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What we will learn today?

• Introduction

• Optical flow

• Feature tracking

• Applications

• (Problem Set 3 (Q1))
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From images to videos

• A video is a sequence of frames captured over time

• Now our image data is a function of space (x, y) and time (t)
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Motion estimation techniques

• Optical flow
– Recover image motion at each pixel from spatio-temporal 

image brightness variations (optical flow)

• Feature-tracking
– Extract visual features (corners, textured areas) and “track” 

them over multiple frames
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Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT 

Optical flow

Vector field function of the 

spatio-temporal image 

brightness variations 
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Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology
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Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology
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Optical flow

• Definition: optical flow is the apparent motion of 

brightness patterns in the image

• Note: apparent motion can be caused by lighting 

changes without any actual motion

– Think of a uniform rotating sphere under fixed lighting 

vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from 

optical flow
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Estimating optical flow

• Given two subsequent frames, estimate the apparent motion field 

u(x,y), v(x,y) between them

• Key assumptions
• Brightness constancy:  projection of the same point looks the same in 

every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t–1) I(x,y,t)
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tyx IyxvIyxuItyxItuyuxI +⋅+⋅+−≈++ ),(),()1,,(),,(

• Brightness Constancy Equation:

),()1,,( ),,(),( tyxyx vyuxItyxI ++=−
Linearizing the right side using Taylor expansion:

The brightness constancy constraint

I(x,y,t–1) I(x,y,t)

0≈+⋅+⋅ tyx IvIuIHence,

Image derivative along x

[ ] 0IvuI t
T =+⋅∇→

tyx IyxvIyxuItyxItuyuxI +⋅+⋅=−−++ ),(),()1,,(),,(
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The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the flow perpendicular to the gradient (i.e., 

parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation, 

so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

[ ] 0IvuI t
T =+⋅∇

[ ] 0'v'uI T =⋅∇

Can we use this equation to recover image motion (u,v) at each 

pixel?
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The aperture problem

Actual motion
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The aperture problem

Perceived motion S
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The barber pole illusion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion S
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Aperture problem cont’d
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Solving the  ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint:

• Assume the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 

International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.
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• Overconstrained linear system:

Lucas-Kanade flow
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Conditions for solvability

• When is this system solvable?

• What if the window contains just a single straight edge?
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• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for solvability
– Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind anything to you?

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ 2 of ATA should not be too small

• ATA should be well-conditioned

– λ 1/ λ 2 should not be too large (λ 1 = larger eigenvalue)
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• Eigenvectors and eigenvalues of ATA relate to edge 

direction and magnitude 
• The eigenvector associated with the larger eigenvalue points in 

the direction of fastest intensity change

• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !

(Harris corner detector…)
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Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,

λ1 ~ λ2

λ1 and λ2 are small “Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of the 

second moment matrix:
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Edge

– gradients very large or very small

– large λ1, small λ2
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Low-texture region

– gradients have small magnitude

– small λ1, small λ2
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High-texture region

– gradients are different, large magnitudes

– large λ1, large λ2

S
o

u
rc

e
: 

S
il

v
io

 S
a

va
re

se

9-Nov-1126



Lecture 13 -Fei-Fei Li

What are good features to track?

• Can measure “quality” of features from just a 

single image

• Hence: tracking Harris corners (or equivalent) 

guarantees small error sensitivity!

� Implemented in Open CV
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• Key assumptions (Errors in Lucas-Kanade)

• Small motion: points do not move very far

• Brightness constancy:  projection of the same point looks 

the same in every frame

• Spatial coherence: points move like their neighbors

Recap
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Revisiting the small motion assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?
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Reduce the resolution!
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Multi-resolution Lucas Kanade Algorithm
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image Iimage H

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field

- use image warping techniques

3. Repeat until convergence
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image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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Optical Flow Results
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Optical Flow Results
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• http://www.ces.clemson.edu/~stb/klt/

• OpenCV
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• Key assumptions (Errors in Lucas-Kanade)

• Small motion: points do not move very far

• Brightness constancy:  projection of the same point looks 

the same in every frame

• Spatial coherence: points move like their neighbors

Recap
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Motion segmentation
• How do we represent the motion in this scene?
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• Break image sequence into “layers” each of which has a 

coherent (affine) motion

Motion segmentation
J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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What are layers?

• Each layer is defined by an alpha mask and an affine motion model

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. S
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• Substituting into the brightness constancy 

equation:

yaxaayxv

yaxaayxu

654

321

),(

),(

++=
++=

0≈+⋅+⋅ tyx IvIuI

Affine motion
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0)()( 654321 ≈++++++ tyx IyaxaaIyaxaaI

• Substituting into the brightness constancy 

equation:

yaxaayxv

yaxaayxu

654

321

),(

),(

++=
++=

• Each pixel provides 1 linear constraint in 6 unknowns

[ ] 2
∑ ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321

r

• Least squares minimization:

Affine motion

Source: Silvio Savarese
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How do we estimate the layers?
• 1. Obtain a set of initial affine motion hypotheses

– Divide the image into blocks and estimate affine motion parameters in each block by 

least squares

• Eliminate hypotheses with high residual error

• Map into motion parameter space

• Perform k-means clustering on affine motion parameters

–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene
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How do we estimate the layers?
• 1. Obtain a set of initial affine motion hypotheses

– Divide the image into blocks and estimate affine motion parameters in each block by 

least squares

• Eliminate hypotheses with high residual error

• Map into motion parameter space

• Perform k-means clustering on affine motion parameters

–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene

2. Iterate until convergence:

•Assign each pixel to best hypothesis

–Pixels with high residual error remain unassigned
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How do we estimate the layers?
• 1. Obtain a set of initial affine motion hypotheses

– Divide the image into blocks and estimate affine motion parameters in each block by 

least squares

• Eliminate hypotheses with high residual error

• Map into motion parameter space

• Perform k-means clustering on affine motion parameters

–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene
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How do we estimate the layers?
• 1. Obtain a set of initial affine motion hypotheses

– Divide the image into blocks and estimate affine motion parameters in each block by 

least squares

• Eliminate hypotheses with high residual error

• Map into motion parameter space

• Perform k-means clustering on affine motion parameters

–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene

2. Iterate until convergence:

•Assign each pixel to best hypothesis

–Pixels with high residual error remain unassigned

•Perform region filtering to enforce spatial constraints

•Re-estimate affine motions in each region
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Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. S
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Tracking
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What we will learn today?

• Introduction

• Optical flow

• Feature tracking

• Applications
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Motion estimation techniques

• Optical flow

– Recover image motion at each pixel from spatio-

temporal image brightness variations (optical flow)

• Feature-tracking

– Extract visual features (corners, textured areas) and 

“track” them over multiple frames

• Shi-Tomasi feature tracker  

• Tracking with dynamics
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Feature tracking

• So far, we have only considered optical flow estimation in 

a pair of images

• If we have more than two images, we can compute the 

optical flow from each frame to the next

• Given a point in the first image, we can in principle 

reconstruct its path by simply “following the arrows”
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• Ambiguity of optical flow

– Find good features to track

• Large motions

– Discrete search instead of Lucas-Kanade

• Changes in shape, orientation, color

– Allow some matching flexibility

• Occlusions, dis-occlusions

– Need mechanism for deleting, adding new features

• Drift – errors may accumulate over time

– Need to know when to terminate a track

Tracking challenges
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Shi-Tomasi feature tracker

• Find good features using eigenvalues of second-moment 

matrix

– Key idea: “good” features to track are the ones that can be tracked 

reliably

• From frame to frame, track with Lucas-Kanade and a 

pure translation model

– More robust for small displacements, can be estimated from smaller 

neighborhoods

• Check consistency of tracks by affine registration to the 

first observed instance of the feature

– Affine model is more accurate for larger displacements

– Comparing to the first frame helps to minimize drift

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994. 
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Tracking example
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Tracking with dynamics

• Key idea: Given a model of expected motion, 

predict where objects will occur in next frame, 

even before seeing the image

– Restrict search for the object

– Improved estimates since measurement noise is 

reduced by trajectory smoothness
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updateinitial position

x

y

x

y

prediction

x

y

measurement

x

y

Tracking with dynamics

The Kalman filter:

• Method for tracking linear dynamical models in Gaussian noise

• The predicted/corrected state distributions are Gaussian

• Need to maintain the mean and covariance

• Calculations are easy (all the integrals can be done in closed form)
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2D Target tracking using Kalman filter in MATLAB

by AliReza KashaniPour

http://www.mathworks.com/matlabcentral/fileexchange/14243
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What we will learn today?

• Introduction

• Optical flow

• Feature tracking

• Applications
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Uses of motion

• Tracking features

• Segmenting objects based on motion cues

• Learning dynamical models

• Improving video quality

– Motion stabilization

– Super resolution

• Tracking objects

• Recognizing events and activities
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Estimating 3D structure
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Segmenting objects based on motion cues

• Background subtraction

– A static camera is observing a scene

– Goal: separate the static background from the moving foreground
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• Motion segmentation

– Segment the video into multiple coherently moving objects

Segmenting objects based on motion cues

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed, 

Proceedings of the British Machine Vision Conference  (BMVC) 2006
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Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern 

Recognition (CVPR '07), Minneapolis, MN, June 2007. 

Tracking objects
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Synthesizing dynamic textures
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Super-resolution

Example: A set of low 

quality images
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Super-resolution

Each of these images looks 

like this:
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Super-resolution

The recovery result:
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D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Tracker

Recognizing events and activities
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Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using 

Spatial-Temporal Words, (BMVC), Edinburgh, 2006. 

Recognizing events and activities
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Crossing – Talking – Queuing – Dancing – jogging 

W. Choi &  K. Shahid & S. Savarese WMC 2010

Recognizing events and activities
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among 

People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09
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Optical flow without motion!
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What we have learned today?

• Introduction

• Optical flow

• Feature tracking

• Applications

• (Problem Set 3 (Q1))
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