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Object detection
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What we will learn today?

• Implicit Shape Model

– Representation

– Recognition

– Experiments and results

• Deformable Models

– The PASCAL challenge

– Latent SVM Model
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Implicit Shape Model (ISM)

• Basic ideas

– Learn an appearance codebook

– Learn a star-topology structural model

• Features are considered independent given obj. center

• Algorithm: probabilistic Gen. Hough Transform

– Exact correspondences → Prob. match to object part

– NN matching → Soft matching

– Feature location on obj.         → Part location distribution

– Uniform votes → Probabilistic vote weighting

– Quantized Hough array → Continuous Hough space

x1

x3

x4

x6

x5

x2

Source: Bastian Leibe
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Implicit Shape Model: Basic Idea

• Visual vocabulary is used to index votes for object 

position [a visual word = “part”].

Training image

Visual codeword with

displacement vectors

Source: Bastian Leibe

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and 

Segmentation, International Journal of Computer Vision, Vol. 77(1-3), 2008.

18-Nov-116



Lecture 17 -Fei-Fei Li

• Objects are detected as consistent configurations of 

the observed parts (visual words).

Test image

Implicit Shape Model: Basic Idea

Source: Bastian Leibe

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and 

Segmentation, International Journal of Computer Vision, Vol. 77(1-3), 2008.
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Implicit Shape Model - Representation

• Learn appearance codebook

– Extract local features at interest points

– Agglomerative clustering ⇒ codebook

• Learn spatial distributions

– Match codebook to training images

– Record matching positions on object

Training images
(+reference segmentation)

Appearance codebook
…

…
…
…

…

Spatial occurrence distributions
x
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s
x

y

s

x
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s
x

y

s

+ local figure-ground labels
Source: Bastian Leibe
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Implicit Shape Model - Recognition

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

3D Voting Space
(continuous)

x
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s

Object 
Position

o,x

Image Feature

f

Interpretation
(Codebook match)

Ci

)( fCp i ),,( lin Cxop

Probabilistic vote weighting
(will be explained later in detail)
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Implicit Shape Model - Recognition
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Backprojected
Hypotheses

Interest Points Matched Codebook 
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Probabilistic 
Voting

3D Voting Space
(continuous)
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Backprojection
of Maxima
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Original image

Example: Results on Cows

Source: Bastian Leibe
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Original imageInterest points

Example: Results on Cows

Source: Bastian Leibe
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Original imageInterest pointsMatched patches

Example: Results on Cows

Source: Bastian Leibe
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Example: Results on Cows

Prob. Votes
Source: Bastian Leibe

18-Nov-1114



Lecture 17 -Fei-Fei Li

1st hypothesis

Example: Results on Cows
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2nd hypothesis

Example: Results on Cows

Source: Bastian Leibe
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Example: Results on Cows

3rd hypothesis
Source: Bastian Leibe
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• Scale-invariant feature selection
– Scale-invariant interest points

– Rescale extracted patches

– Match to constant-size codebook

• Generate scale votes
– Scale as 3rd dimension in voting space

– Search for maxima in 3D voting space

Scale Invariant Voting

Search 
window

x

y

s

Source: Bastian Leibe
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Scale Voting: Efficient Computation

• Continuous Generalized Hough Transform

� Binned accumulator array similar to standard Gen. Hough Transf.

� Quickly identify candidate maxima locations

� Refine locations by Mean-Shift search only around those points

⇒ Avoid quantization effects by keeping exact vote locations.

⇒ Mean-shift interpretation as kernel prob. density estimation.

y

s

x
Refinement
(Mean-Shift)

y

s

x
Candidate
maxima

y

s

Scale votes
x

y

s

Binned 
accum. array

x

Source: Bastian Leibe
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• Scale-adaptive Mean-Shift search for refinement

– Increase search window size with hypothesis scale

– Scale-adaptive balloon density estimator
This image cannot currently be displayed.

Scale Voting: Efficient Computation

y

s

x
Refinement
(Mean-Shift)

y

s

x
Candidate
maxima
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s

Scale votes
x
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s

Binned 
accum. array

x

Source: Bastian Leibe
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Detection Results

• Qualitative Performance

– Recognizes different kinds of objects

– Robust to clutter, occlusion, noise, low contrast

Source: Bastian Leibe

21
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Figure-Ground Segregation

• What happens first – segmentation or recognition?

• Problem extensively studied in 
Psychophysics

• Experiments with ambiguous
figure-ground stimuli

• Results:

– Evidence that object recognition can
and does operate before figure-ground 
organization

– Interpreted as Gestalt cue familiarity.

M.A. Peterson, “Object Recognition Processes Can an d Do Operate Before Figure-
Ground Organization”, Cur. Dir. in Psych. Sc., 3:105-111, 1994.
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ISM – Top-Down Segmentation

Backprojected
Hypotheses

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

Segmentation
3D Voting Space

(continuous)

x

y

s

Backprojection
of Maxima

p(figure)
Probabilities

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
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Top-Down Segmentation: Motivation

• Secondary hypotheses (“mixtures of cars/cows/etc.”)
– Desired property of algorithm!  ⇒ robustness to occlusion

– Standard solution: reject based on bounding box overlap

⇒ Problematic - may lead to missing detections!

⇒ Use segmentations to resolve ambiguities instead.

– Basic idea: each observed pixel can only be explained by 
(at most) one detection.

Source: Bastian Leibe
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• Secondary hypotheses (“mixtures of cars/cows/etc.”)
– Desired property of algorithm!  ⇒ robustness to occlusion

– Standard solution: reject based on bounding box overlap

⇒ Problematic - may lead to missing detections!

⇒ Use segmentations to resolve ambiguities instead.

– Basic idea: each observed pixel can only be explained by 
(at most) one detection.

Top-Down Segmentation: Motivation

Source: Bastian Leibe
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Segmentation: Probabilistic Formulation

• Influence of patch on object hypothesis (vote weight)
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• Backprojection to features f and pixels p:

Segmentation
information

Influence on 
object hypothesis

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
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Derivation: ISM Recognition

• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

� Probability that object on occurs at location x given (f,l)
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Derivation: ISM Recognition
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Derivation: ISM Recognition
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

� Probability that object on occurs at location x given (f,l)

� How to measure those probabilities?
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Derivation: ISM Recognition
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

� Probability that object on occurs at location x given (f,l)

� Likelihood of the observed features given the object hypothesis

( , , )n
i

p o x f =∑l )( fCp i ),,( lin Cxop

( ) ( ) ( )
( )

( ) ( ) ( )
( )

, | , |, |
| ,

, ,
n i in i

n
n n

p o x C p C f p f,p o x f, p f,
p f, o x

p o x p o x
= = ∑

l ll l
l

( ),np o x : Prior for the object location( )p f,l : Indicator variable for 
sampled features
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Derivation: ISM Recognition
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 
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Derivation: ISM Recognition
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f
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Derivation: ISM Recognition
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 
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Derivation: ISM Top-Down Segmentation
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

• Figure-ground backprojection

Fig./Gnd. label
for each occurrence

Influence on 
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Derivation: ISM Top-Down Segmentation
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

• Figure-ground backprojection

Fig./Gnd. label
for each occurrence

Influence on 
object hypothesis
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Derivation: ISM Top-Down Segmentation
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• Algorithm stages

1. Voting

2. Mean-shift search

3. Backprojection

• Vote weights: contribution of a single feature f 

• Figure-ground backprojection

Fig./Gnd. label
for each occurrence

Influence on 
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Top-Down Segmentation Algorithm

• This may sound quite complicated, but it boils down to a 
very simple algorithm…
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Segmentation

• Interpretation of p(figure) map

� per-pixel confidence in object hypothesis

� Use for hypothesis verification

p(figure)

p(ground)

Segmentation

p(figure)

p(ground)

Original image
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Example Results: Motorbikes

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
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• Training

– 112 hand-segmented images

• Results on novel sequences:

Single-frame recognition - No temporal continuity used!

Example Results: Cows
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Office chairs

Dining room chairs

Example Results: Chairs

Source: Bastian Leibe
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Detections Using Ground Plane Constraints

left camera 
1175 frames

Battery of 5
ISM detectors
for different
car views
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TrainingTraining

TestTest OutputOutput
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Inferring Other Information: Part Labels (1)
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Inferring Other Information: Part Labels (2)
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Inferring Other Information: Depth Maps

“Depth from a single image”
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• Try to fit silhouette to detected person

• Basic idea
– Search for the silhouette that simultaneously optimizes the

• Chamfer match to the distance-transformed edge image

• Overlap with the top-down segmentation

– Enforces global consistency

– Caveat: introduces again reliance on global model

Extension: Estimating Articulation

[Leibe, Seemann, Schiele, CVPR’05]
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• Polar instead of Cartesian voting scheme

• Benefits:
– Recognize objects under image-plane rotations

– Possibility to share parts between articulations.

• Caveats:
– Rotation invariance should only be used when it’s really needed.

(Also increases false positive detections) 

Extension: Rotation-Invariant Detection

[Mikolajczyk, Leibe, Schiele, CVPR’06]
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Sometimes, Rotation Invariance Is Needed…

[Mikolajczyk et al., CVPR’06]
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You Can Try It At Home…

• Linux binaries available 

– Including datasets & several pre-trained detectors

– http://www.vision.ee.ethz.ch/bleibe/code

x

y

s

Source: Bastian Leibe
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Discussion: Implicit Shape Model
• Pros:

– Works well for many different object categories
• Both rigid and articulated objects

– Flexible geometric model
• Can recombine parts seen on different training examples

– Learning from relatively few (50-100) training examples
– Optimized for detection, good localization properties

• Cons:
– Needs supervised training data

• Object bounding boxes for detection
• Reference segmentations for top-down segm.

– Only weak geometric constraints
• Result segmentations may contain superfluous 

body parts.

– Purely representative model
• No discriminative learning

Source: Bastian Leibe
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What we will learn today?

• Implicit Shape Model

– Representation

– Recognition

– Experiments and results

• Deformable Models

– The PASCAL challenge

– Latent SVM Model
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Object Detection 

– the PASCAL Challenge

• ~10,000 images, with ~25,000 target objects.  

– Objects from 20 categories (person, car, bicycle, cow, 

table...).

– Objects are annotated with labeled bounding boxes.

18-Nov-1152
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Latent SVM Model: an Overview

18-Nov-1154
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Histogram of Oriented Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks.

• In each block we compute a histogram of gradient 

orientations.

– Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid).
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Filters

• Filters are rectangular templates defining weights for features.

• Score is dot product of filter and subwindow of HOG pyramid.
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HOG pyramid

W

Score of H at this location is H ⋅ W

H

Source: Pedro Felzenswalb
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Object Hypothesis

18-Nov-1157

Multiscale model captures features at two-resolutions

Score is sum of filter scores 

plus deformation scores
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Training the Latent SVM Model

• Training data consists of images with labeled bounding boxes.

• Need to learn the model structure, filters and deformation costs.
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Training

Source: Pedro Felzenswalb
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Connection with Linear Classifiers

• Score of model is sum of filter scores plus 

deformation scores

– Bounding box in training data specifies that the score 

should be high for some placement in a range
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w is a model

x is a detection window

z are filter placements

Concatenation of filters and 

deformation parameters

Concatenation of features 

and part displacements

Latent 

SVM

Standard 

SVM

Weight vector Features
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Latent SVMs

18-Nov-1160

Linear in w if z is fixed

Regularization Hinge Loss

Observed variables Latent variables
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Latent SVM Training

• Semi-convex optimization problem

– Maximum of convex functions is convex

– is convex in w
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=

if        = -1

if        = 1

Convex!

Not convex
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Latent SVM Training

• Convex if we fix z for positive examples:

• Iterative optimization procedure:

– Initialize w and iterate:

• Pick best z for each positive example

• Optimize w via gradient descent with data mining
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if        = 1

Affine!
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Latent SVM Training: Initializing w
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• For k component mixture model:
– Split examples into k sets based on bounding box aspect 

ratio

• Learn k root filters using standard SVM
– Training data: Warped positive examples and random 

windows from negative images (Dalal & Triggs)

• Initialize parts by selecting patches from root filters:
– Sub-windows with strong coefficients

– Interpolate to get higher resolution filters

– Initialize spatial model using fixed spring constants
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Learned Models
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Example Results
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More Results

18-Nov-1166
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Quantitative Results

• 9 systems competed in the 2007 challenge.

• Out of 20 classes:

– First place in 10 classes

– Second place in 6 classes

• Some statistics:

– It takes ~2 seconds to evaluate a model in one 
image.

– It takes ~3 hours to train a model.

– MUCH faster than most systems.
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Source: Pedro Felzenswalb



Lecture 17 -Fei-Fei Li

Code for Latent SVM

Source code for the system and models 
trained on PASCAL 2006, 2007 and 2008 

data are available at:

http://www.cs.uchicago.edu/~pff/latent
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Source: Pedro Felzenswalb
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Summary

• Deformable models provide an elegant framework 

for object detection and recognition.

– Efficient algorithms for matching models to images.

– Applications: pose estimation, medical image analysis, 

object recognition, etc.

• We can learn models from partially labeled data.

– Generalized standard ideas from machine learning.

– Leads to state-of-the-art results in PASCAL challenge.

• Future work: hierarchical models, grammars, 3D 

objects.
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Source: Pedro Felzenswalb



Lecture 17 -Fei-Fei Li

What we have learned today

• Implicit Shape Model

– Representation

– Recognition

– Experiments and results

• Deformable Models

– The PASCAL challenge

– Latent SVM Model
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