

Fei-Fei Li Lecture 11 - 1 2-Nov-11

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector (Problem Set 3 (Q2))
 - Combinations
- Local descriptors
 - An intro

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
 - Combinations
- Local descriptors
 - An intro

Fei-Fei Li Lecture 11 - 3 2-Nov-11

Motivation

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Articulation

Intra-category variations

Application: Image Matching

by <u>Diva Sian</u>

by **swashford**

Slide credit: Steve Seitz

Slide credit: Steve Seitz

Harder Case

by <u>scgbt</u>

Fei-Fei Li Lecture 11 - 6 2-Nov-11

Harder Still?

NASA Mars Rover images

| Slide credit: Steve Seitz

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Slide credit: Steve Seitz

Application: Image Stitching

Slide credit: Darya Frolova, Denis Simakov

Application: Image Stitching

- Procedure:
 - Detect feature points in both images

Fei-Fei Li Lecture 11 - 10 2-Nov-11

Application: Image Stitching

• Procedure:

- Detect feature points in both images
- Find corresponding pairs

Fei-Fei Li Lecture 11 - 11 2-Nov-11

Application: Image Stitching

Procedure:

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align the images

Fei-Fei Li Lecture 11 - 12 2-Nov-11

General Approach

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Slide credit: Bastian Leibe

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

This lecture (#11)

We need a repeatable detector!

Fei-Fei Li Lecture 11 - 14 2-Nov-11

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

Next lecture (#12)

We need a reliable and distinctive descriptor!

Fei-Fei Li Lecture 11 - 15 2-Nov-11

Invariance: Geometric Transformations

Slide credit: Steve Seitz

Levels of Geometric Invariance

Fei-Fei Li Lecture 11 - 17 2-Nov-11

Often modeled as a linear transformation:

Scaling + Offset

Slide credit: Tinne Tuytelaars

Lecture 11 - 18 2-Nov-11

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Fei-Fei Li Lecture 11 - 19 2-Nov-11

Many Existing Detectors Available

- Hessian & Harris [Beaudet '78], [Harris '88]
- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for many recent applications in Computer Vision.

Fei-Fei Li Lecture 11 - 20 2-Nov-11

Keypoint Localization

Goals:

- Repeatable detection
- Precise localization
- Interesting content
- ⇒ Look for two-dimensional signal changes

Fei-Fei Li Lecture 11 - 21 2-Nov-11

Slide credit: Svetlana Lazebnik

Finding Corners

- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference, 1988.

Fei-Fei Li Lecture 11 - 22 2-Nov-11

Corners as Distinctive Interest Points

Design criteria

- We should easily recognize the point by looking through a small window (*locality*)
- Shifting the window in any direction should give a large change in intensity (good localization)

"flat" region:
no change in all
directions

"edge":
no change along
the edge direction

"corner": significant change in all directions

Slide credit: Alyosha Efros

Harris Detector Formulation

Change of intensity for the shift [u,v]:

Slide credit: Rick Szeliski

Slide credit: Rick Szeliski

Harris Detector Formulation

This measure of change can be approximated by:

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_x I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Slide credit: Rick Szeliski

Harris Detector Formulation

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} & \sum_{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Slide credit: David Jacobs

Fei-Fei Li Lecture 11 - 27 2-Nov-11

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This means:
 - Dominant gradient directions align with x or y axis
 - If either λ is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

Slide credit: David Jacobs

Lecture 11 - 28 2-Nov-11

adapted from Darya Frolova, Denis Simakov

General Case

• Since M is symmetric, we have $M=R^{-1}igg|egin{array}{cccc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}igg|R$

(Eigenvalue decomposition)

 We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Fei-Fei Li Lecture 11 - 29 2-Nov-11

Interpreting the Eigenvalues

Classification of image points using eigenvalues of M:

Slide credit: Kristen Grauman

Lecture 11 - 30 2-Nov-11

Corner Response Function

 $(R) = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

abuse of notation Threshold

 λ_2

Fast approximation

- Avoid computing the eigenvalues
- α : constant (0.04 to 0.06)

 λ_i

Slide credit: Kristen Grauman

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Result is rotation invariant

Summary: Harris Detector [Harris88]

Compute second moment matrix (autocorrelation matrix)

2. Square of derivatives

4. Cornerness function - two strong eigenvalues

$$R = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

$$= g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Perform non-maximum suppression

Harris Detector: Workflow

Slide adapted from Darya Frolova, Denis Simakov

Harris Detector: Workflow

- computer corner responses R

Slide adapted from Darya Frolova, Denis Simakov

- Take only the local maxima of R, where R>threshold

Slide adapted from Darya Frolova, Denis Simakov

Harris Detector: Workflow

- Resulting Harris points

Slide adapted from Darya Frolova, Denis Simakov

Harris Detector – Responses [Harris88]

Slide credit: Krystian Mikolajczyk

Fei-Fei Li Lecture 11 - 39 2-Nov-11

Harris Detector – Responses [Harris88]

Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman

Fei-Fei Li Lecture 11 - 40 2-Nov-11

Harris Detector: Properties

• Translation invariance?

Slide credit: Kristen Grauman

Harris Detector: Properties

- Translation invariance
- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Fei-Fei Li Lecture 11 - 42 2-Nov-11

Harris Detector: Properties

- Translation invariance
- Rotation invariance

• Scale invariance?

Slide credit: Kristen Grauman

2-Nov-11

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector (Problem Set 3 (Q2))
 - Combinations
- Local descriptors
 - An intro

Fei-Fei Li Lecture 11 - 44 2-Nov-11

Source: Bastian Leibe

From Points to Regions...

- The Harris and Hessian operators define interest points.
 - Precise localization
 - High repeatability

- In order to compare those points, we need to compute a descriptor over a region.
 - How can we define such a region in a scale invariant manner?
- I.e. how can we detect scale invariant interest regions?

Fei-Fei Li Lecture 11 - 45 2-Nov-11

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

Similarity measure

$$d(f_A, f_B)$$

Lecture 11 - 46

2-Nov-11

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

Similarity measure

$$d(f_A, f_B)$$

Lecture 11 - 47 2-Nov-11

Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

Similarity measure

$$d(f_A, f_B)$$

- Comparing descriptors while varying the patch size
 - Computationally inefficient
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition

 $d(f_A, f_B)$

Similarity measure

Slide credit: Krystian Mikolajczyk

Slide credit: Kristen Grauman

Automatic Scale Selection

Solution:

Design a function on the region, which is "scale invariant"
 (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 For a point in one image, we can consider it as a function of region size (patch width)

Fei-Fei Li Lecture 11 - 50 2-Nov-11

Automatic Scale Selection

- Common approach:
 - Take a local maximum of this function.
 - Observation: region size for which the maximum is achieved should be invariant to image scale.

Important: this scale invariant region size is found in each image independently!

Slide credit: Kristen Grauman

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Fei-Fei Li Lecture 11 - 52 2-Nov-11

Automatic Scale Selection

Function responses for increasing scale (scale signature)

Automatic Scale Selection

• Function responses for increasing scale (scale signature)

Fei-Fei Li Lecture 11 - 54 2-Nov-11

Automatic Scale Selection

Function responses for increasing scale (scale signature)

Fei-Fei Li Lecture 11 - 55 2-Nov-11

Automatic Scale Selection

Function responses for increasing scale (scale signature)

Fei-Fei Li Lecture 11 - 56 2-Nov-11

Automatic Scale Selection

Function responses for increasing scale (scale signature)

Fei-Fei Li Lecture 11 - 57 2-Nov-11

Slide credit: Tinne Tuytelaars

Automatic Scale Selection

• Normalize: Rescale to fixed size

Fei-Fei Li Lecture 11 - 58 2-Nov-11

What Is A Useful Signature Function? \[\int \left(\frac{1}{(\times, \times, \text{very bod})} \]

• (Laplacian-of-Gaussian = "blob" detector

Slide credit: Bastian Leibe

Fei-Fei Li Lecture 11 - 59 2-Nov-11

Slide credit: Svetlana Lazebnik

Characteristic Scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* 30 (2): pp 77--116.

Fei-Fei Li Lecture 11 - 60 2-Nov-11

Slide adapted from Krystian Mikolajczyk

Laplacian-of-Gaussian (LoG)

 σ^{5}

Local maxima in scale space of Laplacian-of-Gaussian

$$L_{xx}(\sigma) + L_{yy}(\sigma)$$

Fei-Fei Li Lecture 11 - 61 2-Nov-11

Laplacian-of-Gaussian (LoG)

• Interest points:

 Local maxima in scale space of Laplacian-of-Gaussian

$$L_{xx}(\sigma) + L_{yy}(\sigma) \quad \sigma^{2}$$

Fei-Fei Li Lecture 11 - 62 2-Nov-11

Laplacian-of-Gaussian (LoG)

• Interest points:

 Local maxima in scale space of Laplacian-of-Gaussian

$$L_{xx}(\sigma) + L_{yy}(\sigma)$$
 σ^3

Laplacian-of-Gaussian (LoG)

Interest points:

Local maxima in scale space of Laplacian-of-Gaussian

 \Rightarrow List of (x, y, σ)

Slide adapted from

LoG Detector: Workflow

Slide credit: Svetlana Lazebnik

Fei-Fei Li Lecture 11 - 65 2-Nov-11

Slide credit: Svetlana Lazebnik

LoG Detector: Workflow

sigma = 11.9912

Fei-Fei Li Lecture 11 - 66 2-Nov-11

Slide credit: Svetlana Lazebnik

Fei-Fei Li Lecture 11 - 67 2-Nov-11

Technical Detail

 We can efficiently approximate the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

Slide credit: Bastian Leibe

Difference-of-Gaussian (DoG)

- Difference of Gaussians as approximation of the LoG
 - This is used e.g. in Lowe's SIFT pipeline for feature detection.
- Advantages
 - No need to compute 2nd derivatives
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.

Slide credit: Bastian Leibe

Key point localization with DoG

- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses

Slide credit: David Lowe

Fei-Fei Li Lecture 11 - 70 2-Nov-11

Slide adapted from Krystian Mikolajczyk

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Lecture 11 - 71 2-Nov-11

Results: Lowe's DoG

Slide credit: Bastian Leibe

Example of Keypoint Detection

- (a) 233x189 image
- (b) 832 DoG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures (removing edge responses)

Slide credit: David Lowe

Fei-Fei Li Lecture 11 - 73 2-Nov-11

Harris-Laplace [Mikolajczyk '01]

1. Initialization: Multiscale Harris corner detection

Slide adapted from Krystian Mikolajczyk

Computing Harris function Detecting local maxima

Fei-Fei Li Lecture 11 - 74 2-Nov-11

Harris-Laplace [Mikolajczyk '01]

- 1. Initialization: Multiscale Harris corner detection
- Scale selection based on Laplacian
 (same procedure with Hessian ⇒ Hessian-Laplace)

Harris points

Harris-Laplace points

Fei-Fei Li Lecture 11 - 75 2-Nov-11

Summary: Scale Invariant Detection

- Given: Two images of the same scene with a large scale difference between them.
- Goal: Find the same interest points independently in each image.
- Solution: Search for maxima of suitable functions in scale and in space (over the image).
- Two strategies
 - Laplacian-of-Gaussian (LoG)
 - Difference-of-Gaussian (DoG) as a fast approximation
 - These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).

Fei-Fei Li Lecture 11 - 76 2-Nov-11

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
 - Combinations
- Local descriptors
 - An intro

Fei-Fei Li Lecture 11 - 77 2-Nov-11

Slide credit: Kristen Grauman

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

⇒ Next lecture...

Fei-Fei Li Lecture 11 - 78 2-Nov-11

Slide credit: Kristen Grauman

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Fei-Fei Li Lecture 11 - 79 2-Nov-11

What we have learned today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector (Problem Set 3 (Q2))
 - Combinations
- Local descriptors
 - An intro

Fei-Fei Li Lecture 11 - 80 2-Nov-11

Supplementary materials

Hessian detector

Fei-Fei Li Lecture 11 - 81 2-Nov-11

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Note: these are 2nd derivatives!

Intuition: Search for strong derivatives in two orthogonal directions

Slide credit: Krystian Mikolajczyk

Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^{2}$$

In Matlab:

$$I_{xx}.*I_{yy}-(I_{xy})^2$$

Slide credit: Krystian Mikolajczyk

Hessian Detector – Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Slide credit: Krystian Mikolajczyk

Hessian Detector – Responses [Beaudet78]

Slide credit: Krystian Mikolajczyk

Fei-Fei Li Lecture 11 - 85 2-Nov-11