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What we will learn today?

* Images as functions

e Linear systems (filters)

e Convolution and correlation

e Discrete Fourier Transform (DFT)
e Sampling and aliasing

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5

Fei-Fei Li Lecture 3- 2 3-Oct-11




Images as functions
* An Image as a function f from R? to RM:

« f( X, y) gives the intensity at position (X, y )

8

* Defined over a rectangle, with a finite range:
f: [a,b] x [c,d ] = [0,255]

Domain range
support
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Images as functions
* An Image as a function f from R? to RM:

« f( X, y) gives the intensity at position (X, y )

* Defined over a rectangle, with a finite range:
f: [a,b] x [c,d ] = [0,255]

Domain range
support
Color :"e'
(0 y) Ther L
e Acolorimage: f(x,y)=|g(xY) M:3 - Hsv]
b(x,y)_ ~Lob
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Images as discrete functions

* Images are usually digital (discrete):
— Sample the 2D space on a regular grid

 Represented as a matrix of integer values

Fei-Fei Li

pixel
j >
62 79 23 119 120 05 4 0
7 110 10 9 62 8 34 0
10 58 197 46 48 0 0 48
176 135 5 188 191 68 0 49
2 1 1 29 26 37 0 77
0 89 144 147 187 102 62 208
255 252 0 1686 123 62 0 31
166 63 127 17 1 0 99 30
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Images as discrete functions

Cartesian coordinates

fln,m]=1 ... f[=1,0  fl0,0]  f[1,0
N JL7 7]
f[_l_l] f[O*_l f[l_l]
Notation for :
discrete -
functions
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Images as discrete functions

Array coordinates

A =

Matlab notation
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Systems and Filters

="
* Filtering:

— Form a new image whose pixels are a
combination original pixel values

Goals:

-Extract useful information from the images
e Features (edges, corners, blobs...)

- Modify or enhance image properties:
e super-resolution; in-painting; de-noising

Fei-Fei Li Lecture 3- 8 3-Oct-11




- Super-resolution
De-noising
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2D discrete-space systems (filters)

il spd (g filtd sl (g
fln,m] —(| System ;S‘) — g[n, m|

() g=S|[f], C@g[n, m| = S{fn,m|}
@ f n, m| =, gln,m|

8 V\Wm
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Filters: Examples

e 2D DS moving average over @Nindow of

neighborhood |
pivs - Ol
qﬁ n+1 m-+1
om) ={ = k1 11|
hi[Tz;giﬁ] Lg_)hgl l;l% l 1 1 1
9 1 1 1

11
:% Z Z fln—k,m—1]

k=—11=-1

w(f jlzh)[m,n] %2 f[k, 1] h[m—k,n—I]
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Moving average

Flz, y] Glz, y]

23195 °S JO Asanno)
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Moving average
Flz, y] Glz, y]

0“ 10

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Glz, y]

0 10 20

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average
Flz, y] Glz, y]

0 10 20 30 ‘\

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average
Flz, y] Glz, y]

0 10 20 30 “ 30

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Glz, y]

(f *g)[m,n] = Zf[k, lglm—-k,n—1]

Source: S. Seitz
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Moving average

In summary: 9L -]
e Replaces each pixel 111
. . 1
with an average of its 1| 1] 1
neighborhood. 9 1]

e Achieve smoothing
effect (remove sharp
features)
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Moving average
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Filters: Examples

* Image segmentation based on a S|mple)

r cﬂbeco’
threshold: 7 b Q1o Yrsald
gln,m| = <( L, >.

’ 0, otherwise.
\
[olaC(Q
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Classification of systems
e Amplitude properties
Linearity> — " , | :
* Stability 7 Linac SA‘/‘/" foint - gjd&“
e Invertibility ( (91>

e Spatial properties
e Causality
e Separability

. ory
(’Svflwin inv@

e Rotation invariance
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Shift-invariance

e If fln,m] =, gln, m| then

fln —ng,m — mg =, gln —no,m —mo|

for every input image f[n,m] and shifts n,,m,

* |s the moving average shift invariant a system ?
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Is the moving average system is shift invariant?

Flz, y] Glz, y]
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Is the moving average system is shift invariant?

fln,m| =, gln, m| Y Y fln—k.m—1]

A_—l [=—1

fln — no, m — mo

1 1

2, gln,m| = % y: Y: fl)— ka — ]
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Linear Systems (filters)

flx,y) =S| — gz, y)

e Linear filtering:

— Form a new image whose pixels are a weighted sum of
original pixel values

— Use the same set of weights at each point

* Sis alinear system (function) iff it S satisfies
Slafi + Bf2] = aS[f1] + BS[ [

superposition property
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Linear Systems (filters)

fle,y) —[S]— g(x,y)

* |sthe movmg average a linear system?
]{)[y\,mj—%g[n mJ ‘g Lt’-f‘[n k,m-{]
O(f) ‘LZZO(f[n kmAJ
e tonr Yes
- {G{ IR I
= (X\S(‘fj B
e |sthresholding a linear system?
— filnm]+f2nm]>T

— fl[n,m]<T
— f2[n,m]<T  No!
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LSI (linear shift invariant) systems

—
Impulse response

doln,m| —|S|— hin,m]|

ooln —k,m—1 —|S (S |— hln—FEk,m —1]

| =0 ) 6o N=0

5: f 5, fo d@ewlu.,
o elsewhere |

k(MClC-ef ’Ddta :D{ML (PP//'/Z\
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LSI (linear shift invariant) systems

Example: impulse response of the 3 by 3 moving
average filter:

1

1
1
hin,m| = 9 y: S: d2ln — k,m —

k=—11=—1 h

- 1/9 1/9 1/9 ] 1|1 |1

= | 1/9 1/9 1/9 LT
1/9 1/9 1/9

1 1 1
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LSI (linear shift invariant) systems

An LS| system is completely specified by its

impulse response.

sifting property of the delta function
o0

fln,m] Z kalé>rz—k7n—l]

k=—o0 [=—0o0

o0 o0 superposition

—|SLSI[— » Y  flk.hln—km—1

da[n,m|] — | S | — hln,m] k=—oc l=—o0

Discrete convolutw/

— f[n, TTl]ﬁ_hJ[na Tn]
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]
e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m

sriawd twpde 1o
h[(?gl]v 1
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]
e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m

hik,]

h[-k,-'] h[n-k,m-l]

T
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]
e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m f[k,|] X h[n—k,m-l]
o)
h[n-k,m-l] ®
S
Yl
f[k,| w 4t 5 e Sum (f[k,I] x h[n-k,m-1])
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Convolution in 2D - examples

Original

Courtesy of D Lowe
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Convolution in 2D - examples

Original Filtered
(no change)

Courtesy of D Lowe
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Convolution in 2D - examples

Original

Courtesy of D Lowe
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Convolution in 2D - examples

Original Shifted left
By 1 pixel

Courtesy of D Lowe
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Convolution in 2D - examples

o] | o1 |e] ?
1 |
— .1 .1 .1 — L
9

o] | o] | @]

Original

Courtesy of D Lowe
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Convolution in 2D - examples

o] | o] | @]
]_ |
S 01 .1 .1 —
O
o] el | el
Original Blur (with a
box filter)

Courtesy of D Lowe
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Convolution in 2D - examples

°0|*0| 0 o] |el|el

| = 7
o2 |0 — 5 o] |e]l|e] —
eO| 0|0 o]|e]l|e]l ]

(Note that filter sums to 1)

“details of the image”

A
| \
*0|¢0|*0 *0|¢0|*0 L |oLfe1]e1 E
oD|e]1|eQ] * |eQ|e1]|e0 = _le]|e]1|e] %
o(O|e(Q| 0 oo/ 2 o]l|e]l|e] g
8
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e What does blurring take away?

e Let’s add it back:
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Convolution in 2D -
Sharpening filter

0|00 1 o]|e]l|e]l
.O .2 .0 - 5 .1 .1 .1 I
eO| 0|0 o]|e]l|e]l =

Original

Sharpening filter: Accentuates differences with local average

Courtesy of D Lowe
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Convolution properties

e Commutative property:

Jxxh="hxxf

e Associative property:
(f % hy)sxho = fxx(hy *xx ho)
e Distributive property:

frx (hy + ha) = (f #x hy) + (f ** ho)

The order doesn’t matter! hq{ xx ho = ho ** hy
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Convolution properties

e Shift property:

fln, m| s« d2|n — no, m — mo| = fln — no, m — mo|

e Shift-invariance:
gln,m| = fln,m] = hin,m|
— fln—1ly,m — ] =< hln —ly,m — [5]

=gln—1 —lo,m—11 — o]
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Image support and edge effect

*A computer will only convolve finite support
signals.
e That is: images that are zero for n,m outside some
rectangular region

* MATLAB'’s conv2 performs 2D DS convolution of finite-
support signals.

b S
N2 xM?2

(N1+N2-1)x(M1+M2-1)

N1xM1

Fei-Fei Li Lecture 3- 44 3-Oct-11




Image support and edge effect

*A computer will only convolve finite support
signals.
 What happens at the edge?

e zero “padding”
e edge value replication
h e mirror extension

® MOIe (beyond the scope of this class)

-> Matlab conv2 uses
SRR zero-padding
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Cross correlation

Cross correlation of two 2D signals f[n,m] and g[n,m]

reglk, 1] = Z Z fln,m|g*n—k,m—1]

nN=——o MmM=——00

Z Z fin+km+1lginm| kleZ

N=—=——oo M=——0C

(k, 1) is called the lag

e Equivalent to a convolution without the flip

reqln,m) = fln,m| s g*|—n, —m)|
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Cross correlation — example

: g=f+noise
H H N
H H N
1 128
> | e+ |
v 40 |
MATLAB’s o g * * - 4
Xcorr2
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Cross correlation — example

Left _ Right

‘,

scanline .‘.‘- ol - :

Norm. corr

-
——
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Convolution vs. Correlation

A convolution is an integral that expresses the amount
of overlap of one function as it is shifted over another
function.

— convolution is a filtering operation

e Correlation compares the similarity of two sets of
data. Correlation computes a measure of similarity of
two input signals as they are shifted by one another.
The correlation result reaches a maximum at the time
when the two signals match best .

— correlation is a measure of relatedness of two signals
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What we will learn today?

e Discrete Fourier Transform (DFT)

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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2D Discrete-Signal Fourier Transform (DSFT)

2D discrete-signal Fourier transform (DSFT) of a 2D discrete-space

T e N o

—'},(wxv'z+wyvrz)
n.mje
B o ) )

nN=——oo MmM=——

Inverse 2D DSFT:

1 o’?’l' .7'[' | | N
gln,m| = 5 G(wx, Wy ) erlwxntwym) 4., dw,

(27‘-) J—mJ =T

For memory refresher: Forsyth and Plnce, Ch 8
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50

100

£ 150

200

250

Jean Baptiste Joseph Fourier

T T

50 100 150 200 250

Fourier’s Transform: log e)
16

4G (wx, wy )| €

/2 12
10
(DY 8
6
-7/2 4
2
-7
DSFT
—
Fourier’s Transform: Phase
b p : P ke .
ezé Gwx ,wy )
/2 ‘
1
Oy 0
-1
-n/2
-2
-3

-
- -n/2 Oy /2 T
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DSFT - properties
Shift:

gln —ng,m — mo| «—— G (wx, wy) @

Convolution3n 93«1 poce = Wf/fwﬁbw o fFreriey Pace

f[n? frn] stk h[n, ’TTL] F(wx, wy) H(wx, wy)

Delta function:

do |1, m] 1

52 I[n — N, M — 772/0] e—’l(wxnoerymo)
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Example: DSFT of moving average filter

gn,m] = L Lfn,—k m — ]

k_—l [=—1

(f *h)[m,n]zézf[k,l]h[m—k,n—l]

, h
F(wx,wy) H(wx,wy) N
1
_ - y‘ T p TIWXTL TUWY TN — | 1 1 1
n——lm——l 9
1 1 1

1
_ 5[1 + 2 coswx||1 + 2 cos wy|
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Function

Fourier transform

glz,y)

o0
[ g(z,y)e 2=+ dzdy

— DO

o0
| Fla(z,v))(u,v)e? =) dudy

— 20

Flg(z,y))(u,v)

oz, y) 1 l—
yfl.r y) uF(f)(u,v)

0.56(z + a,y) + 0.56(x — a,y)

cos 2mau

e—m:z%f:u

;2 24
—m(u4v")
e \ +

box,(z,vy) —

sinu sinv
U v

Fif)yiufa,v/b)

flaz,by) 144141
I

ZZ_D‘: Z;i_;x oz —1i,y—17)

; 11T

Yoo oo 2oy oo S — v — J)

(f **xg)(z,y) CM'[JOL.

- d"\!
F(f)F(g)(u,v) '

flx—a,y—b)

e—i‘lﬂ'ljau—{—bv Jf(f :l

flxcos® — ysinf,xsin @ + ycos 6)

F(f)ucosf —vsinf,usinf +vcosh)
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Why is DFT important?

e Perform efficient linear convolution as product of
DFTs

e Each DFT can be implemented using the FFT
(FaSt Fourier Tra nSfOrm ) [see appendix for details]
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What we will learn today?

e Sampling and aliasing

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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Sampling

o E

Throw away every other row and column
to create a 1/2 size image
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Sampling

e Down-sampling operation:

(trivial form of image compression)

gln,m] = f2n,2m] =
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Why is a multi-scale representation useful?

* Find template matches at all scales

— .ﬁ., when finding hands or faces, we don’t know
what size they will be in a particular image

— Template size is constant, but image size changes

o Efficient search for correspondence
— look at coarse scales, then refine with finer scales

 Examining all levels of detail
— Find edges with different amounts of blur

— Find textures with different spatial frequencies
(levels of detail)

Slide credit: David Lowe (UBC)
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Things can go wrong! -- Aliasing

256x256  128x128 64x64 32x32 16x16
. lllllll . lllllll - IIMII i l_l
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Things can go wrong! -- Aliasing

Disintegrating textures
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Fei-Fei Li
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Sampling Theorem (Nyquist)

e When sampling a signal at discrete intervals, the sampling
frequency mustbe >2 x f__

e f ., =maxfrequency of the input signal.
WA Y -

bad
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5 [n’m] > gsampled [n'm]
Small sampling
period N
ﬁ Q
y Ga(wx, wy)
— H . T
* N =sampling period
e T = periodicity of the
replicas of the DFT (g)
>
T~1/N @,
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256x256 [6x16

> gsampled [n'm]

Large sampling
period N

N =sampling period
e T = periodicity of the
replicas of the DFT (g)

T~1/N
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Anti-aliasing

Solutions:
e Sample more often

 Getrid of all frequencies that are greater
than half the new sampling frequency
— Will lose information - but it’s better than aliasing

— Apply a smoothing filter to remove high
frequencies
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Anti-aliasing

Apply a smoothing filter to remove high frequencies:

f(x) VST () IMePM;
.

Low pass filter (smoothing)
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Sampling algorithm

Algorithm 7.1: Sub-sampling an Image by a Factor of Two

(D

Apply a low-pass filter to the original image
. iter

(a Gaussian with a o of between one
@;m(_l two pixels is usually an acceptable choice).
Create a new image whose dimensions on edge are half

Q those of the old image
>et the value of the i, j'th pixel of the new image to the value
of the 2i, 25°'th pixel of the filtered image
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Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16

aﬁ(aa?

no
smoothing

M mRLn
i B

Gaussian
o=1

Gaussian

o =2

 Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.

Image Source: Forsyth & Ponce
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The Gaussian Pyramid

Low resolution G, = (GS gaussian 12

\ . Q (G |Q !ilmj s down- Sample .

High resolutic
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Gaussian Pyramid — Stored Information

o " All the extra
' levels add very
little overhead
for memory or
computation!
‘- '..

Source: lrani & Basri
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Summary: Gaussian Pyramid

e Construction: create each level from previous one
— Smooth and sample

 Smooth with Gaussians, in part because

— a Gaussian*Gaussian = another Gaussian
— G(o,) * G(o,) = G(sqrt(c,%* 5, ?))

e Gaussians are low-pass filters, so the
representation is redundant once smoothing has
been performed.

—> There is no need to store smoothed images at the
full original resolution.

Slide credit: David Lowe
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Application: Vision system
for TV remote control
- uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

Fei-Fei Li Lecture 3- 74 3-Oct-11




What we have learned today?

* Images as functions

e Linear systems (filters)

e Convolution and correlation

e Discrete Fourier Transform (DFT)
e Sampling and aliasing

Fei-Fei Li Lecture 3- 75

3-Oct-11




Appendix
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Convergence

If g absolutely summable: Z:x’ ZOC' e |g[n’ m,H < 00

n=——ox m=

then
lim E E g[n, m] e lwxntwym)
N — o
n=—N m=—N — G(u)x’wy)

If g is square summable
(energy signal): Z Z n,mll” < o

nN=—aom=——aoo

/ G]\;(w;x;,cuy)—G(u)_X,wY)\zdwxdu)Y — 0

—7 J =T
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Fast Fourier transforms (FFT)

* Brute-force evaluation of the 2D DFT would require
O((NM)2) flops

X[k =
M—1 2m(kn /N +Ilm /M’
_ { Zn 0 Zm o Zn,mje" (kn/ /M
k=0,...N—1.1=0,....M—1
otherwise

 DFT is a separable operation
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Fast Fourier transforms (FFT)

* DFT is a separable operation:

N—-1M-1
S‘ S‘ iL n. TTL o2 27 (kn/N+Ilm /M)
n=0 m=0
N—1 M —1
Z e—zQ'frAn,/N Z J)[n, TTl] e—z27rlm/ﬂ[
n=>0 L m=0

*Apply the 1D DFT to each column of the image, and then apply
the 1D DFT to each row of the result.
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Fast Fourier transforms (FFT)

- FFT computational efficiency:

 inner set of 1D FFTs : N O(M logM)
e outer set of 1D FFTs: M O(N logN)

*Total: O(MN logMN) flops

e A critical property of FFT is that N = 2%  with k =integer

If x=512x512 image =
saving is a factor of 15000 relative to the brute-force 2D DFT!
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FFT & Efficiency

e General goal: perform efficient linear convolution
ePerform convolution as product of DFTs

* Pros: DFT can be implemented using the FFT (fast

fourier transform)
*FFT is very efficient (fast!)

« Cons: DFT perform circular convolution
Compensate the wrap-around effect

*Cons: Online-memory storage
*Use the overlap-add method or overlap-save method
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FFT & Efficiency

*Suppose we wish to convolve a 256 x 256 image with a
17 x 17 filter.

*The result will be 272x272.

*The smallest prime factors of 272 is 2.

*So one could pad to a 512 x 512 image
*Note: only 28% of the final image would be the part we care about - the rest
would be zero in exact arithmetic.

Handling toa 512 x 512 image requires much memory

— Use overlap-add method
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