Lecture 15:
Object recognition:
Bag of Words models &
Part-based generative models

Professor Fei-Fei Li
Stanford Vision Lab
Basic issues

• Representation
 – How to represent an object category; which classification scheme?

• Learning
 – How to learn the classifier, given training data

• Recognition
 – How the classifier is to be used on novel data
What we will learn today?

- Bag of Words model (Problem Set 4 (Q2))
 - Basic representation
 - Different learning and recognition algorithms
- Constellation model
 - Weakly supervised training
 - One-shot learning (supplementary materials)
- (Problem Set 4 (Q1))
Part 1: Bag-of-words models

This segment is based on the tutorial “Recognizing and Learning Object Categories: Year 2007”, by Prof L. Fei-Fei, A. Torralba, and R. Fergus
Related works

• Early “bag of words” models: mostly texture recognition

• Hierarchical Bayesian models for documents (pLSA, LDA, etc.)
 – Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal & Blei, 2004

• Object categorization
 – Csurka, Bray, Dance & Fan, 2004; Sivic, Russell, Efros, Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman & Willsky, 2005;

• Natural scene categorization
 – Vogel & Schiele, 2004; Fei-Fei & Perona, 2005; Bosch, Zisserman & Munoz, 2006
Object ➔ Bag of ‘words’
Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach us through our eyes. For a long time it was thought that the retinal image was assimilated in the visual centers in the same way as a movie strip is assimilated in the image of a moving picture. We now know that this is not the case. Perception is actually a very more complex process. Following the various sensory paths to the various cell layers of the cerebral cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004’s $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% increase in exports to $750bn, compared with 2004’s $560bn, and a 9% increase in imports to $660bn. This is likely to annoy the US, which has long argued that China’s exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says it also needs to increase domestic demand so more goods are produced for the country. China has already increased the domestic yuan against the dollar by 1.9% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to rise freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
definition of “BoW”

– Independent features

face

bike

violin
definition of “BoW”

- Independent features
- histogram representation

codewords dictionary
Representation

- feature detection & representation
- image representation

recognition

- codewords dictionary
- category models (and/or) classifiers
- category decision

Learning

Fei-Fei Li
1. Feature detection and representation
1. Feature detection and representation

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
1. Feature detection and representation

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka, et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic, et al. 2005
1. Feature detection and representation

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- Interest point detector
 - Csurka, Bray, Dance & Fan, 2004
 - Fei-Fei & Perona, 2005
 - Sivic, Russell, Efros, Freeman & Zisserman, 2005

- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation based patches (Barnard, Duygulu, Forsyth, de Freitas, Blei, Jordan, 2003)
1. Feature detection and representation

Compute SIFT descriptor
[Lowe’99]

Normalize patch

Detect patches

[Mikołajczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, ’02]
[Sivic & Zisserman, ’03]

Slide credit: Josef Sivic
1. Feature detection and representation
2. Codewords dictionary formation
2. Codewords dictionary formation

Cluster center = code word

Clustering/vector quantization
2. Codewords dictionary formation

Fei-Fei et al. 2005
Image patch examples of codewords
Visual vocabularies: Issues

• How to choose vocabulary size?
 – Too small: visual words not representative of all patches
 – Too large: quantization artifacts, overfitting

• Computational efficiency
 – Vocabulary trees
 (Nister & Stewenius, 2006)
3. Bag of word representation

- Nearest neighbors assignment
- K-D tree search strategy

Codewords dictionary
3. Bag of word representation

Codewords dictionary

frequency

codewords
Representation

1. feature detection & representation

3. image representation

2. codewords dictionary
Learning and Recognition

1. Discriminative method:
 - NN
 - SVM

2. Generative method:
 - graphical models
Discriminative classifiers

category models

Model space

Class 1

Class N
Discriminative classifiers

Query image

Winning class: pink
Nearest Neighbors classifier

Query image

Winning class: pink

Model space

- Assign label of nearest training data point to each test data point
K-Nearest Neighbors classifier

- For a new point, find the k closest points from training data.
- Labels of the k points “vote” to classify.
- Works well provided there is lots of data and the distance function is good.

 Winning class: pink
K-Nearest Neighbors classifier

- Voronoi partitioning of feature space for 2-category 2-D and 3-D data
- For k dimensions: k-D tree = space-partitioning data structure for organizing points in a k-dimensional space
- Enable efficient search
Functions for comparing histograms

• L1 distance

\[D(h_1, h_2) = \sum_{i=1}^{N} |h_1(i) - h_2(i)| \]

• \(\chi^2 \) distance

\[D(h_1, h_2) = \sum_{i=1}^{N} \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)} \]

• Quadratic distance (cross-bin)

\[D(h_1, h_2) = \sum_{i,j} A_{ij} (h_1(i) - h_2(j))^2 \]

Jan Puzicha, Yossi Rubner, Carlo Tomasi, Joachim M. Buhmann: Empirical Evaluation of Dissimilarity Measures for Color and Texture. ICCV 1999
Learning and Recognition

1. Discriminative method:
 - NN
 - SVM

2. Generative method:
 - graphical models
Discriminative classifiers
(linear classifier)

category models

Class 1

Class N

Model space
Support vector machines

• Find hyperplane that maximizes the margin between the positive and negative examples

Support vectors: $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

Distance between point and hyperplane:

Margin = $\frac{2}{||\mathbf{w}||}$

Solution:

Classification function (decision boundary):

$\mathbf{w} \cdot \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b$
Support vector machines

• Classification

\[\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]

if \(\mathbf{x} \cdot \mathbf{w} + b \geq 0 \rightarrow \text{class 1} \)

if \(\mathbf{x} \cdot \mathbf{w} + b < 0 \rightarrow \text{class 2} \)

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:
Nonlinear SVMs

• General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:
Nonlinear SVMs

• Nonlinear decision boundary in the original feature space:

\[\sum_i \alpha_i y_i K(x_i, x) + b \]

• The kernel \(K = \) product of the lifting transformation \(\varphi(x) \):

\[K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j) \]

NOTE:
• It is not required to compute \(\varphi(x) \) explicitly:
• The kernel must satisfy the “Mercer inequality”

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998
Kernels for bags of features

• Histogram intersection kernel:

\[I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i)) \]

• Generalized Gaussian kernel:

\[K(h_1, h_2) = \exp \left(-\frac{1}{A} D(h_1, h_2)^2 \right) \]

• \(D \) can be Euclidean distance, \(\chi^2 \) distance etc...

Pyramid match kernel

- Fast approximation of Earth Mover’s Distance
- Weighted sum of histogram intersections at multiple resolutions (linear in the number of features instead of cubic)

Spatial Pyramid Matching

What about multi-class SVMs?

• No “definitive” multi-class SVM formulation
• In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs

• One vs. others
 – Training: learn an SVM for each class vs. the others
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• One vs. one
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example

Credit slide: S. Lazebnik
SVMs: Pros and cons

• Pros
 – Many publicly available SVM packages: http://www.kernel-machines.org/software
 – Kernel-based framework is very powerful, flexible
 – SVMs work very well in practice, even with very small training sample sizes

• Cons
 – No “direct” multi-class SVM, must combine two-class SVMs
 – Computation, memory
 • During training time, must compute matrix of kernel values for every pair of examples
 • Learning can take a very long time for large-scale problems
Object recognition results

- ETH-80 database of 8 object classes
 (Eichhorn and Chapelle 2004)
- Features:
 - Harris detector
 - PCA-SIFT descriptor, $d=10$

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Complexity</th>
<th>Recognition rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match [Wallraven et al.]</td>
<td>$O(dm^2)$</td>
<td>84%</td>
</tr>
<tr>
<td>Bhattacharyya affinity [Kondor & Jebara]</td>
<td>$O(dm^3)$</td>
<td>85%</td>
</tr>
<tr>
<td>Pyramid match</td>
<td>$O(dmL)$</td>
<td>84%</td>
</tr>
</tbody>
</table>
Discriminative models

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

10^6 examples

Support Vector Machines

Guyon, Vapnik, Heisele, Serre, Poggio...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Latent SVM

Felzenszwalb 00
Ramanan 03...

Structural SVM

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,...

Source: Vittorio Ferrari, Kristen Grauman, Antonio Torralba
Learning and Recognition

1. Discriminative method:
 - NN
 - SVM

2. Generative method:
 - graphical models

→ Model the probability distribution that produces a given bag of features
Generative models

1. Naïve Bayes classifier
 - Csurka Bray, Dance & Fan, 2004

2. Hierarchical Bayesian text models (pLSA and LDA)
 - Background: Hoffman 2001, Blei, Ng & Jordan, 2004
 - Natural scene categorization: Fei-Fei et al. 2005
Some notations

- **w**: a collection of all N codewords in the image
 \[w = [w_1, w_2, \ldots, w_N] \]

- **c**: category of the image
the Naïve Bayes model

Prior prob. of the object classes

Image likelihood given the class

Posterior = \(p(c \mid w) \propto p(c)p(w \mid c) \)

probability that image I is of category c
the Naïve Bayes model

\[c^* = \arg \max_c p(c | w) \propto p(c) p(w | c) = p(c) \prod_{n=1}^{N} p(w_n | c) \]

Object class decision

Likelihood of ith visual word given the class
Estimated by empirical frequencies of code words in images from a given class
Our in-house database contains 1776 images in seven classes1: faces, buildings, trees, cars, phones, bikes and books. Fig. 2 shows some examples from this dataset.

1Csurka et al. 2004
Table 1. Confusion matrix and the mean rank for the best vocabulary ($k=1000$).

<table>
<thead>
<tr>
<th>True classes</th>
<th>faces</th>
<th>buildings</th>
<th>trees</th>
<th>cars</th>
<th>phones</th>
<th>bikes</th>
<th>books</th>
</tr>
</thead>
<tbody>
<tr>
<td>faces</td>
<td>76</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>buildings</td>
<td>2</td>
<td>44</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>trees</td>
<td>3</td>
<td>2</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>cars</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>75</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>phones</td>
<td>9</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>70</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>bikes</td>
<td>2</td>
<td>15</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>books</td>
<td>4</td>
<td>19</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>Mean ranks</td>
<td>1.49</td>
<td>1.88</td>
<td>1.33</td>
<td>1.33</td>
<td>1.63</td>
<td>1.57</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Other generative BoW models

• Hierarchical Bayesian topic models (e.g. pLSA and LDA)
 – Natural scene categorization: Fei-Fei et al. 2005
Generative vs discriminative

• Discriminative methods
 – Computationally efficient & fast

• Generative models
 – Convenient for weakly- or un-supervised, incremental training
 – Prior information
 – Flexibility in modeling parameters
Weakness of BoW the models

• No rigorous geometric information of the object components
• It’s intuitive to most of us that objects are made of parts – no such information
• Not extensively tested yet for
 – View point invariance
 – Scale invariance
• Segmentation and localization unclear
What we will learn today?

- Bag of Words model (Problem Set 4 (Q2))
 - Basic representation
 - Different learning and recognition algorithms

- Constellation model
 - Weakly supervised training
 - One-shot learning (supplementary materials)

- (Problem Set 4 (Q1))
Model: Parts and Structure
Parts and Structure Literature

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Huttenlocher et al. ’00
- Agarwal & Roth ’02
- etc…
The Constellation Model

T. Leung → Representation
M. Burl → Detection

M. Weber
M. Welling → Unsupervised Learning

R. Fergus
L. Fei-Fei

Joint shape & appearance learning
Generic feature detectors
One-Shot Learning
Incremental learning

Shape statistics – F&G ’95
Affine invariant shape – CVPR ’98
CVPR ’96
ECCV ’98
ECCV ’00
Multiple views - F&G ’00
Discovering categories - CVPR ’00
CVPR ’03
Polluted datasets - ECCV ’04
ICCV ’03
CVPR ’04

Fei-Fei Li
Lecture 15 - 60
14-Nov-11
Deformations

A

B

C

D
Presence / Absence of Features
Background clutter
Generative probabilistic model

Foreground model

Gaussian shape pdf

Clutter model

Uniform shape pdf

Assumptions: (a) Clutter independent of foreground detections
(b) Clutter detections independent of each other

Example

1. Object Part Positions

2. Part Absence

3a. N false detect

3b. Position f. detect

Fei-Fei Li

Lecture 15 - 64

14-Nov-11
Learning Models `Manually’

- Obtain set of training images
- Choose parts
- Label parts by hand, train detectors
- Learn model from labeled parts
Recognition

1. Run part detectors exhaustively over image

\[
h = \begin{pmatrix}
0 \ldots N_1 \\
0 \ldots N_2 \\
0 \ldots N_3 \\
0 \ldots N_4
\end{pmatrix}
\]

\(\text{e.g. } h = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 2 \end{pmatrix} \)

2. Try different combinations of detections in model
 - Allow detections to be missing (occlusion)

3. Pick hypothesis which maximizes:
 \[\frac{p(\text{Data} \mid \text{Object}, \text{Hyp})}{p(\text{Data} \mid \text{Clutter}, \text{Hyp})} \]

4. If ratio is above threshold then, instance detected
So far.....

• Representation
 – Joint model of part locations
 – Ability to deal with background clutter and occlusions

• Learning
 – Manual construction of part detectors
 – Estimate parameters of shape density

• Recognition
 – Run part detectors over image
 – Try combinations of features in model
 – Use efficient search techniques to make fast
Unsupervised Learning
Weber & Welling et. al.
(Semi) Unsupervised learning

- Know if image contains object or not
- But no segmentation of object or manual selection of features
Unsupervised detector training - 1

- Highly textured neighborhoods are selected automatically
- produces 100-1000 patterns per image
Unsupervised detector training - 2

“Pattern Space” (100+ dimensions)
Unsupervised detector training - 3

100-1000 images ~100 detectors
Learning

• Take training images. Pick set of detectors. Apply detectors.

• Task: Estimation of model parameters

• Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground / background

• Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters
ML using EM

1. Current estimate

2. Assign probabilities to constellations

3. Use probabilities as weights to re-estimate parameters. Example: μ

$$\text{Large } P \times x + \text{Small } P \times x + \ldots = \text{new estimate of } \mu$$
Detector Selection

• Try out different combinations of detectors (Greedy search)

Detectors (≈ 100)

Choice 1

Choice 2

Predict / measure model performance (validation set or directly from model)
Frontal Views of Faces

- 200 Images (100 training, 100 testing)
- 30 people, different for training and testing
Learned face model

Pre-selected Parts

Test Error: 6% (4 Parts)

Parts in Model

Model Foreground pdf

Sample Detection
Face images
Background images
Car from Rear

Test Error: 13% (5 Parts)

Parts in Model

Model Foreground pdf

Preselected Parts

Sample Detection
Detections of Cars
Background Images
3D Object recognition – Multiple mixture components
3D Orientation Tuning

Orientation Tuning

% Correct

angle in degrees

Frontal Profile

Fei-Fei Li

Lecture 15 - 84 14-Nov-11
So far (2).....

• Representation
 – Multiple mixture components for different viewpoints

• Learning
 – Now semi-unsupervised
 – Automatic construction and selection of part detectors
 – Estimation of parameters using EM

• Recognition
 – As before

• Issues:
 - Learning is slow (many combinations of detectors)
 - Appearance learnt first, then shape
Issues

• Speed of learning
 – Slow (many combinations of detectors)

• Appearance learnt first, then shape
 – Difficult to learn part that has stable location but variable appearance
 – Each detector is used as a cross-correlation filter, giving a hard definition of the part’s appearance

• Would like a fully probabilistic representation of the object
Object categorization

Fergus et. al.

CVPR ’03, IJCV ‘06
Detection & Representation of regions

- Find regions within image
- Use salient region operator (Kadir & Brady 01)

Appearance

- Projection onto PCA basis
- Gives representation of appearance in low-dimensional vector space

Location

- \((x,y)\) coords. of region centre

Scale

- Radius of region (pixels)
Motorbikes example

• Kadir & Brady saliency region detector
Generative probabilistic model (2)

Forefront model

Gaussian shape pdf

Clutter model

Uniform shape pdf

Gaussian part appearance pdf

Gaussian background appearance pdf

Uniform relative scale pdf

Gaussian relative scale pdf

Poission pdf on # detections

Prob. of detection

based on Burl, Weber et al. [ECCV '98, '00]

Fei-Fei Li

Lecture 15 - 90

14-Nov-11
Motorbikes

Samples from appearance model

Shape model

Fei-Fei Li
Recognized Motorbikes

Shape model
Background images evaluated with motorbike model
Frontal faces
Airplanes

Correct

Correct

Correct

Correct

Airplane shape model

Part 1: Det: 3x10-19
Part 2: Det: 9x10-22
Part 3: Det: 1x10-23
Part 4: Det: 2x10-22
Part 5: Det: 7x10-24
Part 6: Det: 5x10-22
Background: Det: 1x10-20

Fei-Fei Li

Lecture 15 - 95 14-Nov-11
Spotted cats
Summary of results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Fixed scale experiment</th>
<th>Scale invariant experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorbikes</td>
<td>7.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Faces</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Airplanes</td>
<td>9.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Cars (Rear)</td>
<td>15.2</td>
<td>9.7</td>
</tr>
<tr>
<td>Spotted cats</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

% equal error rate

Note: Within each series, same settings used for all datasets
Comparison to other methods

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ours</th>
<th>Others</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorbikes</td>
<td>7.5</td>
<td>16.0</td>
<td>Weber et al. [ECCV ‘00]</td>
</tr>
<tr>
<td>Faces</td>
<td>4.6</td>
<td>6.0</td>
<td>Weber</td>
</tr>
<tr>
<td>Airplanes</td>
<td>9.8</td>
<td>32.0</td>
<td>Weber</td>
</tr>
<tr>
<td>Cars (Side)</td>
<td>11.5</td>
<td>21.0</td>
<td>Agarwal Roth [ECCV ’02]</td>
</tr>
</tbody>
</table>

% equal error rate

![Recall-Precision graph](image)
Why this design?

- Generic features seem to well in finding consistent parts of the object

- Some categories perform badly – different feature types needed

- Why PCA representation?
 - Tried ICA, FLD, Oriented filter responses etc.
 - But PCA worked best

- Fully probabilistic representation lets us use tools from machine learning community
What we have learned today?

• Bag of Words model *(Problem Set 4 (Q2))*
 – Basic representation
 – Different learning and recognition algorithms
• Constellation model
 – Weakly supervised training
 – One-shot learning *(supplementary materials)*
• *(Problem Set 4 (Q1))*
Supplementary materials

• One-Shot learning using Constellation Model
One-Shot learning
Fei-Fei et. al.

ICCV ’03, PAMI ‘06
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Examples</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola et al.</td>
<td>~10,000</td>
<td>Faces</td>
</tr>
<tr>
<td>Schneiderman, et al.</td>
<td>~2,000</td>
<td>Faces, Cars</td>
</tr>
<tr>
<td>Rowley et al.</td>
<td>~500</td>
<td>Faces</td>
</tr>
</tbody>
</table>
Number of training examples

Generalisation performance

6 part Motorbike model

Previously

Number of training examples

Log$_2$ (Training images)

Classification error (%)
How do we do better than what statisticians have told us?

- Intuition 1: use Prior information
- Intuition 2: make best use of training information
Bayesian framework

\[P(\text{object} \mid \text{test, train}) \quad \text{vs.} \quad P(\text{clutter} \mid \text{test, train}) \]

Bayes Rule

\[p(\text{test} \mid \text{object, train}) \quad p(\text{object}) \]

Expansion by parametrization

\[\int p(\text{test} \mid \theta, \text{object}) \quad p(\theta \mid \text{object, train}) \quad d\theta \]
Bayesian framework

\[P(\text{object} | \text{test, train}) \text{ vs. } P(\text{clutter} | \text{test, train}) \]

Bayes Rule

\[
p(\text{test} | \text{object, train}) \quad p(\text{object})
\]

Expansion by parametrization

\[
\int p(\text{test} | \theta, \text{object}) \quad p(\theta | \text{object, train}) \quad d\theta
\]

Previous Work:

\[\delta(\theta^{\text{ML}}) \]
Bayesian framework

\[P(\text{object} \mid \text{test, train}) \text{ vs. } P(\text{clutter} \mid \text{test, train}) \]

Bayes Rule

\[p(\text{test} \mid \text{object, train}) \cdot p(\text{object}) \]

Expansion by parametrization

\[\int p(\text{test} \mid \theta, \text{object}) \cdot p(\theta \mid \text{object, train}) \, d\theta \]

One-Shot learning:

\[p(\text{train} \mid \theta, \text{object}) \cdot p(\theta) \]
Lecture 15 - Fei-Fei Li

Model Structure

Each object model θ

Gaussian shape pdf

Gaussian part appearance pdf

model (θ) space

$\theta_n \rightarrow \theta_1 \rightarrow \theta_2 \rightarrow \cdots$
model distribution: \(p(\theta) \)

- conjugate distribution of \(p(\text{train} | \theta, \text{object}) \)
Learning Model Distribution

\[p(\theta|\text{object, train}) \propto p(\text{train} | \theta, \text{object}) p(\theta) \]

• use Prior information
• Bayesian learning
 • marginalize over theta

✓ Variational EM (Attias, Hinton, Minka, etc.)
Variational EM

E-Step

Random initialization

M-Step

new θ's

new estimate of $p(\theta|\text{train})$

prior knowledge of $p(\theta)$
Experiments

Training:
1-6 randomly drawn images

Testing:
50 fg/50 bg images object present/absent

Datasets

faces
airplanes
spotted cats
motorbikes
Lecture 15 - Fei-Fei Li

Faces

Airplanes

Motorbikes

Spotted cats

14-Nov-11
Experiments: obtaining priors

- Airplanes
- Spotted cats
- Motorbikes
- Faces

Model (θ) space
Experiments: obtaining priors

airplanes

faces

motorbikes

Spotted cats

model (θ) space
Lecture 15 - Fei-Fei Li

Performance comparison

- Maximum-Likelihood
- Bayesian OneShot

Number of training examples

Correct

INCORRECT

Shape Model (Training # = 1)
Lecture 15 - Fei-Fei Li

Performance comparison

- Maximum-Likelihood
- Bayesian OneShot

Number of training examples

Shape Model (Training # = 1)
Performance comparison

Number of training examples

Performance (equal error rates)

Maximum-Likelihood
Bayesian OneShot

INTEGRAL
Correct
Correct
Correct

Shape Model (Training # = 1)
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Examples</th>
<th>Categories</th>
<th>Results(error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola et al.</td>
<td>~10,000</td>
<td>Faces</td>
<td>7-21%</td>
</tr>
<tr>
<td>Schneiderman, et al.</td>
<td>~2,000</td>
<td>Faces, Cars</td>
<td>5.6 – 17%</td>
</tr>
<tr>
<td>Rowley et al.</td>
<td>~500</td>
<td>Faces</td>
<td>7.5 – 24.1%</td>
</tr>
<tr>
<td>Bayesian One-Shot</td>
<td>1 ~ 5</td>
<td>Faces, Motorbikes, Spotted cats, Airplanes</td>
<td>8 – 15 %</td>
</tr>
</tbody>
</table>