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What we will learn today?

e |ntroduction

» Optical flowa™

* Feature tracking

* Applications

e (Problem Set 3 (Q1))
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From images to videos

e Avideo is a sequence of frames captured over time

e Now our image data is a function of space (x, y) and time (t)
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Motion estimation techniques

* Optical flow

— Recover image motion at each pixel from spatio-temporal
image brightness variations (optical flow)

e Feature-tracking

— Extract visual features (corners, textured areas) and “track”
them over multiple frames
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Optical flow

Vector field function of the
spatio-temporal image
brightness variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
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Feature-tracking

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology

Fei-Fei Li Lecture 13- 6




Feature-tracking
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Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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Optical flow

e Definition: optical flow is the otion of
brightness patterns in the image

 Note: apparent motion can be caused by lighting
changes without any actual motion

— Think of a uniform rotating sphere under fixed lighting
vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from
optical flow

‘ Source: Silvio Savarese
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Estimating optical flow

X/t)v;'g\/’) o/ ) o\ °
I .
|(X,y,t—1) | (X,Y,t)

e Given two subsequent frames, estimate the apparent motion field

. @x,y),@x,y) between them
6

e Key assumptions

e Brightness constancy: projection of the same point looks the same in
every frame

¢

e Small motion: points do not move very far
e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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The brightness constancy constraint

(z,y)
O\dlsplacement = (u,v)

(x -IC—) w,y + v)
1(X,y,t—1) 1(X,Y,t)

. w Constancy Equation:
(X, y,T=T) = T(X+Uu(x, y), y +V(x, y),t)

Linearizing the right side using Taylor expansion:

...... Lmage derivative along x

Oty +u0=106y.-D 1,03 1, o) 41

O/I(x+u,y:u,t)—l(x,\y,t_@: L lu(x y) +1, Tv(x, y) + 1,
U+l v+l =0 - OIfu v] +1,=0

Hence, |,
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The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each
pixel?

Oigu v]™ +1,=0

e How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e.,
parallel to the edge) cannot be measured

| (u,v)
If (u, v) satisfies the equation, M} VJ i

+
so does (u+u’, v+v’) if 11 [

O v =0 WT ()
[t'u V] Vl_[(,(#u'/V'PV:J-+It gDV edge

gradient Vl‘[;"

Jilv

‘ Source: Silvio Savarese
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The aperture problem

\ Actual motion

‘ Source: Silvio Savarese
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The aperture problem

Perceived motion

‘ Source: Silvio Savarese
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The barber pole illusion

’,

‘ Source: Silvio Savarese

http://en.wikipedia.org/wiki/Barberpole illusion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

‘ Source: Silvio Savarese
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Solving the ambiguity...

B. Lucas and T. Kanade) An iterative image registration technique with an application to stereo vision. In Proceedings of the
rnatio 3 ference on Artificial Intelligence, pp. 674—679, 1981.

e How to get more equations for a pixel?
e Spatial coherence constraint:
e Assume the pixel’s neighbors have the same (u,v)

— If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(p;) + VI(p;) - [u v]

- Lx(p1)  Iy(p1) - Li(p1)
faz(Pz) Iy(?z) [ U } _ ft(Pz) :
| Lu(pas) Iy(pas)  Ii(pas) 2
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Lucas-Kanade flow

e Qverconstrained linear system:

- Le(p1)  Iy(p1) | - Ii(p1) |
I:(p2)  Iy(p2) [u _ | I(p2) | A d=b
; : Y : 25x2 2x1 25x1
Al L(pss) Lypes) | | Ti(pas) |}

‘ Source: Silvio Savarese
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Conditions for solvability

e When is this system solvable?

e What if the window contains just a single straight edge?

‘ Source: Silvio Savarese
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Lucas-Kanade flow

e QOverconstrained linear system

- Ix(p1) Iy(p1) - Ii(p1)
I:(p2)  Iy(p2) [ uw | _ | Ii(p2) A d=D
: : v : 25x2 2x1 25x1
Iz(p2s) Iy(p2s) | Ii(p2s) |

Xn
i i (ATA) d= Alb
Least squares solution for d given by

[zmx zfmfy] [u] _ { zfxft]

T T
NG ‘%«zdw A0

The summations are over all pixels in the K x K window

‘ Source: Silvio Savarese
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Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation

Sl YLiy][uw] _ [ YLl
// S LIy, SIIy || v |~ 7 | S Iy

AT A Alp

When is This Solvable?

e A'A should be invertible
e A'A should not be too small due to noise

— eigenvalues A; and A , of ATA should not be too small
e A'A should be well-conditioned

— A4/ A, should not be too large (A | = larger eigenvalue)

\ Does this remind anything to you?

‘ Source: Silvio Savarese
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M = A'A is the second moment matrix !
(Harris corner detector...)

I 1y I.1 Iy

e Eigenvectors and eigenvalues of A'A relate to edge
direction and magnitude

e The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change

e The other eigenvector is orthogonal to it

‘ Source: Silvio Savarese
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Interpreting the eigenvalues

Classification of image points using eigenvalues of the
second moment matrix:

A

A, andA, are small }:>

‘ Source: Silvio Savarese
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S vivn?
— gradients very large or very small
—large A, small A,

‘ Source: Silvio Savarese
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Low-texture region

S vi(vn?t
— gradients have small magnitude
—small A;, small A,

‘ Source: Silvio Savarese
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=

gh-texture region

S vi(vn?t
— gradients are different, large magnitudes
—large A, large A,

‘ Source: Silvio Savarese
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What are good features to track?

e Can measure “quality” of features from just a
single image

Hence: tracking Harris corners (or equivalent)
guarantees small error sensitivity!

- Implemented in Open CV

‘ Source: Silvio Savarese
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Revisiting the small motion assumption

A1
fot

T »r

vy -+
- 4 ’;"t

e

i\"

* |s this motion small enough?

— Probably not—it’s much larger than one pixel (2" order terms dominate)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

— How might we solve this problem?
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Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Multi-resolution Lucas Kanade Algorithm

 Compute “simple” LK at highest level
« Atlevel i
* Take flow u, _;, v, , from level /-1
* bilinear lntelp()late it to create u,”, v,
matrices of twice resolution for Ie\ el i
* multiply ", v,” by 2
* compute f, from a block displaced by
u, (x,p). v, (x,p)
* Apply LI\ to get u, '(x, v). v, (x, y) (the
correction in flow)

* Add corrections u,’v,”, i.e. u, = u, + u,,

v, = v, tv’

‘ Source: Silvio Savarese
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Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

ese

Gaussian pyramid of image 1 Gaussian pyramid of image 2

‘ Source: Silvio Savar
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Iterative Refinement

 |terative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field
- use image warping techniques

3. Repeat until convergence

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Coarse-to-fine optical flow estimation

1
A
TN
Il“\
1

- — run iterative L-K _-

lwarp & upsample

.——> run |terat|ve LK +~—,

‘ Source: Silvio Savarese

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)
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Optical Flow Results

[Lucas-Kanade with Pyramids
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Motion segmentation

e How do we represent the motion in this scene?

‘ Source: Silvio Savarese
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Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

 Break image sequence into “layers” each of which has a
coherent (affine) motion

‘ Source: Silvio Savarese
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What are layers?

e Each layer is defined by an alpha mask and an affine motion model

e \
— —
- - ~a
(a) . (b)
Moving Hand Background

(c)

Frame 1 Frame 2 Frame 2

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

‘ Source: Silvio Savarese
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Affine motion

u(x,y) =a, +a,x+a,y
V(X,Y) = @, + 85X+ agY

e Substituting into the brightness constancy

equation:

Fei-Fei Li

I X

u+l, v+l =0
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Affine motion
u(x,y) =a, +a,x+azy
V(X Y) =&, +a;x +agy

e Substituting into the brightness constancy
equation:

I (8, ta,x+a,y) +1 (a, ta;x+azy)+1, =0

e Each pixel provides 1 linear constraint in 6 unknowns

e |east squares minimization:

Err(3) :Z:[|X(ai+azx+agy)+Iy(a4 +aX+ay)+ |t] 2

Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion parameters in each block by
least squares
. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

D
S

‘ Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares
. Eliminate hypotheses with high residual error

e Map into motion parameter space

e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

2. Ilterate until convergence:
eAssign each pixel to best hypothesis

—Pixels with high residual error remain unassigned

‘ Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion parameters in each block by
least squares
. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

‘.J : E i ‘ ‘

6

‘ Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares
. Eliminate hypotheses with high residual error

e Map into motion parameter space

e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

2. Ilterate until convergence:
eAssign each pixel to best hypothesis

—Pixels with high residual error remain unassigned
ePerform region filtering to enforce spatial constraints
*Re-estimate affine motions in each region

‘ Source: Silvio Savarese
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Lecture 13 -

47 9-Nov-11

Savarese

10

Silvi

Source




Tracking

‘ Sources: Kristen Grauman, Deva Ramanan

Fei-Fei Li Lecture 13 - 48 9-Nov-11




What we will learn today?

e Feature tracking
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Motion estimation techniques

* Optical flow

— Recover image motion at each pixel from spatio-
temporal image brightness variations (optical flow

e Feature-tracking

— Extract visual features (corners, textured areas) and
“track” them over multiple frames

e Shi-Tomasi feature tracker
* Tracking with dynamics

‘ Source: Silvio Savarese
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Feature tracking

e So far, we have only considered optical flow estimation in
a pair of images

e |If we have more than two images, we can compute the
optical flow from each frame to the next

e G@Given a point in the first image, we can in principle
reconstruct its path by simply “following the arrows”

‘ Source: Silvio Savarese
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Tracking challenges

e Ambiguity of optical flow
— Find good features to track

 Large motions

— Discrete search instead of Lucas-Kanade

 Changes in shape, orientation, color

— Allow some matching flexibility
e QOcclusions, dis-occlusions

— Need mechanism for deleting, adding new features

e Drift —errors may accumulate over time

— Need to know when to terminate a track
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‘ Source: Silvio Savarese




Shi-Tomasi feature tracker

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

 Find good features using eigenvalues of second-moment
matrix

—  Key idea: “good” features to track are the ones that can be tracked
reliably

e From frame to frame, track with Lucas-Kanade and a
pure translation model

—  More robust for small displacements, can be estimated from smaller
neighborhoods

e Check consistency of tracks by affine registration to the
first observed instance of the feature

—  Affine model is more accurate for larger displacements
—  Comparing to the first frame helps to minimize drift

‘ Source: Silvio Savarese
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Fei-Fei Li

Tracking example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1st, 11th, and
21st frames of a subsequence from the movie.

2s 25| 25 28 25
| 2 | =

Figure 2: The traffic sign windows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).
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Tracking with dynamics

e Key idea: Given a model of expected motion,
predict where objects will occur in next frame,
even before seeing the image

— Restrict search for the object

— Improved estimates since measurement noise is
reduced by trajectory smoothness

‘ Source: Silvio Savarese
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Tracking with dynamics

Initial position prediction  measurement update
Vi Vi Vi Vi
e O 9 ®
The Kalman filter:
e Method for tracking linear dynamical models in Gaussian noise 2
e The predicted/corrected state distributions are Gaussian g
¢ Need to maintain the mean and covariance 3
e Calculations are easy (all the integrals can be done in closed form) %
:
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2D Target tracking using Kalman filter in MATLAB
by AliReza KashaniPour

http://www.mathworks.com/matlabcentral/fileexchange/14243

‘ Source: Silvio Savarese
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What we will learn today?

e Applications
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Uses of motion

* Tracking features
 Segmenting objects based on motion cues
* Learning dynamical models
 Improving video quality
— Motion stabilization
— Super resolution

* Tracking objects
 Recognizing events and activities
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Estimating 3D structure

Silvio Savarese

Source
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Segmenting objects based on motion cues

e Background subtraction
— A static camera is observing a scene
— Goal: separate the static background from the moving foreground

‘ Source: Silvio Savarese
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Segmenting objects based on motion cues

* Motion segmentation
— Segment the video into multiple coherently moving objects

O~ J,+ ‘\
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S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed,
Proceedings of the British Machine Vision Conference (BMVC) 2006

‘ Source: Silvio Savarese
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Tracking objects

View
Sphere

L]

ZYin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern
Recognition (CVPR '07), Minneapolis, MN, June 2007.

‘ Source: Silvio Savarese
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Synthesizing dynamic textures

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002

Original Synthesized
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Super-resolution

Example: A set of low
guality images

Fei-Fei Li
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Super-resolution

Each of these images looks  MISL ¢ ther sl ddala o
ke this: coneple of exeeptions. |
lva-temperatnre: salde
tntvesstianed] (Or some o
EnarniGac iy Echl
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mbereestnyciural coarse
mitd rycling o FsThdZ

‘ Source: Silvio Savarese
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Super-resolution

ost of the test data o
ouple of exceptions.
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microstructural coarse
mal cycling of 58Bi425

The recovery result:

‘ Source: Silvio Savarese
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Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

‘ Source: Silvio Savarese
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Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using
Spatial-Temporal Words, (BMVC), Edinburgh, 2006.
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Recognizing events and activities

Crossing — Talking — Queuing — Dancing — jogging

‘ Source: Silvio Savarese

W. Choi & K. Shahid & S. Savarese WMC 2010
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among
People", 9th International Workshop on Visual Surveillance (VSWSQ09) in conjuction with ICCV 09
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Optical flow without motion!
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What we have learned today?

e |ntroduction

* Optical flow

e Feature tracking

* Applications

e (Problem Set 3 (Q1))
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