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Recap: Gestalt Theory

e Gestalt: whole or group
— Whole is greater than sum of its parts
— Relationships among parts can yield new properties/features

e Psychologists identified series of factors that predispose set of
elements to be grouped (by human visual system)

“| stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses

and nuances of colour. Do | have "327"? No. | have sky, house,
and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
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Recap: Gestalt Factors
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 These factors make intuitive sense, but are very difficult to translate into algorithms.
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Recap: Image Segmentation

* Goal: identify groups of pixels that go together

%
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Recap: K-Means Clustering

e Basicidea: randomly initialize the k cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., ¢,

2. Given cluster centers, determine points in each cluster
e For each point p, find the closest c;. Put p into cluster i

3. Given points in each cluster, solve for c,
e Set ¢, to be the mean of points in cluster i

4. If ¢, have changed, repeat Step 2

* Properties
— Will always converge to some solution

— Can be a “local minimum”
* Does not always find the global minimum of objective function:

> > Ip — ¢l

clusters 1 points p in cluster 2
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Recap: Expectation Maximization (EM)

Tty

e Goal

—  Find blob parameters @ that maximize the likelihood function:

P(data|0) = || P(x|6)

e Approach:
1. E-step: given current guess of blobs, compute ownership of each point

2.  M-step: given ownership probabilities, update blobs to maximize likelihood
function

3. Repeat until convergence
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What we will learn today?

 Model free clustering -
— Mean-shift

 Graph theoretic segmentation [ (Midterm materials)
— Normalized Cuts
— Using texture features —

e Segmentation as Energy Minimization
— Markov Random Fields

— Applications
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What we will learn today?

* “Model free” clustering
— Mean-shift
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Finding Modes in a Histogram
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e How many modes are there?
— Mode = local maximum of the density of a given distribution
— Easy to see, hard to compute

Slide credit: Steve Seitz
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Mean-Shift Segmentation

 An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
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Mean-Shift Algorithm

12

10} e -

8 — — — — —

6+ - i

4 - r— -

| H H _‘ H H |
94 -2 0 2 "1" é 8 E
3
e |terative Mode Search 2
1. Initialize random seed, and window W &
2 Calculate center of gravity (the “mean”) of W: Z .’BH(.’B) p
3. Shift the search window to the mean reW g
4 Repeat Step 2 until convergence 3
5=
17
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis

0L

Tessellate the space with windows Run the procedure in parallel

Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode.
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Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a
mode

e Attraction basin: the region for which all trajectories
lead to the same mode

Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift Clustering/Segmentation

e Find features (color, gradients, texture, etc)

 Initialize windows at individual pixel locations

e Perform mean shift for each window until convergence

e Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik
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I\/Iean Shlft Segmentatlon Results

Slide credit: Svetlana Lazebnik

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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More Results

Slide credit: Svetlana Lazebnik

Fei-Fei Li Lecture 5- 24 6-Oct-11




More Results
% 2z
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Problem: Computational Complexity

* Need to shift mangwindows...
e Many computations will be redundant.

Slide credit: Bastian Leibe

Fei-Fei Li Lecture 5- 26 6-Oct-11



Speedups: Basin of Attraction

1. @ssign all points within radius r of end point to the mode.

Slide credit: Bastian Leibe
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Speedups
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2. (@@ssign all points wﬁhin radius r/c of the search path to the mode -> reduce the number of
data points to search.

Slide credit: Bastian Leibe
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Summary Mean-Shift

e Pros

— General, application-independent tool

— Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

— Just a single parameter (window size h)
e h has a physical meaning (unlike k-means)

— Finds variable number of modes
— Robust to outliers

e Cons
— QOutput depends on window size
— Window size (bandwidth) selection is not trivial
— Computationally (relatively) expensive (~2s/image)
— Does not scale well with dimension of feature space

Slide credit: Svetlana Lazebnik
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Back to the Image Segmentation Problem...

e Goal: identify groups of pixels that go together

I/

%

%

 Up to now, we have focused on ways to group pixels into image
segments based on their appearance...

— Segmentation as clustering.

 We also want to enforce region constraints.
— Spatial consistency
— Smooth borders
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What we will learn today?

 Graph theoretic segmentation
— Normalized Cuts
— Using texture features
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Images as Graphs

. Fully-connected graph
— Node (vertex) for every pixel
— Link between every pair of pixels, (p,q)
— Affinity weight w,, for each link (edge)
* w,, measures similarity

e Similarity is inversely proportional to difference
(in color and position...)

Slide credit: Steve Seitz
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Segmentation by Graph Cuts

A B C

 Break Graph into Segments
— Delete links that cross between segments

— Easiest to break links that have low similarity (low weight)
e Similar pixels should be in the same segments
* Dissimilar pixels should be in different segments

Slide credit: Steve Seitz
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Measuring Affinity

]

e Distance aff(x,y)= exp{

l

» Color aff (x, ) = exp |~ 5= dist (c(x).c(») |

|
(some suitable color space distance)

|

|
(vectors of filter outputs)

* Intensity  aff (x,y)= exp{

e Texture aff (x,y) = exp{—

2
20,
l
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Scale Affects Affinity

Small o: group only nearby points

e Large o: group far-away points

o
®

affinity
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distance?

Slide credit: Svetlana Lazebnik Small o Medium o
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Graph Cut: using Eigenvalues

e Extract a single good cluster

— Where elements have high affinity values with each other

{association of element ¢ with cluster n}x
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Graph Cut: using Eigenvalues

matrix

e Extract a single good cluster

Eigenvector associated w/ the largest eigenvalue
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Graph Cut: using Eigenvalues

e Extract a single good cluster
e Extract weights for a set of clusters

Eigenvector associated

: Eigenvectors associated with other eigenvalues
w/ the largest eigenvalue

ooooooooooooooooooooooooooooooooooooooo

+
.........

oooooooooooo
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Graph Cut: using Eigenvalues
(effect of the scaling factor)

00000000000000000000000000000000000
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Algorithm 14.6: Clustering by Graph Eigenvectors

Construct an affinity matrix
Compute the eigenvalues and eigenvectors of the affinity matrix
Until there are sufficient clusters
Take the eigenvector corresponding to the
largest unprocessed eigenvalue; zero all components corresponding
to elements that have already been clustered, and threshold the
remaining components to determine which element
belongs to this cluster, choosing a threshold by
clustering the components, or
using a threshold fixed in advance.
If all elements have been accounted for, there are
sufficient clusters
end
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Graph Cut

e Set of edges whose removal makes a graph
disconnected

* Cost of a cut
— Sum of weights of cut edges: cut(4,B)= Y w,,

peA,qeB

A graph cut gives us a segmentation
— What is a “good” graph cut and how do we find one?

Slide credit: Steve Seitz
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Graph Cut

Here, the cut is nicely
defined by the block-diagonal
structure of the affinity matrix.

= How can this be generalized?

Image Source: Forsyth & Ponce
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Minimum Cut

We can do segmentation by finding the minimum cut in a graph

— a minimum cut of a graph is a cut whose cutset has the smallest number
of elements (unweighted case) or smallest sum of weights possible.

— Efficient algorithms exist for doing this

Drawback:
—  Weight of cut proportional to number of edges in the cut
—  Minimum cut tends to cut off very small, isolated components

oo | ® © \
Cuts with

. ‘ . . ‘ lesser weight
' ‘ . than the

/ O O ideal cut

Ideal Cut
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Normalized Cut (NCut)

A minimum cut penalizes large segments

This can be fixed by normalizing for size of segments
The normalized cut cost is:

cut(A, B) N cut(A, B)

Ncut(A,B) =
assoc(A4,V) assoc(B,V)

assoc(A,V) = sum of weights of all edges in V that touch A

= cut(A, B) 1 + 1

peA Wp,q ZqEB Wp,q

The exact solution is NP-hard but an approximation can be
computed by solving a generalized eigenvalue problem.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000
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 Treat the links as springs and shake the system

— Elasticity proportional to cost

— Vibration “modes” correspond to segments
* Can compute these by solving a generalized eigenvector problem

Slide credit: Steve Seitz
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NCuts as a Generalized Eigenvector Problem

e Definitions
W . the affinity matrix, W (i, j) = W s
D:the diag. matrix, D(i,i) =), W(i, j);

x:avector in{,-1}",x(i) =1<ie A.

 Rewriting Normalized Cut in matrix form:
cut(A,B) N cut(A,B)
assoc(AV) assoc(B,V)

_ @+ (D-M)+x) @-0)"(D-W)A-x). , _ > D)
) k1" D1 a—kr'or Y D)

NCut(A,B) =

Slide credit: Jitendra Malik
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Fei-Fei Li

Some More Math...

We aee again thin ia an imhisaed mesore, which re-
flecta how tightly on aversge neden within the gronp
are connected to each other,

Ancther important property of thia definition of as-
acxiation and diasaanciation of & partition ia that they
are naturally related:

- A A
Nod(A. B) = ann(A.V) *: an(B. V)
o rmn!A. !) —ﬂl.lﬂ A, A!
(A, V)
+nm!ﬂ.! ) —nm!ﬂ.f_‘!

anvf B, V)

ann A, A
w(AV) ﬂuf(ﬂ. V))
= 2—Naw(A,H)

Hence the too partition criteris that we aeek in
ont grouping algorithm, minimiging the disssociation
hetween the gronpa and maximizing the asociation
within the gowup, are in fact identical, and can he aat-
infled airmittaneoualy. Tn owr algorithm, we will use
thia normalized eut s the partition criterion.

Having defined the graph partition criterion that we
want to optimize, we will Ahes how Rich an optitsl
partition can he compmted efficiently.

2.1 Computing the optimal partition

Given & partition of neden of & graph, ¥, into oo
aet A and B, ket be an N = V| dimendional indics-
tor veetor, &, = 1ifnede £ Rin A, and —1 otherwise.
Let d(i) = am[i,j), he the total conmection from
nedde s to all other nodea. With the definitions 2 and
d we can rewrite Nent( A, B) s

eng(A,B)  ent(B, A)
wso[A, V) aaso(B,V)

_ ga;wgﬁo) e
- Taod
+ &a;«_sz »;>0) THEBB;
T cods

Let D he an N x N disgonal matrix with & on ita
diasgonsl, W he an N % N aymmetrical matrix with
W) =1y, k= _ﬁ%' and 1 he an N x 1 vertor
of all onen. Uaing the fact 142 and 252 are indicator
vectom for x; > 0 and 3 < 0 reapectively, we can
rewrite 1[Netk (@) as:
('lH]"(n-“']('l-H] + {(1-3)"(D-W)(1-m)
{I=kj1" D1

el (D-ﬂ]& EQ-E]11+ 21— 1 (g -W)»
*{l-k)17 D1 {1 -#)27D1

Let afa)= 2" (D — W, ﬂ[a) =1T(D-W)a, 4=
17(D— W1, snd M = 17D1, we can then frther
expand the shove eqpiation aa:

= 2-(:

Nent(A, B)

[af2) + ) + 2(1 — 2&)3(a)
E(1— M
[ox(2) + #) + 2(1 — 2E)3(2) 2[0[1) +4)
E(1 —E)M
2ala) | 2
M M

+

dropping the laat comatant term, whith M thia case
eresla 0, we get

(1= 2+ 2)(a(a) + 4) + 21 — 2t}i(a) | 2afa)
M

E(1— E)M
(2 fa(w) + ) + FA(®)  2a(a)
ey 7w

Tetting b= &, and ince 4 =0, it heaomen,

(14 #)ler(m) + 1) + (1 — $7)5(m) | Zhcr(m)
20 M

(1+F)a(w)+q) 201-F)Me) Nofw) Ny
hM 1Y AT

(1+#) "D - Wa+17(D - Wh)
= #aT D
201 =T (D -
nTD1
M (D-W 217 (D-W)
h"'lh T HTD1
14 a - 143
nT D1
5’[1 —2)7(D—W)[x— )
17D
_ (1 —2)7(D - W)(1+a)
H1T Da
[(3+) — (s — )]0 — W)[(a + ) — bz —a)]
nTD1

+

Setting g = (1+ a#)—h[1—a), it i eaay to e that

y¥'D1=Y ;=4 d=0 ()
=0 x40
Loud and
0 !
yTDy = E.,-;o‘i +9E:"<°*
(DY T ) SN )
= b[E,_-<odi + bz‘.—(o dc)
" D1,

i =% =
pince b= = =
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NCuts as a Generalized Eigenvalue Problem

o After simplification, we get

T ..
D- :
( ; W)y, Wlth yi E{l, _b}’ yTD]_:O, ThI-S IS- hard,
y' Dy as y iIs discrete!
 This is a Rayleigh Quotient
— Solution given by the “generalized” eigenvalue problem

(D —W)y = ADy

— Solved by converting to standard eigenvalue problem

NCut(4,B) =2

1 _1 z v
D *(D-W)D °z=/z, wherez=D’y  Rejaxation:
e Subtleties continuous y.

— Optimal solution is second smallest eigenvector
— Gives continuous result—must convert into discrete values of y

Slide credit: Alyosha Efros
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NCuts Example

i
,

has

NCuts segments

Image source: Shi & Malik
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Discretization

 Problem: eigenvectors take on continuous values
— How to choose the splitting point to binarize the image?

" —
3-/’ - ]

B L " L " "
0 20 40 60 &b 100 120

Image Eigenvector NCut scores

e Possible procedures
a) Pick a constant value (0, or 0.5).
b) Pick the median value as splitting point.

c) Look for the splitting point that has the minimum NCut value:
1. Choose n possible splitting points.
2. Compute NCut value.
3. Pick minimum.
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NCuts: Overall Procedure

Construct a weighted graph G=(V,E) from an image.
Connect each pair of pixels, and assign graph edge weights,

W (i, j)= Prob. that i and j belong to the same region.

3. Solve (D-w)y=ADyfor the smallest few eigenvectors. This
yields a continuous solution.

4. Threshold eigenvectors to get a discrete cut
— This is where the approximation is made (we’re not solving NP).

5. Recursively subdivide if NCut value is below a pre-specified
value.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/

Slide credit: Jitendra Malik
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Color Image Segmentation with NCuts

Image Source: Shi & Malik
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Using Texture Features for Segmentation

e Texture descriptor is vector of filter bank outputs

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for Image Segmentation".
1JCV 43(1),7-27,2001.

Slide credit: Svetlana Lazebnik
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Using Texture Features f%r Segmentation

' §
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e Texture descriptor is ; 2 DRI
vector of filter bank | |
outputs. SR

* Textons are found by | B . | y |
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Slide credit: Svetlana Lazebnik
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Using Texture Features for Segmentation

e Texture descriptor is
vector of filter bank
outputs.

e Textons are found by
clustering.

o Affinities are given by
similarities of texton
histograms over
windows given by the
“local scale” of the
texture .

Slide credit: Svetlana Lazebnik

Fei-Fei Li Lecture 6 - 55 6-Oct-11



Results with Color & Texture

)
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Summary: Normalized Cuts

e Pros:

— Generic framework, flexible to choice of function that
computes weights (“affinities”) between nodes

— Does not require any model of the data distribution

e Cons:

— Time and memory complexity can be high
e Dense, highly connected graphs = many affinity computations
* Solving eigenvalue problem for each cut
— Preference for balanced partitions

e If aregion is uniform, NCuts will find the
modes of vibration of the image dimensions

Slide credit: Kristen Grauman
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What we will learn today?

e Segmentation as Energy Minimization
— Markov Random Fields

— Applications
() '®
Qi
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Markov Random Fields

e Allow rich probabilistic models for images

e But built in a local, modular way
— Learn local effects, get global effects out

Observed evidence

Hidden ““true states™

Slide credit: William Freeman

Neighborhood relations
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MRF Nodes as Pixels

BE |

Reconstruction

Original image

from MRF modeling %

(%) 52 pixel neighborhood
g 8

© ) statistics E?
15 3

(51) © p
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MRF Nodes as Patches

Image patches

Slide credit: William Freeman

Fei-Fei Li Lecture 6 - 6-Oct-11




Network Joint Probability

P(TJ/) :qu(‘xi’{/i)n\{{(xi’xj)

Scene Image-scene Scene-scene
compatibility compatibility
Image function function
Local Neighboring
observations scene nodes

Slide credit: William Freeman
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Energy Formulation
e Joint probability

P(x,y) :H(D(xi’yi)H\P(xi’xj)

I I,
e Taking the log p(.) turns this into an Energy optimization
problem

log P(x, y) = )_log ®(x,,y,)+ 2 log ¥(x;x,)

E(x’y)zzgp(xi’yi) +ZW(Xi’xj)

e This is similar to free-energy problems in statistical mechanics
(spin glass theory). We therefore draw the analogy and call £
an energy function.

 @and ware called potentials.
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Energy Formulation

 Energy function P )| &)
E(x’y)zz¢('xz’yz) +ZW(XZ,.X]) l//(xi’ j
I\ ' J i,j 1 ' )
Single-node Pairwise
potentials potentials

* Single-node potentials ¢
— Encode local information about the given pixel/patch

— How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

e Pairwise potentials w
— Encode neighborhood information

— How different is a pixel/patch’s label from that of its neighbor? (e.g.
based on intensity/color/texture difference, edges)

Slide credit: Bastian Leibe
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Energy Minimization

e Goal:
— Infer the optimal labeling of the MRF.

e Many inference algorithms are available, e.g.
— Gibbs sampling, simulated annealing
— lterated conditional modes (ICM)
— Variational methods
— Belief propagation

e Recently, Graph Cuts have become a popular tool
— Only suitable for a certain class of energy functions

— But the solution can be obtained very fast for typical vision
problems (~1MPixel/sec).

Slide credit: Bastian Leibe
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What we will learn today?

e Segmentation as Energy Minimization

— Applications
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GrabCut: live demo

=&
&
'\zg ‘
-

Reported results

e Included in MS Office 2010 (let’s try it)
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GrabCut: live demo

Reported results

e Included in MS Office 2010 (let’s try it)
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GrabCut: live demo

e
A @dWHair Day

e Included in MS Office 2010 (let’s try it)
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GraphCut Image Synthesis esult _

Source: Vivek Kwatra
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Application: Texture Synthesis in the Media

e Currently, still done manually...

Slide credit: Kristen Grauman
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Improving Efficiency of Segmentation

 Problem: Images contain many pixels

— Even with efficient graph cuts, an MRF
formulation has too many nodes for
interactive results.

e Efficiency trick: Superpixels

— Group together similar-looking
pixels for efficiency of further
processing.

— Cheap, local oversegmentation

— Important to ensure that superpixels
do not cross boundaries

e Several different approaches possible

— Superpixel code available here
—  http://www.cs.sfu.ca/~mori/research/superpixels/

Image source: Greg MRS S AT
EEEACAZnatdRtor,
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Ballet  (440,800) 11.4 18.3 0.21s 1.39s
Twins  (1024,768) 20.7 325 0.25s 1.82s
Girl (768,1147) 23.8 37.6 0.22s 2.49s
Grandpa (1147,768) 19.3  30.5 0.22s 3.56s
Speedup
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Summary: Graph Cuts Segmentation

* Pros
— Powerful technique, based on probabilistic model (MRF).
— Applicable for a wide range of problems.
— Very efficient algorithms available for vision problems.

— Becoming a de-facto standard for many segmentation
tasks.

e Cons/Issues

— Graph cuts can only solve a limited class of models
e Submodular energy functions
e Can capture only part of the expressiveness of MRFs

— Only approximate algorithms available for multi-label case
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What we have learned today

 Model free clustering -
— Mean-shift

 Graph theoretic segmentation [ (Midterm materials)
— Normalized Cuts
— Using texture features —

e Segmentation as Energy Minimization
— Markov Random Fields

— Applications

Fei-Fei Li Lecture 6 - 75 6-Oct-11




Supplementary materials
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Supplementary materials

 Segmentation as Energy Minimization

— Graph cuts for image segmentation (supp. materials)
— s-t mincut algorithm (supp. materials)
— Extension to non-binary case (supp. materials)
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Graph Cuts for Optimal Boundary Detection

e |dea: convert MRF into source-sink graph

hard t : d CUt
. constraint s
) o o
o o o
o o
hard
constraint
S
Minimum cost cut can be
computed in polynomial time W, = expi— : 2
1 o)
(max-flow/min-cut algorithms)
S
G B
Slide credit: Yuri Boykov A[pq
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Simple Example of Energy

Regional term Boundary term
E(L) ZD(L)+ dow, -6, #L)
eN
t-links = n-links
Al
Wog = exp{— pzq}
L . acut ! 20
D,(t) 1
oo o
o o o Al

“ny
"""""

o
‘7 D, (s) L, e{s,t}
" S . .

(binary object segmentation)

Slide credit: Yuri Boykov
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Adding Regional Properties

Regional bias example

Suppose  [° and [‘are given S12 1 2
“expected” intensities D, (s) ocexp (_”]P —I|[" /20 )

of object and background D (f) o exp (— 17, -1 /202)

NOTE: hard constrains are not required, in general.
Slide credit: Yuri Boykov
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Adding Regional Properties

“expected” intensities of o
object and background D, (s)cexp(-11,~1" |} 125°)
S t
I"and D, () cexp(-|1,-1' |} /26?)
can be re-estimated

EM-style optimization

Slide credit: Yuri Boykov
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Adding Regional Properties

* More generally, regional bias can be based on any
intensity models of object and background

@ - acut D, (L,)=—logPr(/,|L))

given object and background intensity histograms

Slide credit: Yuri Boykov
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How to Set the Potentials? Some Examples

* Color potentials
— e.g. modeled with a Mixture of Gaussians

7(x,,,:0,) =109 > 0. (x,k)P(k|x)N(y;; 7. Z,)

e Edge potentials
— e.g. a “contrast sensitive Potts model”

d(x,x,,8,(3),0,)=—0,2,(03(x, #x,)

g, =¢"1 po2eavg (Hyf _ysz)

where

* Parameters 6, 6, need to be learned, too!

[Shotton & Winn, ECCV’06]
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Other Applications: Texture Synthesis

Graph-cut textures
(Kwatra, Schodl, Essa, Bobick 2003)

Similar to “image-quilting” (Efros & Freeman, 2001)
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Application: Texture Synthesis in the
Media

e Currently, still done manually...
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How Do we Know?

\/\/HATEVER IT TAKES

“‘ T\‘UID

http://www.dailykos.com/story/2004/10/27/22442/878
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Another Example

http://thelede.blogs.nytimes.com/2008/07/10/in-an-iranian-image-a-missile-too-many/
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Segmentation: Caveats

e We've looked at bottom-up ways to segment an
image into regions, yet finding meaningful
segments is intertwined with the recognition
problem.

e Often want to avoid making hard decisions too
soon

e Difficu
succes
— Ofte

en s ation

st o i e neline.
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References and Further Reading

e Background information on Normalized Cuts can
be found in Chapter 14 of
— D. Forsyth, J. Ponce,

Computer Vision — A Modern Approach.
Prentice Hall, 2003

Computer

e Try the NCuts Matlab code at
— http://www.cis.upenn.edu/~jshi/software/

 Try the GraphCut implementation at

http://www.adastral.ucl.ac.uk/~vladkolm/software.ht
ml
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Supplementary materials

* Segmentation as Energy Minimization

— s-t mincut algorithm
— Extension to non-binary case ol bl
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How Does it Work? The s-t-Mincut Problem

Graph (V, E, C)

Vertices V={y v )

Edges E = {{v; v>) .}
Costs C = {C(l, 2) }

Slide credit: Pushmeet Kohli
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The s-t-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes between
source and sink.

What is the cost of a st-cut?

Bb+2 +9 =16

Slide credit: Pushmeet Kohli
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The s-t-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes between
source and sink.

What is the cost of a st-cut?
Sum of cost of all edges
going fromSto T

What is the st-mincut?

2+1+4=7

Slide credit: Pushmeet Kohli
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History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year | discoverer(s) | bound

1951 | Dantzig O(n2mU)

1955 | Ford & Fulkerson O(m=2U)

1970 | Dinitz O(n®m)

1972 | Edmonds & Karp O(m?logU)

1973 | Dinitz O(nmlogU)

1974 | Karzanov O(n>)

1977 | Cherkassky O(n®m1/?)

1980 | Galil & Naamad O(nmlog?n)

1983 | Sleator & Tarjan O(nmlogn)

1986 | Goldberg & Tarjan O(nmlog(n?/m))

1987 | Ahuja & Oirlin O(nm + n°logU)

1987 | Ahuja et al. O(nmlog(ny/logU/m))

1989 | Cheriyan & Hagerup | E(nm + n2log?n)

1990 | Cheriyan et al. O(n3/logn)

1990 | Alon O(nm + n%73logn)

1992 | King et al. O(nm + n?Te)

1993 | Phillips & Westbrook | O(nm(l0g,,/,n + 109" n))

1994 | King et al. O(nm 100, /(n10g n) 1)

1997 | Goldberg & Rao O(m3?log(n?/m)logU)

Y (12/3 2/ -

Slide credit: Andrew Gotdberg o~ w | RO 194 5)

n: #hodes
m: #edges

U: maximum
edge weight

Algorithms assume
non-negative edge
weights



How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
[ ] Source and Sink

Min-cut/Max-flow Theorem

In every network, the maximum flow equals th
cost of the st-mincut

Slide credit: Pushmeet Kohli
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Maxflow in Computer Vision

&
e Specialized algorithms for vision
problems =
— Grid graphs
— Low connectivity (m ~ O(n)) |
e Dual search tree augmenting path Lq L j

algorithm
[Boykov and Kolmogorov PAMI 2004]

— Finds approximate shortest augmenting
paths efficiently

— High worst-case time complexity

— Empirically outperforms other
algorithms on vision problems

" . .0..0...
— Efficient code available on the web

http://www.adastral.ucl.ac.uk/~vladkolm/software.html

Slide credit: Pushmeet Kohli
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When Can s-t Graph Cuts Be Applied?

Regional term Boundary term
E(L) Z E, (L) + Y E(L,L,)
PYEN
t-links n-links Lp < {S, t}

e s-t graph cuts can only globally minimize binary energies
that are Submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized by s-t &S E(S,S) +E(t, t) SE(S, f) ‘|‘E(t, S)

graph cuts

Submodularity (““‘convexity”)
* Non-submodular cases can still be addressed with some

optimality guarantees.
— Current research topic

Slide credit: Bastian Leibe
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Dealing with Non-Binary Cases

 Forimage segmentation, the limitation to binary energies is
a nuisance.

= Binary segmentation only
 We would like to solve also multi-label problems.
— NP-hard problem with 3 or more labels

 There exist some approximation algorithms which extend
graph cuts to the multi-label case

— oa-Expansion
— af-Swap

e They are no longer guaranteed to return the globally
optimal result.

— But a-Expansion has a guaranteed approximation quality (2-
approx) and converges in a few iterations.
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a-Expansion Move

e Basicidea:

— Break multi-way cut computation into a sequence of
binary s-t cuts.

Slide credit: Yuri Boykov
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o-Expansion Algorithm

1. Start with any initial solution
2. For each label “a” in any (e.g. random) order

1. Compute optimal a-expansion move (s-t graph
cuts)

2. Decline the move if there is no energy decrease

e Stop when no expansion move would
decrease energy

Slide credit: Yuri Boykov
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a-Expansion Moves

Il(

* In each a-expansion a given label “o.” grabs space from other

labels
initial solution

@ cxpansion

@ -expansion

. -expansion

@ cxpansion

For each move we choose the expansion that gives the largest decrease in the energy:

binary optimization problem _ _ _
Slide credit: Yuri Boykov
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