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What we will learn today?

e Local invariant features
— Motivation
— Requirements, invariances

e Keypoint localization
— Harris corner detector

e Scale invariant region selection
— Automatic scale selection
— Laplacian-of-Gaussian detector
— Difference-of-Gaussian detector (Problem Set 3 (Q2))
— Combinations

e Local descriptors
— Anintro
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What we will learn today?

e Local invariant features
— Motivation
— Requirements, invariances
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Motivation

e Global representations have major limitations

9
e [nstead, describe and match onlyiocal region X

* |ncreased robustness to Xim
— Occlusions

— Articulation

— Intra-category variations
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Application: Image Matching

by Diva Sian

by swashford

Slide credit: Steve Seitz
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Harder Case
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Harder Still?

Steve Seitz

NASA Mars Rover images

Slide credi
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Answer Below (Look for tiny colored squares)

1{

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)

Slide credit: Steve Seitz
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Application: Image Stitching

Darya Frolova, Denis Simakov

Slide credi
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Application: Image Stitching

g
* Procedure: E
— Detect feature points in both images &
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Application: Image Stitching

 Procedure:
— Detect feature points in both images
— Find corresponding pairs
— Use these pairs to align the images
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General Approach

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

Similarit
4 4. Compute a local

measure
descriptor from the
<:> normalized region
e.g. color e.g. color
" Npixels d(fa, fg) <T 5. Match local

descriptors

Slide credit: Bastian Leibe
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Common Requirements

e Problem 1:
— Detect the same point independently in both images

No chance to match!

This lecture (#11)
\ We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakov
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Common Requirements

* Problem 1:

— Detect the same point independently in both images

e Problem 2:

— For each point correctly recognize the corresponding one

Next lecture (#12)
‘ We need a reliable and distinctive descriptor!

Slide credit: Darya Frolova, Denis Simakov

Fei-Fei Li Lecture 11 - 15 2-Nov-11




Invariance: Geometric Transformations

Multiple View
Geometry

10 COMAyLer vision

Slide credit: Steve Seitz
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Levels of Geometric Invariance

m&

P 4

A
) / similarity ity proj ectn i
translation

e
Euclidean afﬁne
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Invariance: Photometric Transformations
i((MWM:((W\

Often modeled as a linear
transformation:

— Scaling + Offset

Slide credit: Tinne Tuytelaars
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Requirements

e Region extraction needs to be repeatable and accurate
— Invariant to translation, rotation, scale changes
— Robust or covariant to out-of-plane (=affine) transformations
— Robust to lighting variations, noise, blur, quantization

e Locality: Features are local, therefore robust to occlusion
and clutter.

* Quantity: We need a sufficient number of regions to cover
the object.

e Distinctivenes : The regions should contain “interesting”
structure.

e Efficiency: Close to real-time performance.

Slide credit: Bastian Leibe
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Many Existing Detectors Available

e Hessian & Harris [Beaudet ‘78], [Harris ‘88]

® Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99]

e Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
e Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]

e EBR and IBR [Tuytelaars & Van Gool ‘04]

e MSER [Matas ‘02]

e Salient Regions [Kadir & Brady ‘01]

e Others...

e Those detectors have become a basic building block for
many recent applications in Computer Vision.

Slide credit: Bastian Leibe
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Keypoint Localization

s

e @Goals:
— Repeatable detection
— Precise localization
— Interesting content

= Look for two-dimensional signal changes

Slide credit: Bastian Leibe
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Finding Corners

 Key property:

— In the region around a corner, image gradient has two
or more dominant directions

e Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference, 1988.

Slide credit: Svetlana Lazebnik
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Corners as Distinctive Interest Points

 Design criteria
— We should easily recognize the point by looking through a
small window (locality)

— Shifting the window in any direction should give a large
change in intensity (good localization)

S
5
2
S
=]
“flat” region: “edge”: “corner”: g
no change in all no change along significant change é
directions the edge direction in all directions &
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Harris Detector Formulation

 Change of intensity for the shift [u,v]:
E(u,v) = > Wi, Y)[1 (x+u,y+v) =1 (x,Y)]’

\

(Intensity)

<
2

A

S

Window function W(X,y) = R &
o

] L] ] ] U

1 in window, O outside Gaussian 9

o
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Harris Detector Formulation

e This measure of change can be approximated by:

E(u,v) = [u Vv] M .
Vv

where M is a 2X2 matrix computed from image derivatives:

— | 3 | XI Y ™ Gradient with
M = E W(X, Y) ,
. | | | respect to X,
!y X y y ° ]
T - — times gradient

Sum over image region — the area we are with respect to y

checking for corner ok

M = [&I ZI”““I’”] =¥ [ ’ ] (1, 1,

| S LI, S Iy

Slide credit: Rick Szeliski
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Harris Detector Formulatio
mh U \ ]
°‘|\ \_
X Y e < :

Image | I

4

X y ley

where M is a 2X2 matrix computed from image derivatives:
12 1 |l . .
M = 2 :W(X y) X X"y Gradient with
. | | | 2 respect to X,
’y X y y ° °
T - — times gradient

Sum over image region — the area we are with respect to y

checking for corner

[ SLl, S, ] _ Ly
M _[ZIme ZIyIz]_Z[ ][Ixfy]

Slide credit: Rick Szeliski
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What Does This Matrix Reveal?

e First, let’s consider an axis-aligned corner:

M:'Zlf i, | [A4 0
_Z|X|y Z|§_ 0 A,

Slide credit: David Jacobs
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What Does This Matrix Reveal?

e First, let’s consider an axis-aligned corner:

M:'Zlf i, | [A4 0
_Z|X|y Z|§_ 0 A,

* This means:
— Dominant gradient directions align with X or y axis

— If either A is close to O, then this is not a corner, so look for
locations where both are large.

 What if we have a corner that is not aligned with the
image axes?

Slide credit: David Jacobs
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General Case

R

 Since M is symmetric, we have M = R™*

(Eigenvalue decomposition)

 We can visualize M as an ellipse with axis lengths determined
by the eigenvalues and orientation determined by R

Direction of the
fastest change

Direction of the
slowest change

adapted from Darya Frolova, Denis Simakov
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Interpreting the Eigenvalues

e Classification of image points using eigenvalues of M:

A

A, and A, are small;

E is almost constant in
all directions

Slide credit: Kristen Grauman
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Corner Response Function

@= det(M) - a trace(M )2 = A, —a (A, +A,)?

wusi O‘F I\OTOCf/J:’”‘ /]2

Thrtsho I

e Fast approximation

— Avoid computing the
eigenvalues

— a: constant
(0.04 to 0.06)

Slide credit: Kristen Grauman
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Window Function w(x,y)

M=>wxy)| = )
X,y

e Option 1: uniform window
— Sum over square window

12010 | e

— 2 : X x'y - g

M - I —’/, /\ ”/a_
X,y

2 = -
I o e
1 in window, O outside

— Problem: not rotation invariant

| Option 2: Smooth with Gaussian
— Gaussian already performs weighted sum

M = g )[{ |2 |X|y}
=o(o )
L y | y Gaussian

— Result is rotation invariant

Slide credit: Bastian Leibe
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Summary: Harris Detector (s

e Compute second moment matrix
(autocorrelation matrix)

M(U.,UD)=g(a,)[1: 1 (05) IXIy(UD)} 1. Image

L1, (g,)  15(0p) derivatives |

2. Square of
derivatives

3. Gaussian
filter g(g)

4. Cornerness function - two strong eigenvalues
R=det[M(g,,0,)] - altrace(M (g,,0,))]’
=g(15)9(1;)-[a(1, 1 )1* —alg(1) +9(1;)I’

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk
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Detector: Workflow
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Harris Detector: Workflow
- computer corner responses R

; ¥y .‘A 4
4 ,
Y ) F 4
5 . . .
! ™ 2 Ty
™

Slide adapted from Darya Frolova, Denis Simakov
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Harris Detector: Workflow
- Take only the local maxima of R, where R>threshold

Slide adapted from Darya Frolova, Denis Simakov
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Harris Detector: Workflow
- Resulting Harris points

Slide adapted from Darya Frolova, Denis Simakov
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Harris Detector — Responses arisss

Effect: A very precise
corner detector.

Slide credit: Krystian Mikolajczyk
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Harris Detector — Responses [Harrisg]

Slide credit: Krystian Mikolajczyk
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Harris Detector — Responses arisss

e Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman
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Harris Detector: Properties

* Translation invariance?

Slide credit: Kristen Grauman
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Harris Detector: Properties

e Translation invariance
e Rotation invariance?

I ) A
N

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Slide credit: Kristen Grauman

Corner response R is invariant to image rotation
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Harris Detector: Properties

e Translation invariance
e Rotation invariance
e Scale invariance?

A Em £

Corner All points will be
classified as edges!

Slide credit: Kristen Grauman

Not invariant to image scale!
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What we will learn today?

e Scale invariant region selection
— Automatic scale selection
— Laplacian-of-Gaussian detector
— Difference-of-Gaussian detector (Problem Set 3 (Q2))
— Combinations
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From Points to Regions...

e The Harris and Hessian operators define interest points.
— Precise localization
— High repeatability

* |n order to compare those points, we need to compute a descriptor
over a region.

— How can we define such a region in a scale invariant manner?

 [.e. how can we detect scale invariant interest regions?

Source: Bastian Leibe
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Naive Approach: Exhaustive Search

 Multi-scale procedure
— Compare descriptors while varying the patch size

Slide credit: Krystian Mikolajczyk

fA Similarity fB
i measure
8 il # bl
’ e.g. color e.g. color
d(f, o)
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Naive Approach: Exhaustive Search

 Multi-scale procedure

— Compare descriptors while varying the patch size

Slide credit: Krystian Mikolajczyk

) fA Similarity fB
measure
P& lll % (ol
7\ e.g. color e.g. color
d(f,, fg)

Fei-Fei Li Lecture 11 - 47 2-Nov-11



Naive Approach: Exhaustive Search

 Multi-scale procedure
— Compare descriptors while varying the patch size

Slide credit: Krystian Mikolajczyk

) fA Similarity fB
measure
P& lll % (ol
7\ e.g. color e.g. color
d(f,, fg)
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Naive Approach: Exhaustive Search

e Comparing descriptors while varying the patch size
— Computationally inefficient
— Inefficient but possible for matching [|||||||||||L

e.g. color

— Prohibitive for retrieval in large

databases [ ” |
o g il
— Prohibitive for recognition e.g. color

bl

e.g. color

Slide credit: Krystian Mikolajczyk

f, Similarity f
measure
E‘ alle. = il
—t ‘ e.g. color e.g. color
d ( f A? fB) _—
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Automatic Scale Selection

 Solution:

— Design a function on the region, which is “scale invariant”
(the same for corresponding regions, even if they are at different
scales)

Example: average intensity. For corresponding regions (even of
different sizes) it will be the same.

— For a point in one image, we can consider it as a function of region size

(patch width) é

>3

f 4 Image 1 f 4 Image 2 5
c

scale = %2 z

> <

%

L

[ : U

Region size Region size ﬁ

Fei-Fei Li Lecture 11 - 2-Nov-11




Automatic Scale Selection

e Common approach:
— Take a local maximum of this function.

— Observation: region size for which the maximum is achieved should be
invariant to image scale.

Important: this scale invariant region size is
found in each image independently!

e

©

£

o

f 4 Image 1 f 4 Image 2 S
c

. scale = 12 . 2
: > : =
I I ot
: S, ="2s : J2
I R I - O
. . . .« ()

S, Region size S Region size =
wn
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Automatic Scale Selection

T T T T T T T T 7T T T T T T T ESS . L T : .
2.0 1) 19
201389 19 d23e

(. (x0) f(l,. ., (X,0))

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

A28 [ o NN B N D B n S e T T T T T BN : Bubeabocl MY B L
2.0 0 19
Sy scale 19 éca]e

f(l.i,(x0) f(, . (X,0))

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

A28 [ o NN B N D B n S e T T T T T BN : Bubeabocl MY B L
2.0 0 19
Sy scale 19 éca]e

f(l.i,(x0) f(, . (X,0))

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

A28 [ o NN B N D B n S e T T T T T BN : Bubeabocl MY B L
2.0 0 19
Sy scale 19 éca]e

f(l.i,(x0) f(, . (X,0))

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

A28 [ o NN B N D B n S e T T T T T BN : Bubeabocl MY B L
2.0 0 19
Sy scale 19 éca]e

f(l.i,(x0) f(, . (X,0))

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

LL3 A B m o B e ™ T T T T N | LT S LTI, DR, TO
2.0 0 19
20339 19 dfale

t(l, . (%)) f(l, . (X,00)

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

e Normalize: Rescale to fixed size

scale dfale

£, . (x0) f(1, . (X,0)

Slide credit: Tinne Tuytelaars
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What Is A Useful Signature Function?

(17 et
-G@Gaussian = “blob” detector

f

Slide credit: Bastian Leibe
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Characteristic Scale

 We define the characteristic scale as the scale that produces
peak of Laplacian response

2000

1500

1000

Characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of
Computer Vision 30 (2): pp 77--116.

Slide credit: Svetlana Lazebnik
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Laplacian-of-Gaussian (LoG)

* Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian

Slide adapted from Krystian Mikolajczyk
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Laplacian-of-Gaussian (LoG)

* Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian

A L L L L LS
L oA
L L LS S

ST
Scale A A
S S ST
| v T T FET 7

AQY L. (0)+L,(0) s

N

Slide adapted from
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Laplacian-of-Gaussian (LoG)

* Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian

A ST T 777
VAR, = iy
A VAR, =V oy L
ST 7

ST T
Scale A A
S S S ST
L, S S S

L LS S LS
L Ll S
Ly VAV A iy Y ) A
L T

Slide adapted from
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Laplacian-of-Gaussian (LoG)

* Interest points:

— Local maxima in scale
space of Laplacian-of-
Gaussian

L L LS S
£ L A S
S o S
S L S

| T 77T

Scale VA o o A

M TG
ST TEIEPET

L L L LSS

Slide adapted from
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LoG Detector: Workflow

Slide credit: Svetlana Lazebnik
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LoG Detector: Workflow

sigma = 11.9912

Slide credit: Svetlana Lazebnik
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Workflow

LoG Detector
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Technical Detail

 We can efficiently approximate the Laplacian with a
difference of Gaussians:

L =0%(G (X Y,0) +G,, (X, y,0))

(Laplacian)

DoG =G(X, Y, ko) —G(X, Y, 0)

(Difference of Gaussians)

Slide credit: Bastian Leibe
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Difference-of-Gaussian (DoG)

e Difference of Gaussians as approximation of the LoG
— This is used e.g. in Lowe’s SIFT pipeline
for feature detection.

 Advantages
— No need to compute 2" derivatives

— Gaussians are computed anyway, e.g.
in @ Gaussian pyramid.

Slide credit: Bastian Leibe
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Key point localization with DoG

L L L L LS

e Detect maxima of A
difference-of-Gaussian lﬁr“;’?@“%ﬁ
(DoG) in scale space

_ . . Scale W
 Then reject points with A A

low contrast (threshold)

s 7 7 L LSS
L S Ao

* Eliminate edge responses A AT

|

Candidate keypoints:
list of (x,y,0)

Slide credit: David Lowe
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DoG — Efficient Computation

e Computation in Gaussian scale pyramid

Scale
(next
octave)

step 0%=2

Scale
(first
octave)

Fei-Fei Li

Gaussian

Lecture 11 -

71

Difference of
Gaussian (DOG)
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Results: Lowe’s DoG

Bastian Leibe

Slide credit
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Example of Keypoint Detection

(a) 233x189 image
(b) 832 DoG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures (removing

edge responses)

A N
7N /S
e e
[: %) Zgl

I‘-n’l-mmdul' A i i o

(a) —_—
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Harris-Laplace wiosiczyk o

1. Initialization: Multiscale Harris corner detection

L Lol S
L el
L L L S

Slide adapted from Krystian Mikolajczyk

Computing Harris function Detecting local maxima

Lecture 11 - 2-Nov-11
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Harris-Laplace wiosiczyk o

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris-Laplace poits

Slide adapted from Krystian Mikolajczyk
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Summary: Scale Invariant Detection

* Given: Two images of the same scene with a large scale
difference between them.

e Goal: Find the same interest points independently in
each image.

* Solution: Search for maxima of suitable functions in
scale and in space (over the image).

* Two strategies
— Laplacian-of-Gaussian (LoG)
— Difference-of-Gaussian (DoG) as a fast approximation

— These can be used either on their own, or in combinations
with single-scale keypoint detectors (Harris, Hessian).
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What we will learn today?

e Local descriptors
— Anintro
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Local Descriptors

e We know how to detect points
 Next question:

How to describe them for matching?

Kristen Grauman

DSRO%
ey

13
(] o

= Next lecture...

Slide credi
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Local Descriptors

e We know how to detect points
 Next question:

How to describe them for matching?

e

(]

£

=)

®

O

C

g

OGN or e .; ,7*\' §
Point descriptor should be: g
1. Invariant é

2. Distinctive vz
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What we have learned today?

e Local invariant features
— Motivation
— Requirements, invariances

e Keypoint localization
— Harris corner detector

e Scale invariant region selection
— Automatic scale selection
— Laplacian-of-Gaussian detector
— Difference-of-Gaussian detector (Problem Set 3 (Q2))
— Combinations

e Local descriptors
— Anintro
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Supplementary materials

e Hessian detector
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Hessian Detector geauders

e Hessian determinant

Han(l):{:XX :Xy}

Xy

Note: these are 2nd
derivatives!

Intuition: Search for strong
derivatives in two
orthogonal directions

Slide credit: Krystian Mikolajczyk
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Hessian Detector geauders

e Hessian determinant

Han(l):{:XX :Xy}

Xy

det(Hessian(1)) = 1,1, — 1

In Matlab:
IXX.DIW —(Ixy)"2

Slide credit: Krystian Mikolajczyk
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Responses geauers

Hessian Detector —

WAzolejoyiw uerysAuy :31paJd apis

on corners and strongly

Effect: Responses mainly
textured areas.

2-Nov-11

84

]
—
—

()
S
-
+—
(@)
()
—

Fei-Fei Li




Hessian Detector — Responses e

Slide credit: Krystian Mikolajczyk
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