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What we will learn today?

• Introduction

• Constellation model

– Weakly supervised training

– One-shot learning

• (Problem Set 4 (Q1))
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Challenges: intra-class variation
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Usual Challenges:

Variability due to:

• View point

• Illumination

• Occlusions
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Basic issues

• Representation

– 2D Bag of Words (BoW) models; 

– Part-based models; 

– Multi-view models; 

• Learning

– Generative & Discriminative BoW models

– Generative models

– Probabilistic Hough voting

• Recognition

– Classification with BoW

– Classification with Part-based models
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Basic issues

• Representation

– 2D Bag of Words (BoW) models; 

– Part-based models; 

– Multi-view models (Lecture #19);  

• Learning

– Generative & Discriminative BoW models

– Generative models

– Probabilistic Hough voting

• Recognition

– Classification with BoW

– Classification with Part-based models
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Problem with bag-of-words

• All have equal probability for bag-of-words methods

• Location information is important
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Model: Parts and Structure
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• Fischler & Elschlager 1973

• Yuille ‘91
• Brunelli & Poggio ‘93
• Lades, v.d. Malsburg et al. ‘93
• Cootes, Lanitis, Taylor et al. ‘95
• Amit & Geman ‘95, ‘99 
• et al. Perona ‘95, ‘96, ’98, ’00, ‘03
• Huttenlocher et al. ’00
• Agarwal & Roth ’02

etc…

Parts and Structure Literature
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The Constellation Model
T. Leung

M. Burl

Representation

Detection

Shape statistics – F&G ’95
Affine invariant shape – CVPR ‘98

CVPR ‘96
ECCV ‘98

M. Weber
M. Welling

Unsupervised Learning
ECCV ‘00
Multiple views - F&G ’00 
Discovering categories - CVPR ’00

R. Fergus

L. Fei-Fei

Joint shape & appearance learning
Generic feature detectors

One-Shot Learning
Incremental learning

CVPR ’03
Polluted datasets - ECCV ‘04

ICCV ’03
CVPR ‘04
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A B

DC

Deformations
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Presence / Absence of Features

occlusion
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Background clutter
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Foreground model
Generative probabilistic model

Gaussian shape pdf

Clutter model
Uniform shape pdfProb. of detection

0.8 0.75

0.9

# detections

pPoisson(N2|λλλλ2)

pPoisson(N1|λλλλ1)

pPoisson(N3|λλλλ3)

Assumptions: (a) Clutter independent of foreground detections
(b) Clutter detections independent of each other

Example
1. Object Part Positions

3a. N false detect2. Part Absence

N1

N2

3b. Position f. detect

N3
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Learning Models `Manually’

• Obtain set of training images

• Label parts by hand, train detectors

• Learn model from labeled parts

• Choose parts
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Recognition
1. Run part detectors exhaustively over image
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2. Try different combinations of detections in model
- Allow detections to be missing (occlusion)

3. Pick hypothesis which maximizes:

4. If ratio is above threshold then, instance detected
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HypClutterDatap

HypObjectDatap
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So far…..
• Representation

– Joint model of part locations
– Ability to deal with background clutter and occlusions

• Learning
– Manual construction of part detectors
– Estimate parameters of shape density

• Recognition
– Run part detectors over image
– Try combinations of features in model
– Use efficient search techniques to make fast 
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Unsupervised Learning
Weber & Welling et. al.
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(Semi) Unsupervised learning

•Know if image contains object or not
•But no segmentation of object or manual selection of features
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Unsupervised detector training - 1

• Highly textured neighborhoods are selected automatically
• produces 100-1000 patterns per image

10

10
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Unsupervised detector training - 2

“Pattern Space” (100+ dimensions)
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Unsupervised detector training - 3

100-1000 images ~100 detectors
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• Task: Estimation of model parameters

Learning

• Let the assignments be a hidden variable and use EM algorithm to 
learn them and the model parameters

• Chicken and Egg type problem, since we initially know neither:

- Model parameters

- Assignment of regions to foreground / background

• Take training images. Pick set of detectors. Apply detectors.
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ML using EM
1. Current estimate

...

Image 1 Image 2 Image i

2. Assign probabilities to constellations

Large P

Small P

3. Use probabilities as weights to re-estimate parameters. Example: µµµµ

Large P x + Small P x

pdf

new estimate of µµµµ

+   …   =
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Detector Selection

Parameter
Estimation

Choice 1

Choice 2
Parameter
Estimation

Model 1

Model 2

Predict / measure model performance
(validation set or directly from model)

Detectors (≈100)

•Try out different combinations of detectors 
(Greedy search)
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Frontal Views of Faces

• 200 Images (100 training, 100 testing)

• 30 people, different for training and testing
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Learned face model
Pre-selected Parts

Model Foreground pdf

Sample Detection

Parts in Model

Test Error: 6% (4 Parts)
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Face images

28-Nov-1129



Lecture 16 -Fei-Fei Li

Background images
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Preselected Parts

Model Foreground pdf

Sample Detection

Parts in Model

Car from Rear
Test Error: 13% (5 Parts)
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Detections of Cars
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Background Images
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3D Object recognition – Multiple mixture 
components
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3D Orientation Tuning

Frontal Profile
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So far (2)…..
• Representation

– Multiple mixture components for different viewpoints

• Learning
– Now semi-unsupervised
– Automatic construction and selection of part detectors
– Estimation of parameters using EM

• Recognition
– As before

• Issues:
-Learning is slow (many combinations of detectors)
-Appearance learnt first, then shape
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Issues
• Speed of learning

– Slow (many combinations of detectors)

• Appearance learnt first, then shape
– Difficult to learn part that has stable location but 

variable appearance
– Each detector is used as a cross-correlation filter, 

giving a hard definition of the part’s appearance

• Would like a fully probabilistic representation of 
the object
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Object categorization

Fergus et. al.

CVPR ’03, IJCV ‘06
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Detection & Representation of regions

Appearance

Location

Scale

(x,y) coords. of region centre

Radius of region (pixels)

11x11 patchNormalize
Projection onto

PCA basis

c1

c2

c15

…
…

…
..

Gives representation of appearance in low-dimensional vector space

• Find regions within image

• Use salient region operator
(Kadir & Brady 01)
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Motorbikes example
•Kadir & Brady saliency region detector
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Foreground model
Gaussian shape pdf

Poission pdf on # 
detections

Uniform shape pdf

Generative probabilistic model (2)

Clutter model

Gaussian part appearance pdf

Gaussian background 
appearance pdf

Prob. of detection

0.8 0.75 0.9

Gaussian 
relative scale pdf

log(scale)

Uniform
relative scale pdf

log(scale)

based on Burl, Weber et al. [ECCV ’98, ’00]

28-Nov-1141



Lecture 16 -Fei-Fei Li

Motorbikes
Samples from appearance model
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Recognized Motorbikes
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Background images evaluated with 
motorbike model
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Frontal faces
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Airplanes
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Spotted cats
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Summary of results

Dataset
Fixed scale 
experiment

Scale invariant 
experiment

Motorbikes 7.5 6.7

Faces 4.6 4.6

Airplanes 9.8 7.0

Cars (Rear) 15.2 9.7

Spotted cats 10.0 10.0

% equal error rate
Note: Within each series, same settings used for all datasets
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Comparison to other methods

Dataset Ours Others

Motorbikes 7.5 16.0
Weber et al. 
[ECCV ‘00]

Faces 4.6 6.0 Weber

Airplanes 9.8 32.0 Weber

Cars (Side) 11.5 21.0
Agarwal

Roth 
[ECCV ’02]

�% equal error rate
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Why this design?

• Generic features seem to well in finding consistent parts 
of the object

• Some categories perform badly – different feature types 
needed

• Why PCA representation?
– Tried ICA, FLD, Oriented filter responses etc.
– But PCA worked best

• Fully probabilistic representation lets us use tools from 
machine learning community
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S. Savarese, 2003
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One-Shot learning
Fei-Fei et. al.

ICCV ’03, PAMI ‘06
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Algorithm
Training 

Examples
Categories

Burl, et al. Weber, 
et al. Fergus, et al.

200 ~ 400
Faces, Motorbikes, 

Spotted cats, Airplanes, 
Cars

Viola et al. ~10,000 Faces

Schneiderman, et 
al. ~2,000 Faces, Cars

Rowley 
et al.

~500 Faces
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6 part Motorbike model
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How do we do better than what 
statisticians have told us?

• Intuition 1: use Prior information

• Intuition 2: make best use of training information
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Prior knowledge: means

ShapeAppearance
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Bayesian framework

P(object | test, train)  vs.  P(clutter | test, train)

)object()trainobject,|test( pp

Bayes Rule

θθθ dpp∫ )trainobject,|()object,|test(

Expansion by parametrization
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( )MLθδPrevious Work:

Bayesian framework

P(object | test, train)  vs.  P(clutter | test, train)

)object()trainobject,|test( pp

Bayes Rule

θθθ dpp∫ )trainobject,|()object,|test(

Expansion by parametrization
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One-Shot learning: ( ) ( )θθ pp object,train

Bayesian framework

P(object | test, train)  vs.  P(clutter | test, train)

)object()trainobject,|test( pp

Bayes Rule

θθθ dpp∫ )trainobject,|()object,|test(

Expansion by parametrization
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θθθθ1

θθθθ2θθθθn

model ( θθθθ) space

Each object model θθθθ

Gaussian shape pdf
Gaussian part

appearance pdf

Model Structure
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θθθθ2θθθθn

model distribution: p( θθθθ)
• conjugate distribution of p(train| θθθθ,object)

θθθθ1

model ( θθθθ) space

Each object model θθθθ

Gaussian shape pdf
Gaussian part

appearance pdf

Model Structure
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Learning Model Distribution

• use Prior information

• Bayesian learning

• marginalize over theta

� Variational EM (Attias, Hinton, Minka, etc.)

( ) ( ) ( )θθθ ppp object ,train trainobject, ∝
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E-Step

Random 
initializationVariational EM

prior knowledge of p(θθθθ)

new estimate 
of p( θθθθ|train)

M-Step

new θθθθ’s
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Experiments

Training:

1- 6 randomly 

drawn images 

Testing:

50 fg/ 50 bg images

object present/absent 

Datasets

spotted catsairplanes motorbikes
faces
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Faces

Airplanes

Motorbikes

Spotted cats
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Experiments: obtaining priors

spotted cats

airplanes

motorbikes

faces

model ( θθθθ) space
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Experiments: obtaining priors

spotted cats

faces

airplanes

motorbikes

model ( θθθθ) space
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Number of training examples
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Number of training examples
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Number of training examples
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Number of training examples
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Algorithm
Training 

Examples
Categories

Results(e
rror)

Burl, et al. Weber, 
et al. Fergus, et al.

200 ~ 400
Faces, Motorbikes, 

Spotted cats, Airplanes, 
Cars

5.6  - 10 
%

Viola et al. ~10,000 Faces 7-21%

Schneiderman, et 
al. ~2,000 Faces, Cars 5.6 – 17%

Rowley 
et al.

~500 Faces
7.5 –

24.1%

Bayesian
One-Shot 1 ~ 5 Faces, Motorbikes, 

Spotted cats, Airplanes
8 –

15 %
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What we have learned today?
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• Introduction

• Constellation model

– Weakly supervised training

– One-shot learning

• (Problem Set 4 (Q1))


