

Fei-Fei Li Lecture 16 - 1 18-Nov-11

What we will learn today?

- Introduction
- Constellation model
 - Weakly supervised training
 - One-shot learning
- (Problem Set 4 (Q1))

Fei-Fei Li Lecture 16 - 2 18-Nov-11

Challenges: intra-class variation

Fei-Fei Li Lecture 16 - 3 18-Nov-11

Usual Challenges:

Variability due to:

- View point
- Illumination
- Occlusions

Fei-Fei Li Lecture 16 - 4 18-Nov-11

Basic issues

Representation

- 2D Bag of Words (BoW) models;
- Part-based models;
- Multi-view models;

Learning

- Generative & Discriminative BoW models
- Generative models
- Probabilistic Hough voting

Recognition

- Classification with BoW
- Classification with Part-based models

Fei-Fei Li Lecture 16 - 5 18-Nov-11

Basic issues

Representation

- 2D Bag of Words (BoW) models;
- Part-based models;
- Multi-view models;

Learning

- Generative & Discriminative BoW models
- Generative models
- Probabilistic Hough voting

Recognition

- Classification with BoW
- Classification with Part-based models

Fei-Fei Li Lecture 16 - 6 18-Nov-11

Basic issues

Representation

- 2D Bag of Words (BoW) models;
- Part-based models;
- Multi-view models (Lecture #19);

Learning

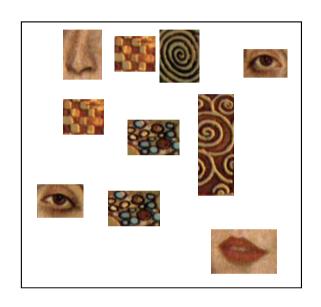
- Generative & Discriminative BoW models
- Generative models
- Probabilistic Hough voting

Recognition

- Classification with BoW
- Classification with Part-based models

Fei-Fei Li Lecture 16 - 7 18-Nov-11

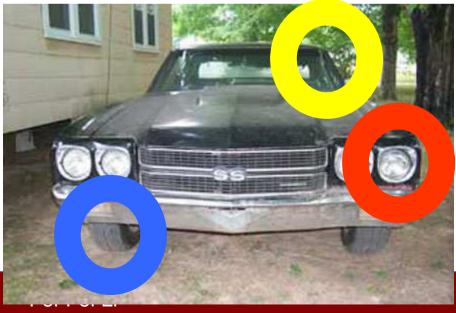
Problem with bag-of-words

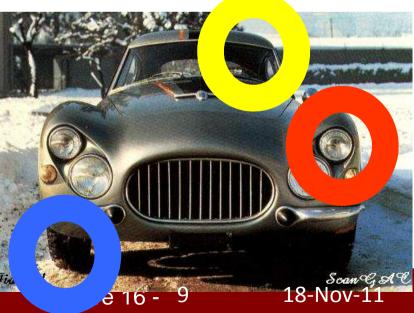


- All have equal probability for bag-of-words methods
- Location information is important

Fei-Fei Li Lecture 16 - 8 18-Nov-11

Model: Parts and Structure

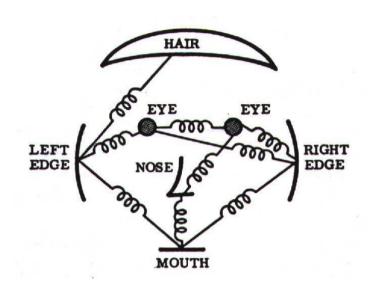




Parts and Structure Literature

Fischler & Elschlager 1973

- Yuille '91
- Brunelli & Poggio '93
- Lades, v.d. Malsburg et al. '93
- Cootes, Lanitis, Taylor et al. '95
- Amit & Geman '95, '99
- et al. Perona '95, '96, '98, '00, '03
- Huttenlocher et al. '00
- Agarwal & Roth '02 etc...



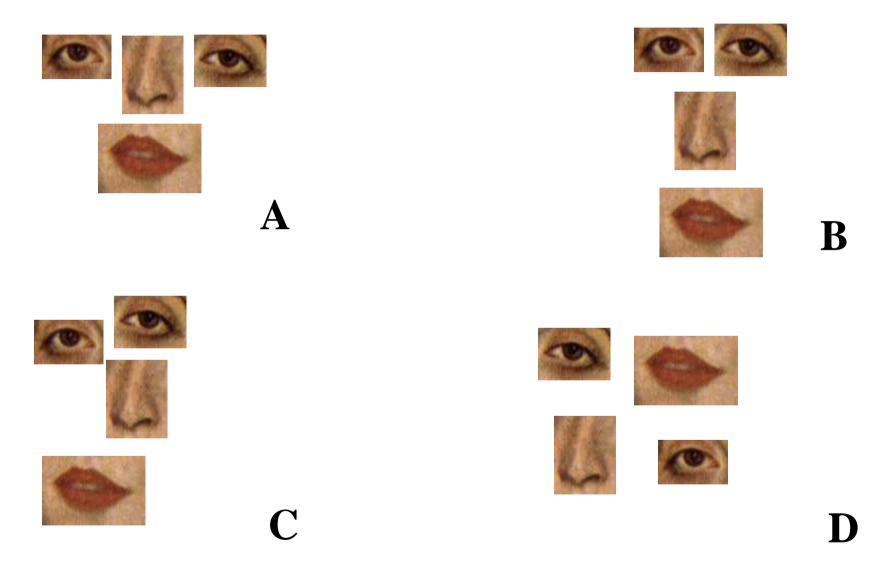
Fei-Fei Li Lecture 16 - 10 18-Nov-11

The Constellation Model

T. Leung	Representation	Shape statistics – F&G '95 Affine invariant shape – CVPR '98
M. Burl	►Detection •	CVPR '96 ECCV '98
M. Weber M. Welling	Unsupervised Learning	ECCV '00 Multiple views - F&G '00 Discovering categories - CVPR '00
R. Fergus	Joint shape & appearance learning Generic feature detectors	CVPR '03 Polluted datasets - ECCV '04
L. Fei-Fei —	One-Shot Learning Incremental learning	ICCV '03 CVPR '04

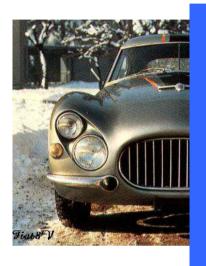
Fei-Fei Li Lecture 16 - 11 18-Nov-11

Deformations



Fei-Fei Li Lecture 16 - 12 18-Nov-11

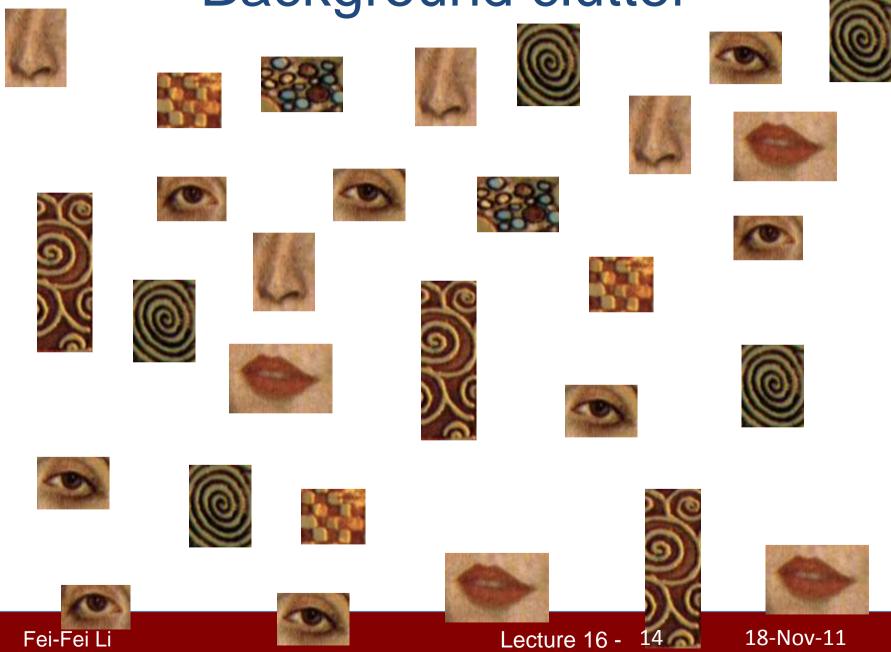
Presence / Absence of Features



occlusion

Fei-Fei Li Lecture 16 - 13 18-Nov-11

Background clutter

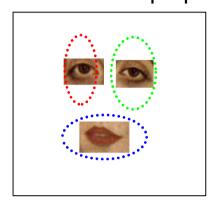


Generative probabilistic model

Foreground model

Clutter model

Gaussian shape pdf



Prob. of detection

0.8

0.75

Uniform shape pdf

detections $p_{\text{Poisson}}(N_1/\lambda_1)$ $p_{\text{Poisson}}(N_2/\lambda_2)$ $p_{\text{Poisson}}(N_3/\lambda_3)$

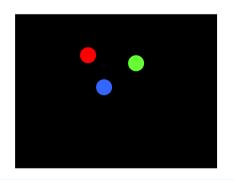
Assumptions: (a) Clutter independent of foreground detections

2. Part Absence

(b) Clutter detections independent of each other

Example

1. Object Part Positions

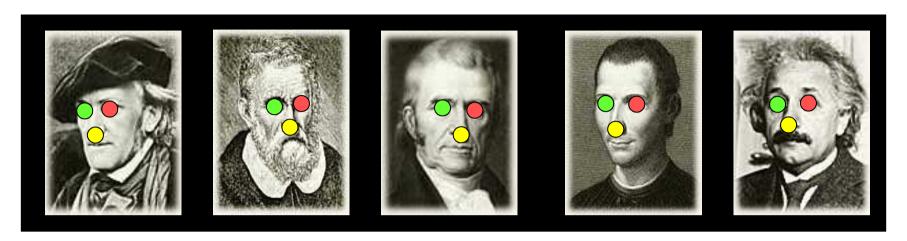


 N_1 N_2 N_3

3b. Position f. detect

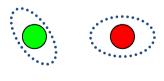
Fei-Fei Li Lecture 16 - 15 18-Nov-11

Learning Models `Manually'



- Obtain set of training images
- Choose parts

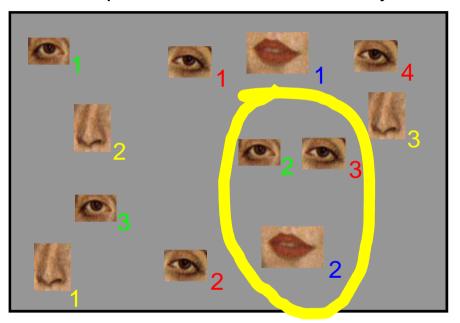
- Label parts by hand, train detectors
- Learn model from labeled parts



Fei-Fei Li Lecture 16 - 16 18-Nov-11

Recognition

1. Run part detectors exhaustively over image



$$h = \begin{pmatrix} \mathbf{0} \dots N_1 \\ \mathbf{0} \dots N_2 \\ \mathbf{0} \dots N_3 \\ \mathbf{0} \dots N_4 \end{pmatrix}$$

e.g.
$$h = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 2 \end{pmatrix}$$

- 2. Try different combinations of detections in model
 - Allow detections to be missing (occlusion)
- 3. Pick hypothesis which maximizes:

$$\frac{p(Data \mid Object, Hyp)}{p(Data \mid Clutter, Hyp)}$$

4. If ratio is above threshold then, instance detected

So far.....

- Representation
 - Joint model of part locations
 - Ability to deal with background clutter and occlusions
- Learning
 - Manual construction of part detectors
 - Estimate parameters of shape density
- Recognition
 - Run part detectors over image
 - Try combinations of features in model
 - Use efficient search techniques to make fast

Fei-Fei Li Lecture 16 - 18 18-Nov-11

Unsupervised Learning

Weber & Welling et. al.

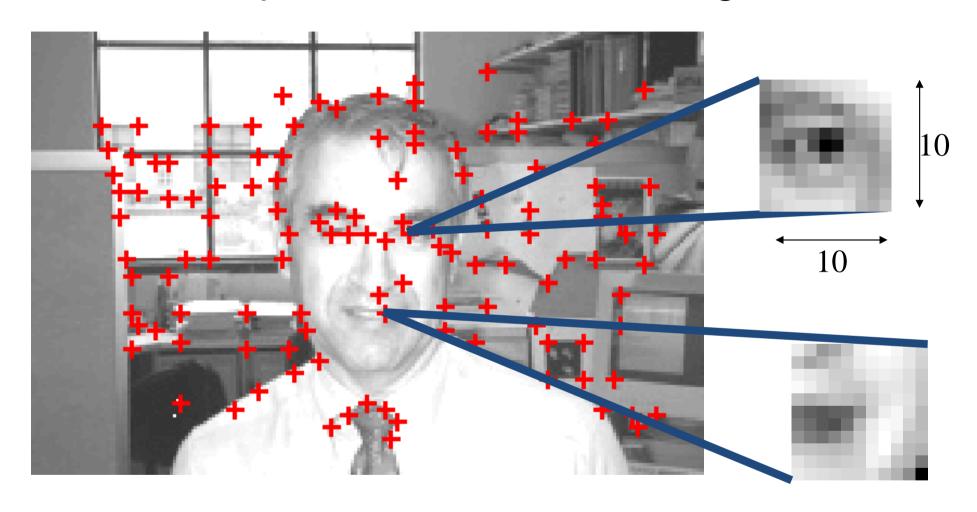
Fei-Fei Li Lecture 16 - 19 18-Nov-11

(Semi) Unsupervised learning

- •Know if image contains object or not
- •But no segmentation of object or manual selection of features

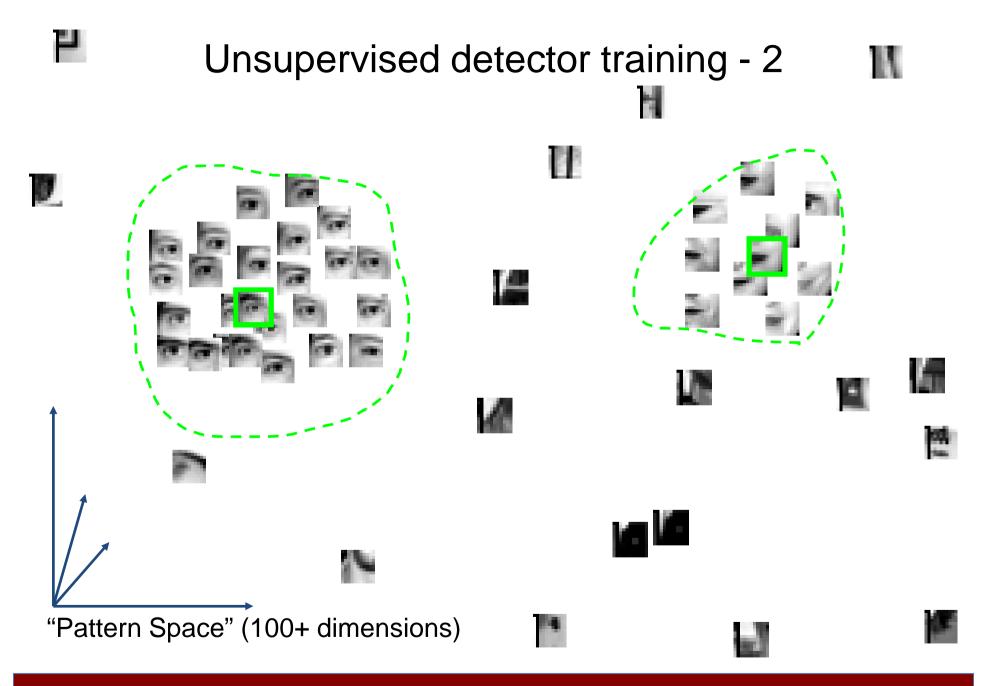
Fei-Fei Li Lecture 16 - 20 18-Nov-11

Unsupervised detector training - 1



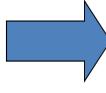
- Highly textured neighborhoods are selected automatically
- produces 100-1000 patterns per image

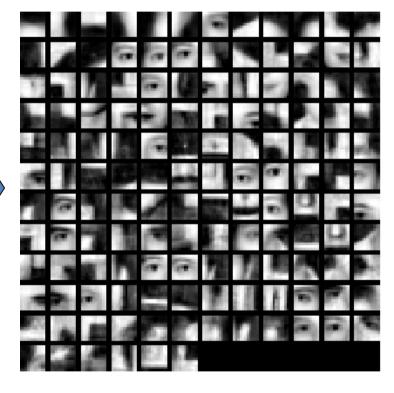
Fei-Fei Li Lecture 16 - 21 18-Nov-11



Fei-Fei Li Lecture 16 - 22 18-Nov-11

Unsupervised detector training - 3





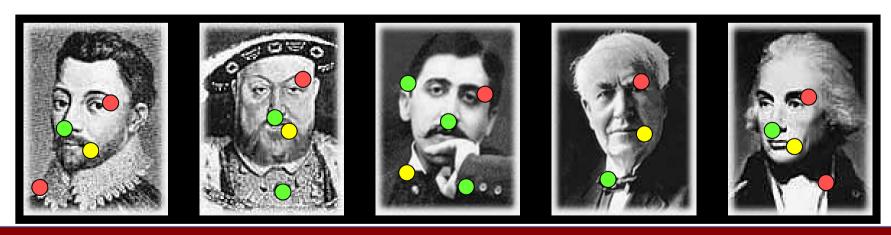
100-1000 images

~100 detectors

Fei-Fei Li Lecture 16 - 23 18-Nov-11

Learning

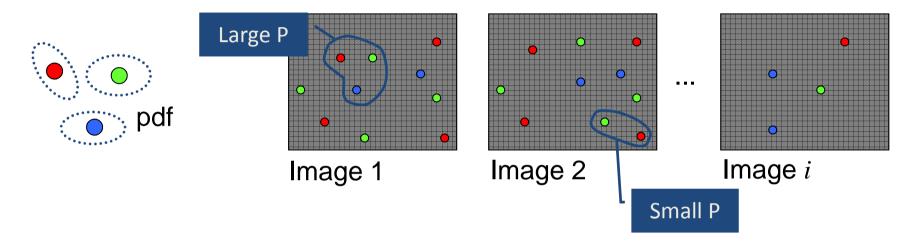
- Take training images. Pick set of detectors. Apply detectors.
- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground / background
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters



Fei-Fei Li Lecture 16 - 24 18-Nov-11

ML using EM

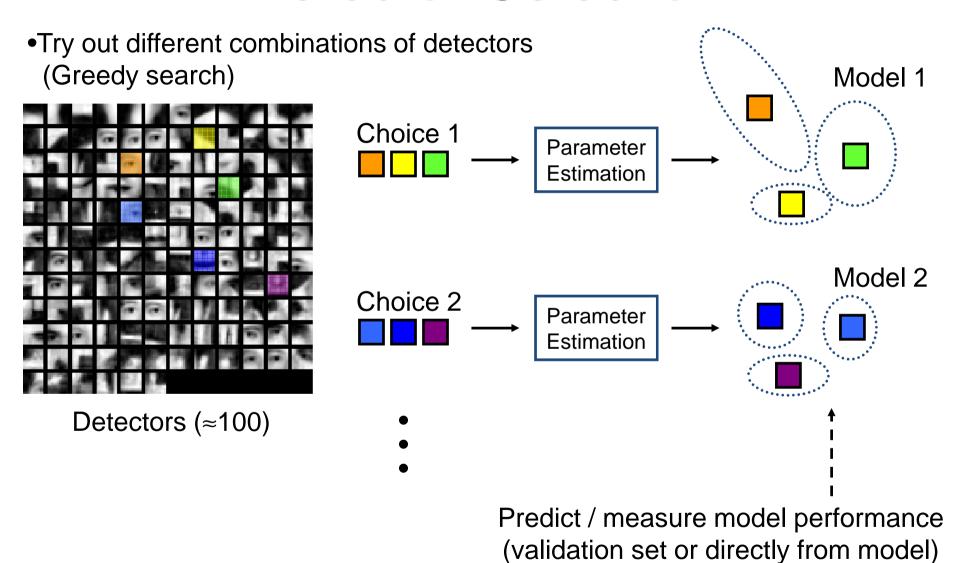
- 1. Current estimate
- 2. Assign probabilities to constellations



3. Use probabilities as weights to re-estimate parameters. Example: µ

Fei-Fei Li Lecture 16 - 25 18-Nov-11

Detector Selection



Fei-Fei Li Lecture 16 - 26 18-Nov-11

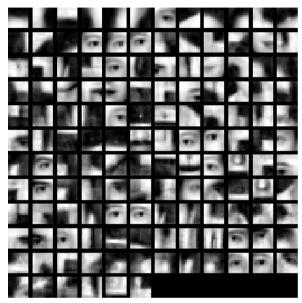
Frontal Views of Faces

- 200 Images (100 training, 100 testing)
- 30 people, different for training and testing

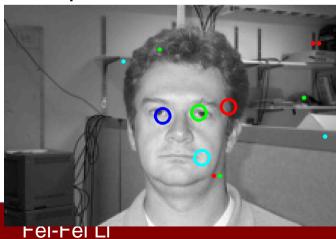
Fei-Fei Li Lecture 16 - 27 18-Nov-11

Learned face model

Pre-selected Parts

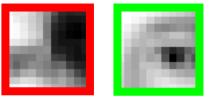


Sample Detection

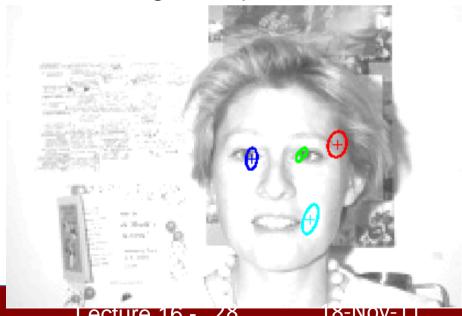


Test Error: 6% (4 Parts)

Parts in Model



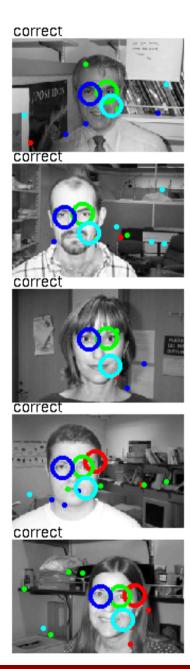
Model Foreground pdf

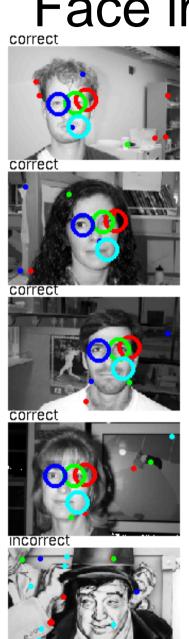


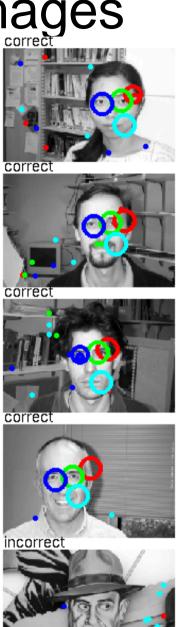
Lecture 16 -

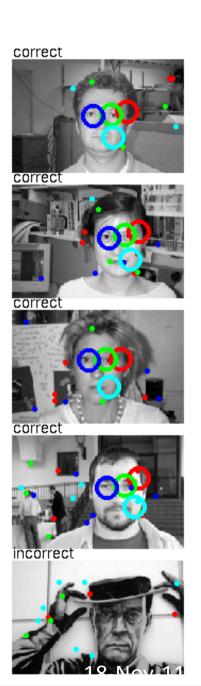
TR-NON-TT

Face images

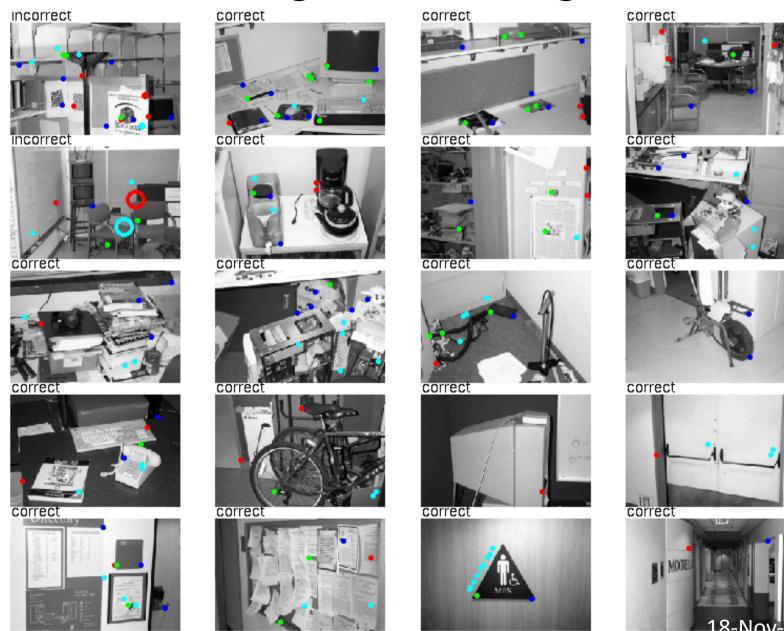






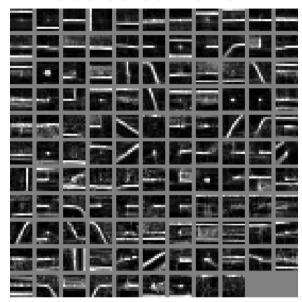


Background images



Car from Rear

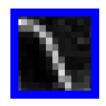
Preselected Parts



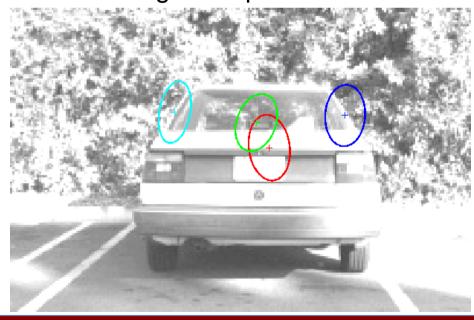
Sample Detection

Test Error: 13% (5 Parts)

Parts in Model



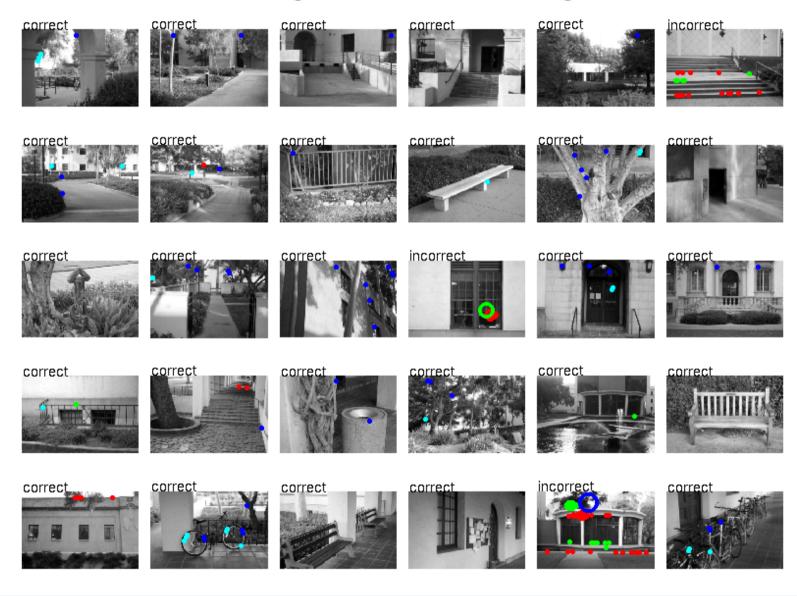
Model Foreground pdf



Detections of Cars

Fei-Fei Li Lecture 16 - 32 18-Nov-11

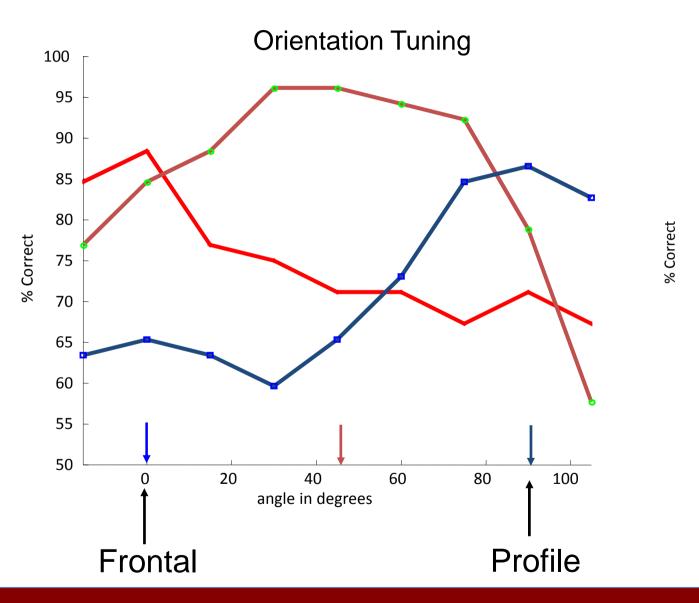
Background Images



3D Object recognition – Multiple mixture components

Fei-Fei Li Lecture 16 - 34 18-Nov-11

3D Orientation Tuning



Fei-Fei Li Lecture 16 - 35 18-Nov-11

So far (2).....

- Representation
 - Multiple mixture components for different viewpoints
- Learning
 - Now semi-unsupervised
 - Automatic construction and selection of part detectors
 - Estimation of parameters using EM
- Recognition
 - As before
- Issues:
 - -Learning is slow (many combinations of detectors)
 - -Appearance learnt first, then shape

Fei-Fei Li Lecture 16 - 36 18-Nov-11

Issues

- Speed of learning
 - Slow (many combinations of detectors)
- Appearance learnt first, then shape
 - Difficult to learn part that has stable location but variable appearance
 - Each detector is used as a cross-correlation filter, giving a hard definition of the part's appearance

 Would like a fully probabilistic representation of the object

Fei-Fei Li Lecture 16 - 37 18-Nov-11

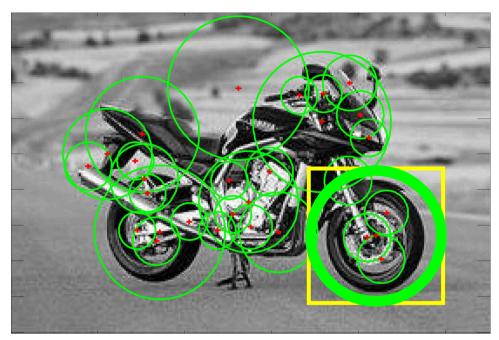
Object categorization

Fergus et. al.

CVPR '03, IJCV '06

Fei-Fei Li Lecture 16 - 38 18-Nov-11

Detection & Representation of regions



Appearance

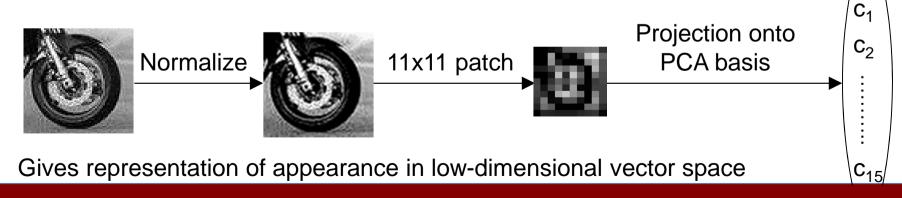
- Find regions within image
- Use salient region operator (Kadir & Brady 01)

Location

(x,y) coords. of region centre

Scale

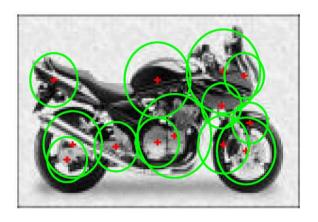
Radius of region (pixels)

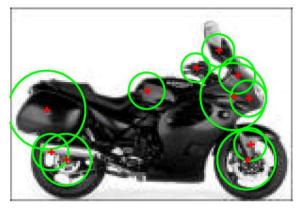


Fei-Fei Li Lecture 16 - 39 18-Nov-11

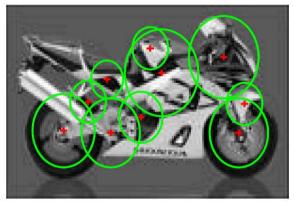
Motorbikes example

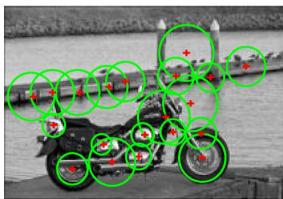
•Kadir & Brady saliency region detector











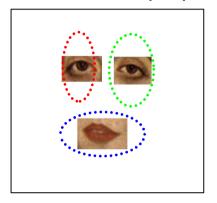
Fei-Fei Li Lecture 16 - 40 18-Nov-11

Generative probabilistic model (2)

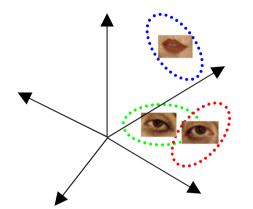
Foreground model

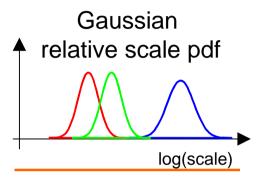
based on Burl, Weber et al. [ECCV '98, '00]

Gaussian shape pdf

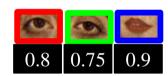


Gaussian part appearance pdf





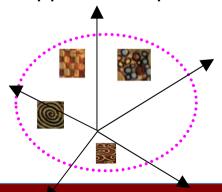
Prob. of detection



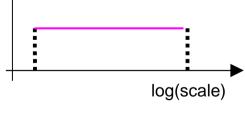
Clutter model

Uniform shape pdf

Gaussian background appearance pdf



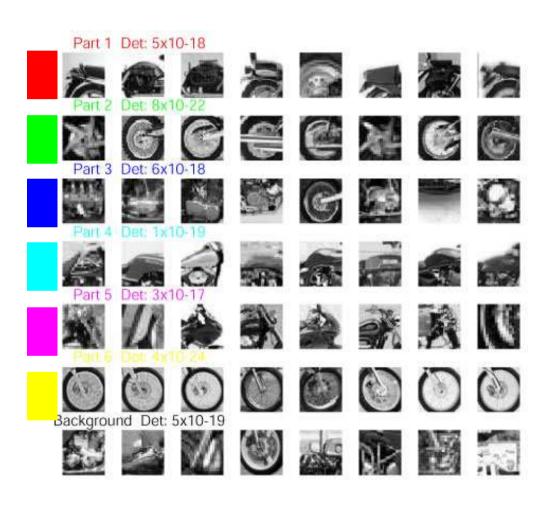
Uniform relative scale pdf



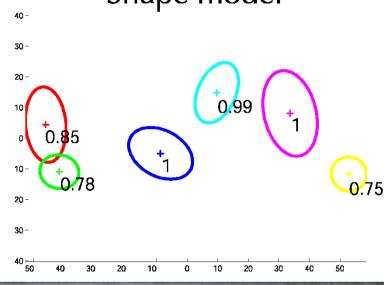
Poission pdf on # detections

Motorbikes

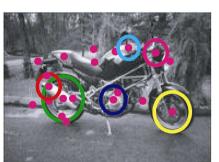
Samples from appearance model

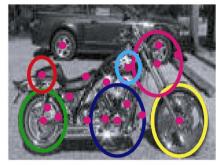


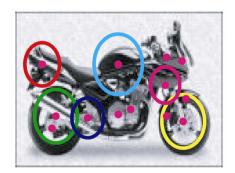
Shape model

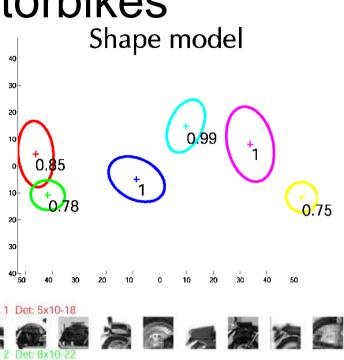


Recognized Motorbikes



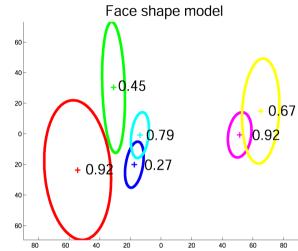


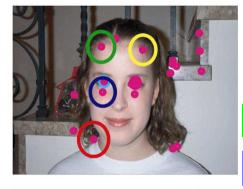


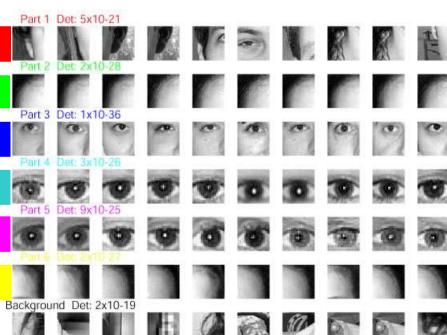


Background images evaluated with motorbike model

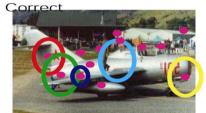
Frontal faces

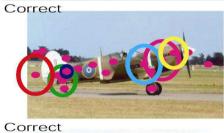


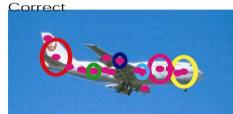


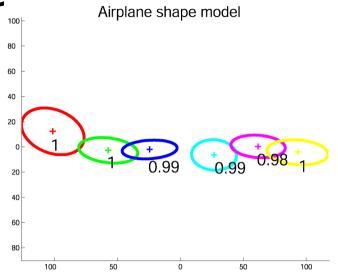


Airplanes

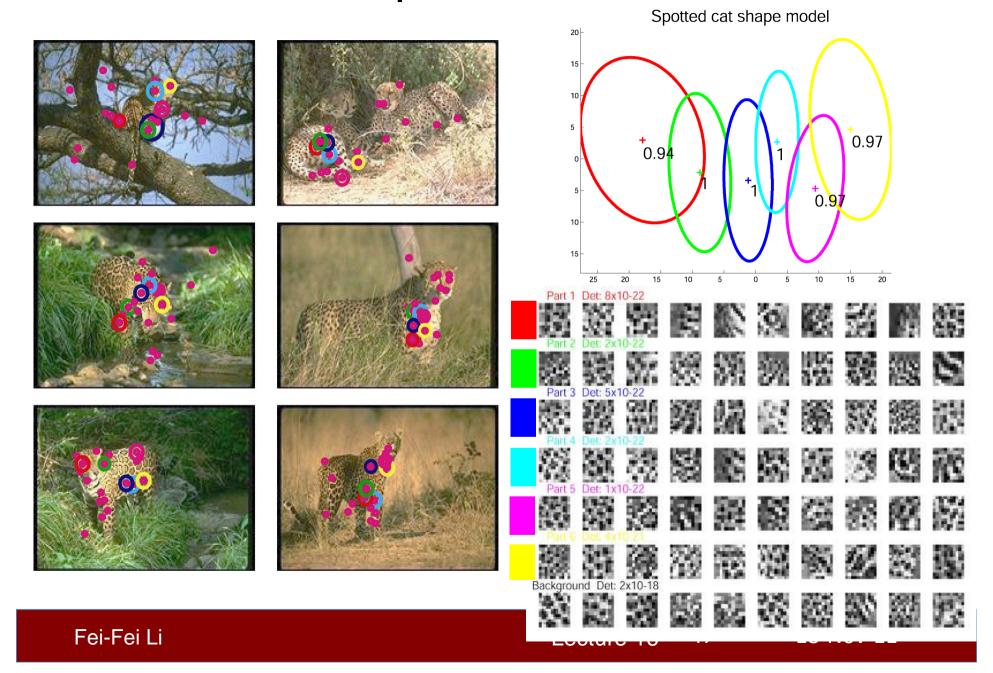








Spotted cats



Summary of results

Dataset	Fixed scale experiment	Scale invariant experiment	
Motorbikes	7.5	6.7	
Faces	4.6	4.6	
Airplanes	9.8	7.0	
Cars (Rear)	15.2	9.7	
Spotted cats	10.0	10.0	

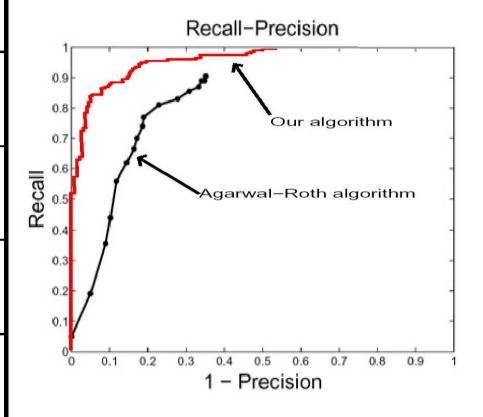
% equal error rate

Note: Within each series, same settings used for all datasets

Fei-Fei Li Lecture 16 - 48 18-Nov-11

Comparison to other methods

Dataset	Ours	Others	
Motorbikes	7.5	16.0	Weber et al. [ECCV '00]
Faces	4.6	6.0	Weber
Airplanes	9.8	32.0	Weber
Cars (Side)	11.5	21.0	Agarwal Roth [ECCV '02]



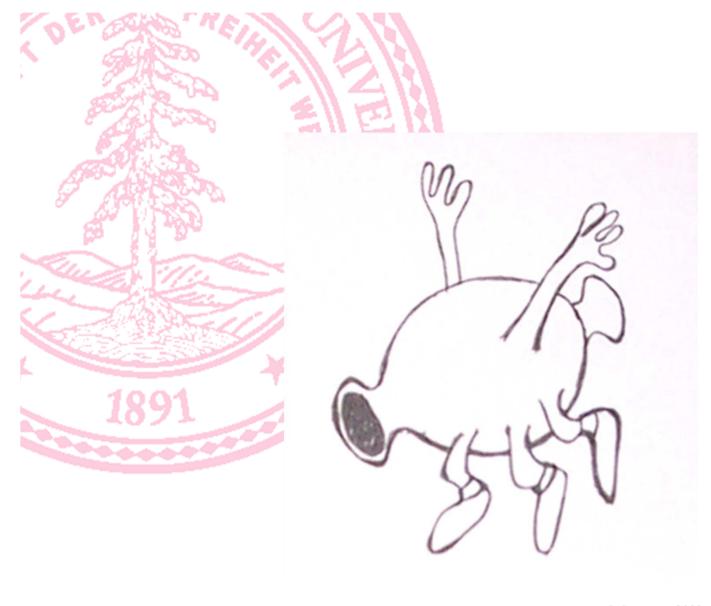
% equal error rate

Fei-Fei Li Lecture 16 - 49 18-Nov-11

Why this design?

- Generic features seem to well in finding consistent parts of the object
- Some categories perform badly different feature types needed
- Why PCA representation?
 - Tried ICA, FLD, Oriented filter responses etc.
 - But PCA worked best
- Fully probabilistic representation lets us use tools from machine learning community

Fei-Fei Li Lecture 16 - 50 18-Nov-11



S. Savarese, 2003

Fei-Fei Li Lecture 16 - 51 18-Nov-11

One-Shot learning Fei-Fei et. al.

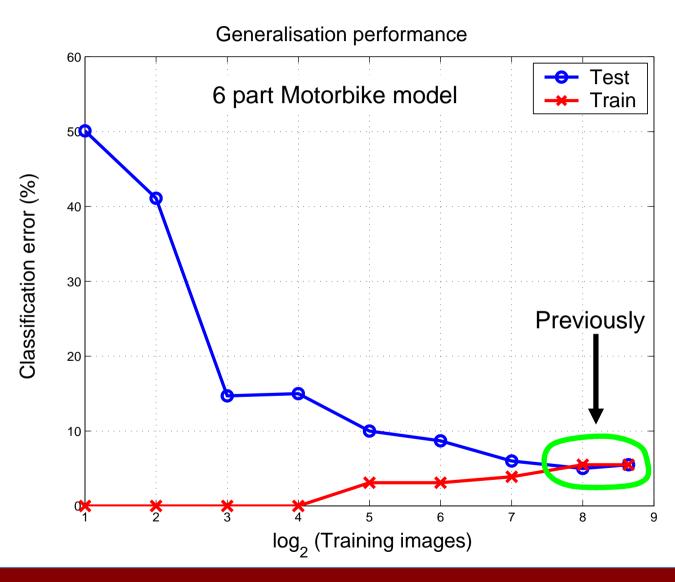
ICCV '03, PAMI '06

Fei-Fei Li Lecture 16 - 53 18-Nov-11

Algorithm	Training Examples	Categories	
Burl, et al. Weber, et al. Fergus, et al.	200 ~ 400	Faces, Motorbikes, Spotted cats, Airplanes, Cars	
Viola et al.	~10,000	Faces	
Schneiderman, et al.	~2,000	Faces, Cars	
Rowley et al. ~500		Faces	

Fei-Fei Li Lecture 16 - 54 18-Nov-11

Number of training examples



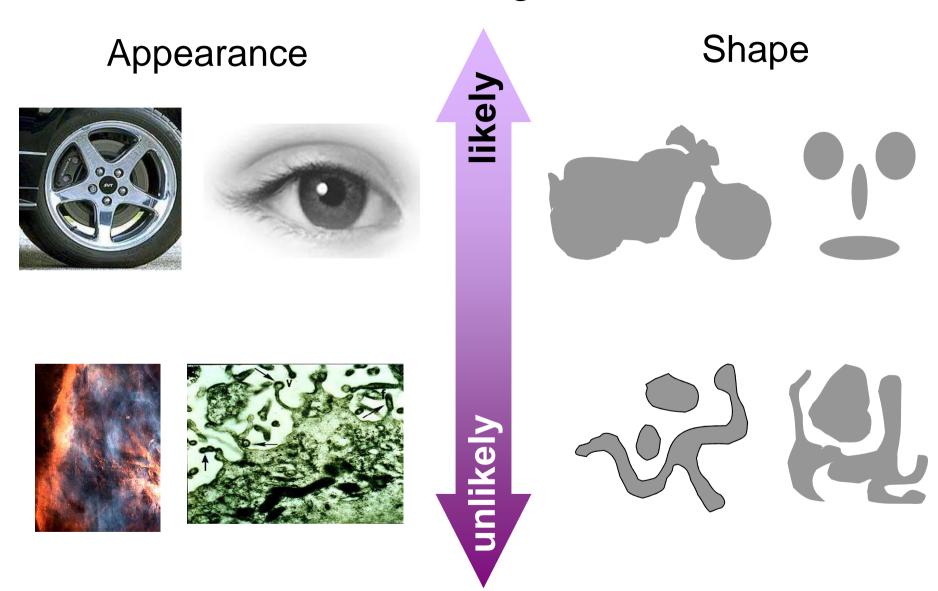
Fei-Fei Li Lecture 16 - 55 18-Nov-11

How do we do better than what statisticians have told us?

- Intuition 1: use Prior information
- Intuition 2: make best use of training information

Fei-Fei Li Lecture 16 - 56 18-Nov-11

Prior knowledge: means



Fei-Fei Li Lecture 16 - 57 18-Nov-11

Bayesian framework

P(object | test, train) vs. P(clutter | test, train)

Bayes Rule

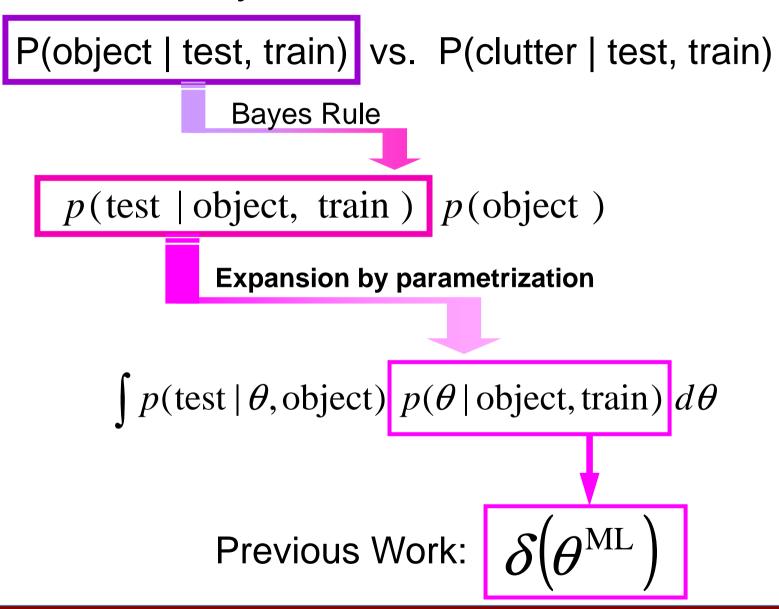
$$p(\text{test } | \text{object, train}) p(\text{object })$$

Expansion by parametrization

 $\int p(\text{test } | \theta, \text{object}) p(\theta | \text{object, train}) d\theta$

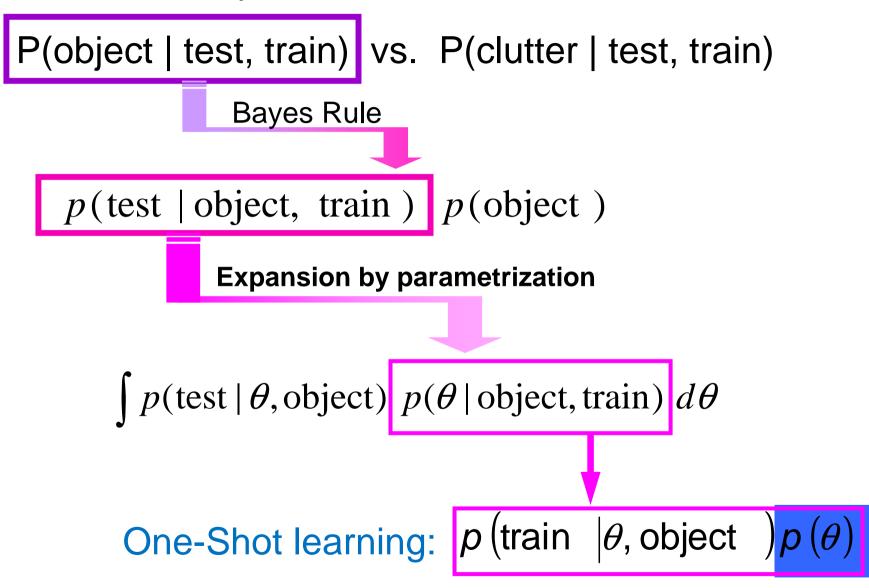
Fei-Fei Li Lecture 16 - 58 18-Nov-11

Bayesian framework



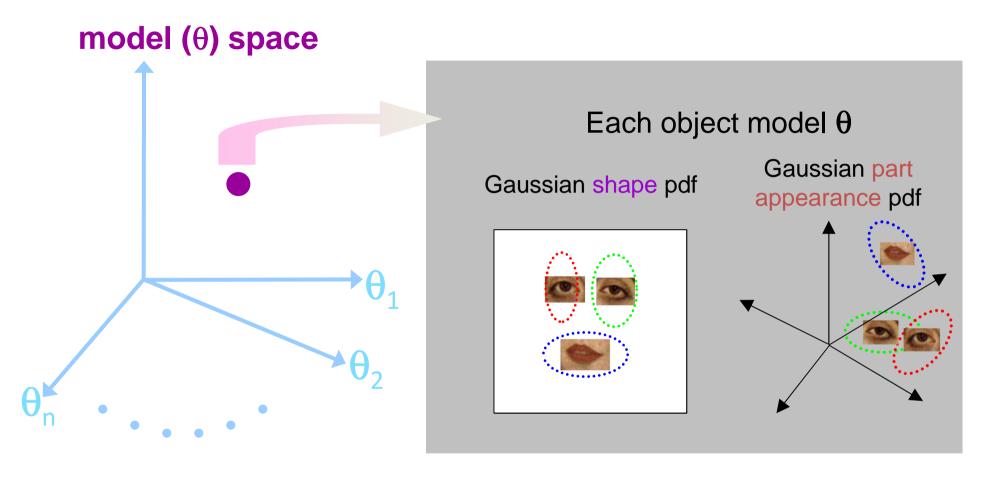
Fei-Fei Li Lecture 16 - 59 18-Nov-11

Bayesian framework



Fei-Fei Li Lecture 16 - 60 18-Nov-11

Model Structure



Fei-Fei Li Lecture 16 - 61 18-Nov-11

Model Structure

model (θ) space Each object model θ Gaussian part Gaussian shape pdf appearance pdf

model distribution: $p(\theta)$

• conjugate distribution of p(train|θ,object)

Fei-Fei Li Lecture 16 - 62 18-Nov-11

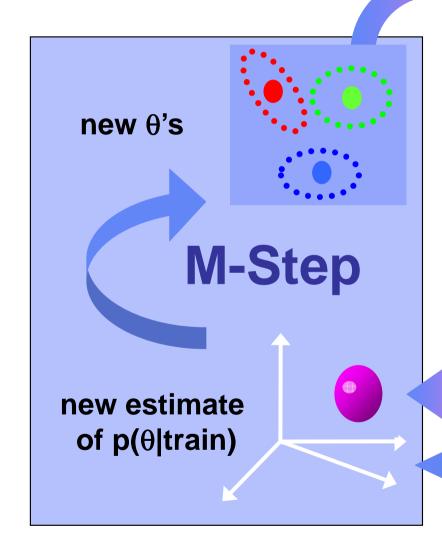
Learning Model Distribution

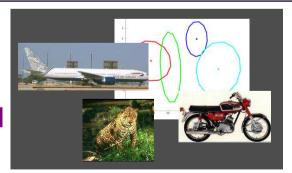
$$p(\theta|\text{object, train}) \propto p(\text{train}|\theta,\text{object})p(\theta)$$

- use Prior information
- Bayesian learning
 - marginalize over theta
 - ❖ Variational EM (Attias, Hinton, Minka, etc.)

Fei-Fei Li Lecture 16 - 63 18-Nov-11

Variational EM





prior knowledge of $p(\theta)$

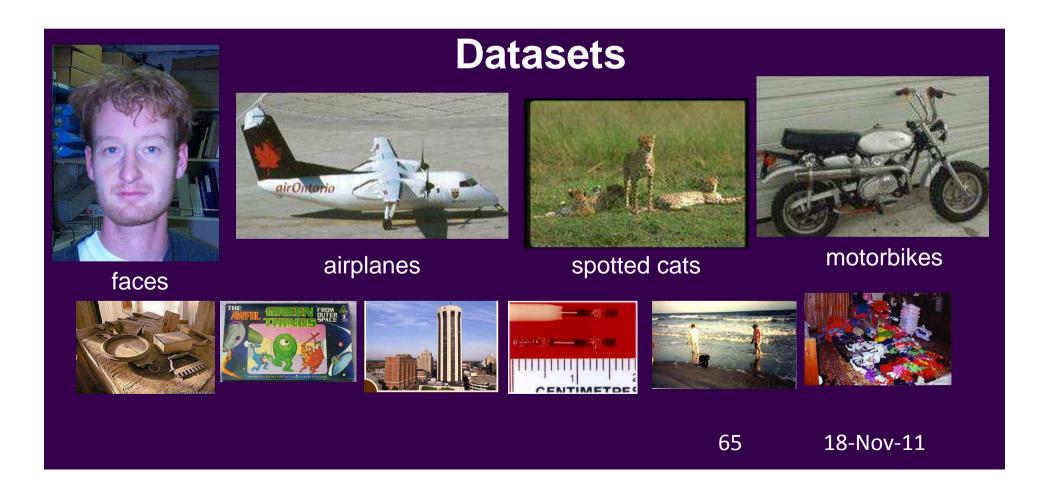
Fei-Fei Li Lecture 16 - 64 18-Nov-11

Experiments

Training: Testing:

1- 6 randomly 50 fg/ 50 bg images

drawn images object present/absent



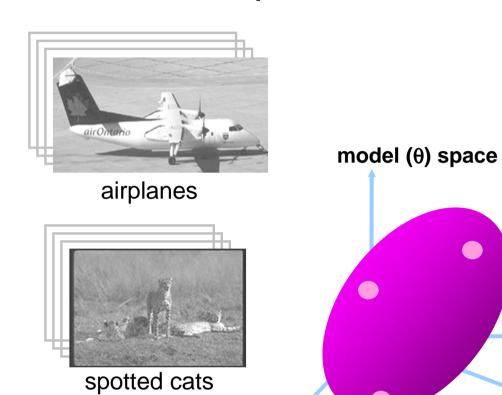
Faces

Motorbikes

Airplanes

Spotted cats

Experiments: obtaining priors

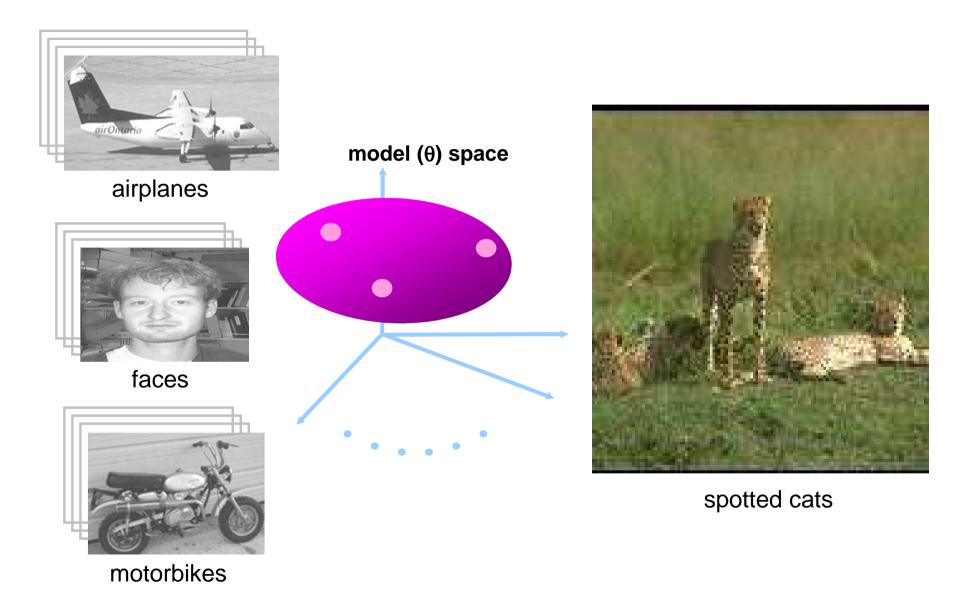


motorbikes

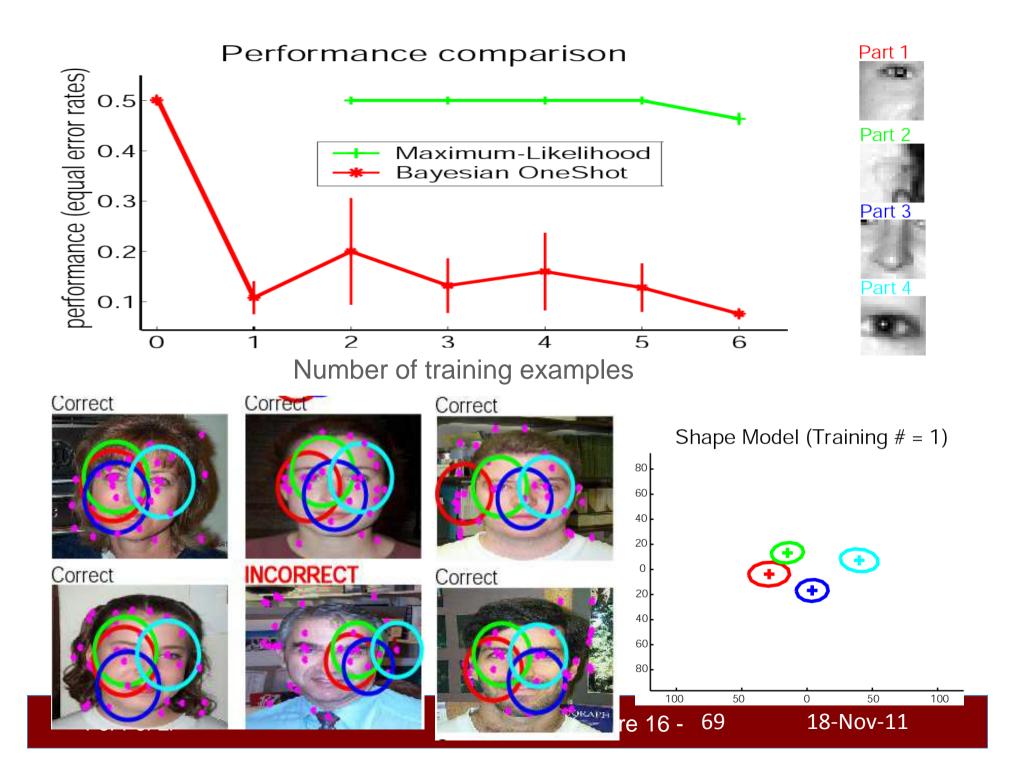
faces

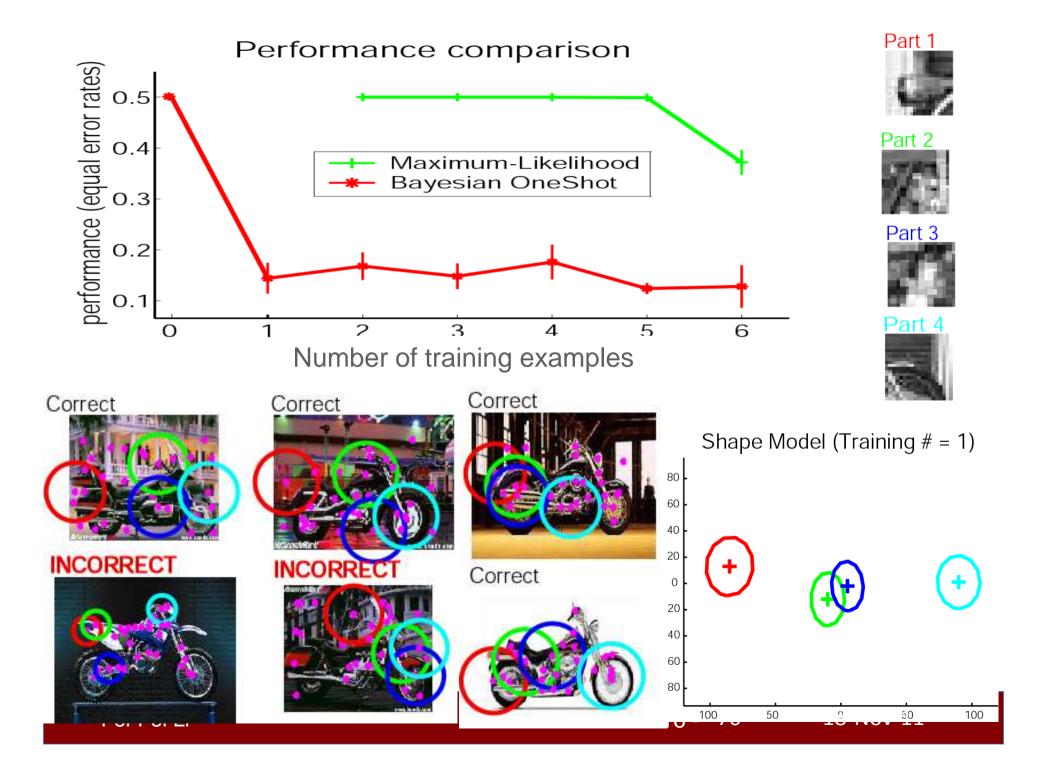
Fei-Fei Li Lecture 16 - 67 18-Nov-11

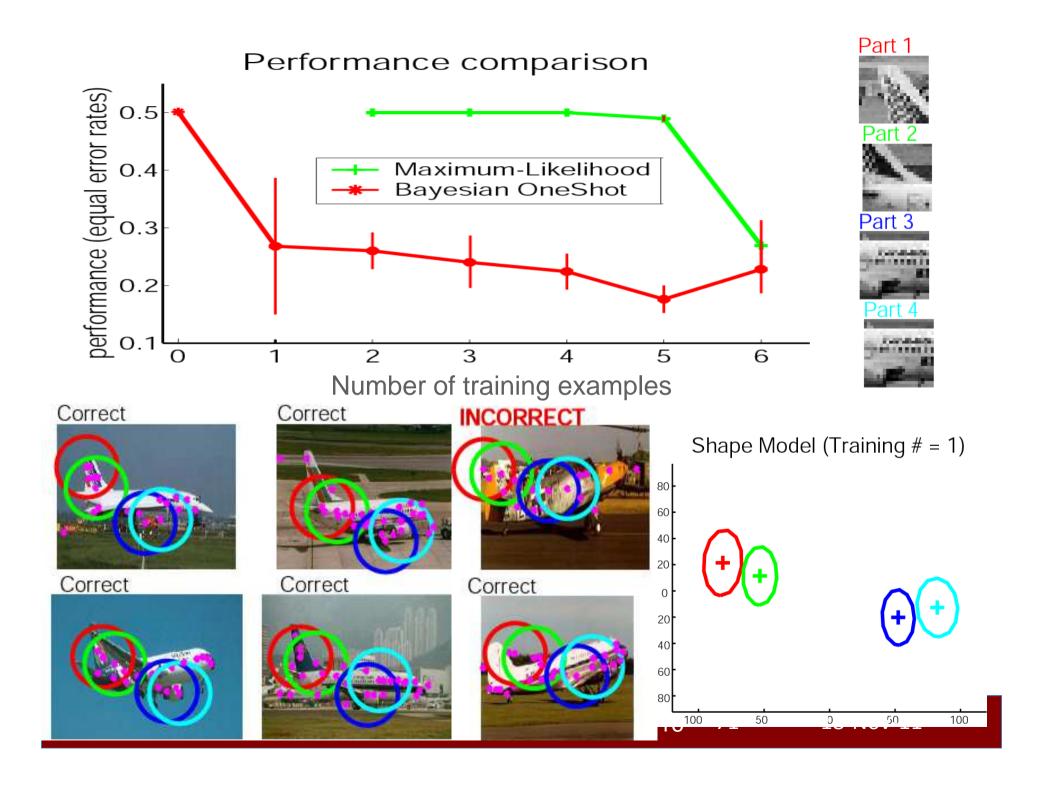
Experiments: obtaining priors

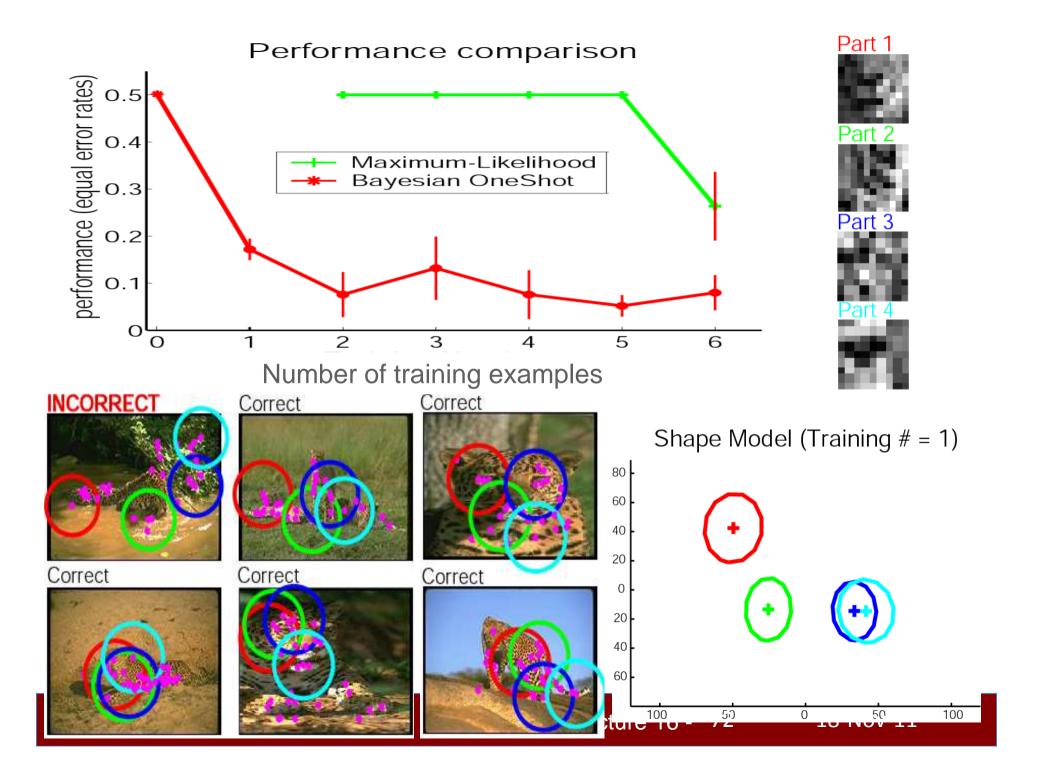


Fei-Fei Li Lecture 16 - 68 18-Nov-11









Algorithm	Training Examples	Categories	Results(e rror)
Burl, et al. Weber, et al. Fergus, et al.	200 ~ 400	Faces, Motorbikes, Spotted cats, Airplanes, Cars	5.6 - 10 %
Viola et al.	~10,000	Faces	7-21%
Schneiderman, et al.	~2,000	Faces, Cars	5.6 – 17%
Rowley et al.	~500	Faces	7.5 – 24.1%
Bayesian One-Shot	1 ~ 5	Faces, Motorbikes, Spotted cats, Airplanes	8 – 15 %

Fei-Fei Li Lecture 16 - 73 18-Nov-11

What we have learned today?

- Introduction
- Constellation model
 - Weakly supervised training
 - One-shot learning
- (Problem Set 4 (Q1))

Fei-Fei Li Lecture 16 - 74 18-Nov-11