity
- Epipolar lines are parallel to x axis

Example: Parallel image planes

Fei-Fei Li
Lecture 9 - 14
24-Oct-11

Example: Forward translation

- The epipoles have same position in both images
- Epipole called FOE (focus of expansion)

Epipolar Constraint

- Two views of the same object
- Suppose I know the camera positions and camera matrices
- Given a point on left image, how can I find the corresponding point on right image?

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line l^{\prime}.
- Potential matches for p^{\prime} have to lie on the corresponding epipolar line I.

Epipolar Constraint

Epipolar Constraint

$$
\begin{aligned}
& \begin{array}{cc}
\mathrm{M}=\underset{\downarrow}{\mathrm{K}}\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \left.\begin{array}{l}
\begin{array}{l}
\mathrm{K}_{1} \text { and } \mathrm{K}_{2} \text { are known } \\
\text { (calibrated cameras) }
\end{array}
\end{array} \quad \begin{array}{c}
\mathrm{M}^{\prime}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right] \\
\downarrow
\end{array}\right]
\end{array} \\
& M=\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
& M^{\prime}=\left[\begin{array}{ll}
R & T
\end{array}\right]
\end{aligned}
$$

Epipolar Constraint

$$
T \times\left(R p^{\prime}\right) \perp
$$

Perpendicular to epipolar plane

$$
\mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T} \times\left(\mathrm{R} \mathrm{p}^{\prime}\right)\right]=0
$$

Cross product as matrix multiplication

$$
\begin{array}{r}
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\underbrace{\left[\mathbf{a}_{\times}\right] \mathbf{b}}_{\uparrow} \\
\text { "skew symmetric matrix" }
\end{array}
$$

Triangulation

$$
\mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T} \times\left(\mathrm{R} \mathrm{p}^{\prime}\right)\right]=\underset{\substack{\text { (Longuet. Higgins, 1881) }}}{0} \rightarrow \mathrm{p}^{\mathrm{T}} \cdot\left[\mathrm{~T}_{\times}\right] \cdot \mathrm{R} \text { essential matrix }
$$

Triangulation

- $E p_{2}$ is the epipolar line associated with $p_{2}\left(I_{1}=E p_{2}\right)$
- $E^{\top} p_{1}$ is the epipolar line associated with $p_{1}\left(l_{2}=E^{\top} p_{1}\right)$
- E is singular (rank two)
- $E e_{2}=0$ and $E^{\top} e_{1}=0$
- E is 3×3 matrix; 5 DOF

Triangulation

$$
\left.\mathrm{P} \rightarrow \mathrm{M} \mathrm{P} \rightarrow \mathrm{p}=\left[\begin{array}{l}
\mathrm{u} \\
\mathrm{v}
\end{array}\right] \quad \mathrm{M}=\underset{\substack{\mathrm{K}[\mathrm{I} \\
\text { unknown }}}{0}\right]
$$

Triangulation

Triangulation

F = Fundamental Matrix
(Faugeras and Luong, 1992)

Triangulation

- $F p_{2}$ is the epipolar line associated with $p_{2}\left(l_{1}=F p_{2}\right)$
- $F^{\top} p_{1}$ is the epipolar line associated with $p_{1}\left(l_{2}=F^{\top} p_{1}\right)$
- F is singular (rank two)
- $\mathrm{Fe}_{2}=0$ and $\mathrm{F}^{\top} \mathrm{e}_{1}=0$
- F is $3 x 3$ matrix; 7 DOF

Why is F useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, how can I find the corresponding point on right image?

| Fei-Fei Li | Lecture 9 - 28 | 24-Oct-11 |
| :--- | :--- | :--- | :--- |

Why is F useful?

- F captures information about the epipolar geometry of 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
- 3D reconstruction
- Multi-view object/scene matching

What we will learn today?

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F (Problem Set 2 (Q2))
- Rectification

Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10

Estimating F

The Eight-Point Algorithm
(Longuet-Higgins, 1981)
(Hartley, 1995)

$\mathrm{P} \rightarrow \mathrm{p}=\left[\begin{array}{l}\mathrm{u} \\ \mathrm{v} \\ 1\end{array}\right] \quad \mathrm{P} \rightarrow \mathrm{p}^{\prime}=\left[\begin{array}{l}\mathrm{u}^{\prime} \\ \mathrm{v}^{\prime} \\ 1\end{array}\right]$

$$
\mathrm{p}^{\mathrm{T}} \mathrm{~F} \mathrm{p}^{\prime}=0
$$

Estimating F

$$
\begin{gathered}
\mathrm{p}^{\mathrm{T}} \mathrm{~F} \mathrm{p}^{\prime}=0 \quad \longrightarrow \\
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \\
\\
\\
\text { Let's take } 8 \text { corresponding points }\left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right)\left(\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right)=0
\end{gathered}
$$

Estimating F

- Homogeneous system $\quad \mathbf{W} \mathbf{f}=0$

- Rank $8 \longrightarrow$ A nonzero solution exists (unique)
- If $\mathrm{N}>8 \longrightarrow$ Ls. solution by SVD! $\longrightarrow \hat{\mathrm{F}}$

Estimating F

$p^{T} \hat{F} p^{\prime}=0$

The estimated F may have full $\operatorname{rank}(\operatorname{det}(\mathrm{F}) \neq 0$)
(F should have rank=2 instead)

Find F that minimizes

$$
\|\hat{\square}\|=\underbrace{=}_{\text {Frobenius norm }\left({ }^{*}\right)}
$$

Subject to $\operatorname{det}(F)=0$
SVD (again!) can be used to solve this problem
(*) * Sqrt root of the sum pf squares of all entries

Example

Fei-Fei Li
Lecture 9 -

Example

Normalization

Is the accuracy in estimating F function of the ref. system in the image plane?

E.g. under similarity transformation T = scale + translation)

$$
\mathrm{q}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}}^{\prime}=\mathrm{T}_{\mathrm{i}}^{\prime} \mathrm{p}_{\mathrm{i}}^{\prime}
$$

Does the accuracy in estimating F change if a transformation T is applied?

Normalization

-The accuracy in estimating F does change if a transformation T is applied

- There exists a T for which accuracy is maximized

Why?

Normalization

$$
\begin{aligned}
& \mathbf{W} \mathbf{f}=0, \quad \begin{array}{l}
\text { Lsq solution } \\
\| \mathbf{~ b y ~ s v o ~}
\end{array} \\
& \|\mathbf{f}\|=1
\end{aligned}
$$

- SVD enforces Rank(W)=8
- Recall the structure of W: Highly un-balance (not well conditioned)
-Values of W must have similar magnitude
More details HZ pag 108

Normalization

IDEA: Transform image coordinate system ($\mathrm{T}=$ translation + scaling) such that:

- Origin = centroid of image points
- Mean square distance of the data points from origin is 2 pixels

$$
\mathrm{q}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}}^{\prime}=\mathrm{T}_{\mathrm{i}}^{\prime} \mathrm{p}_{\mathrm{i}}^{\prime} \quad \text { (normalization) }
$$

The Normalized Eight-Point Algorithm

0. Compute T_{i} and $\mathrm{T}_{\mathrm{i}}{ }^{\prime}$
1. Normalize coordinates:

$$
q_{i}=T_{i} p_{i} \quad q_{i}^{\prime}=T_{i}^{\prime} p_{i}^{\prime}
$$

2. Use the eight-point algorithm to compute F_{q} from the points q_{i} and q_{i}^{\prime}.
3. Enforce the rank-2 constraint. $\rightarrow \mathrm{F}_{\mathrm{q}} \quad\left\{\begin{array}{l}\mathrm{q}^{\mathrm{T}} \mathrm{F}_{\mathrm{q}} \mathrm{q}^{\prime}=0 \\ \operatorname{det}\left(\mathrm{~F}_{\mathrm{q}}\right)=0\end{array}\right.$
4. De-normalize $\mathrm{F}_{\mathrm{q}}: \quad \mathrm{F}=\mathrm{T}^{\prime \mathrm{T}} \mathrm{F}_{\mathrm{q}} \mathrm{T}$

Example

Mean errors: 10.0pixel 9.1pixel

Mean errors:
1.0pixel
0.9pixel

What we will learn today?

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F
- Rectification

Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10

Rectification

- Make two camera images "parallel"
- Correspondence problem becomes easier

Rectification

- Parallel epipolar lines
- Epipoles at infinity

Let's see why....

- $\mathrm{v}=\mathrm{v}^{\prime}$

Rectification

$\mathrm{K}_{1}=\mathrm{K}_{2}=$ known

$$
E=\left[t_{\times}\right] R
$$

x parallel to $\mathrm{O}_{1} \mathrm{O}_{2}$

Cross product as matrix multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

Rectification

Rectification

$$
\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right)=0 \begin{gathered}
\\
T v=T v^{\prime} \\
\rightarrow \mathrm{v}=\mathrm{v}^{\prime}
\end{gathered}
$$

Rectification

GOAL of rectification : Estimate a perspective transformation H that makes images parallel
Impose v’=v

- This leaves degrees of freedom for determining H
- If not appropriate H is chosen, severe projective distortions on image take place
- We impose a number of restriction while computing H
[HZ] Chapters: 11 (sec. 11.12)

Rectification

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Application: view morphing

If rectification is not applied, the morphing procedure does not generate geometrically correct interpolations

Application: view morphing

Application: view morphing

Application: view morphing

Application: view morphing

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/

What we have learned today?

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F (Problem Set 2 (Q2))
- Rectification

Reading:
[HZ] Chapters: 4, 9, 11
[FP] Chapters: 10

Supplementary materials

Making image planes parallel

0. Compute epipoles

$$
\mathrm{e}=\mathrm{K} \mathrm{R}^{\mathrm{T}} \mathrm{~T}=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & 1
\end{array}\right]^{\mathrm{T}} \quad \mathrm{e}^{\prime}=\mathrm{K}^{\prime} \mathrm{T}
$$

Making image planes parallel

1. Map e to the x-axis at location $[1,0,1]^{\top}$ (normalization)

$$
\mathrm{e}=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & 1
\end{array}\right]^{\mathrm{T}} \rightarrow
$$

$H_{1}=R_{H} T_{H}$

Making image planes parallel

2. Send epipole to infinity: $\quad e=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{T}} \rightarrow\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$

$$
\mathrm{H}_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Minimizes the distortion in a neighborhood (approximates id. mapping)

Making image planes parallel

3. Define: $\mathrm{H}=\mathrm{H}_{2} \mathrm{H}_{1}$
4. Align epipolar lines

Projective transformation of a line (in 2D)

$$
\begin{gathered}
\mathrm{H}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{t} \\
\mathrm{v} & \mathrm{~b}
\end{array}\right] \quad \stackrel{\rightharpoonup}{\boldsymbol{a}} \boldsymbol{\square} \\
l \rightarrow H^{-T} l
\end{gathered}
$$

Making image planes parallel

3. Define: $H=H_{2} H_{1}$
4. Align epipolar lines

$$
{\overline{H^{\prime}}}^{-T} l^{\prime}=\bar{H}^{-T} l
$$

These are called matched pair of transformation

[^0]
[^0]: [HZ] Chapters: 11 (sec. 11.12)

