
CS 231A Computer Vision (Fall 2012)
Problem Set 4

Master Set

Due: Nov. 29th, 2012 (23:59pm)

1 Part-based models for Object Recognition (50 points)

One approach to object recognition is to use a deformable part-based model. Unlike global
features (e.g. bag of words), a part-based model encodes relative spatial locations of different
parts of an object, as shown in Fig. 1(a). The deformable nature of the model allows for relative
spatial movement between the parts. Given a test image, the algorithm will find the best match
for each part in the image while also considering the cost of deforming the relations between
the parts. In this problem you will explore how to pose this problem in a statistical framework.
Further, given a set of training images, you will show how the model θ can be learned.

v1

v2

v3v4

v5 e34

e25

e45 e23

e12
e15

(a)

(b)

Figure 1: (a) An illustration of the parameters of an example deformable part-based model.
Note that there is a connection parameter cij corresponding to each edge eij , and an appearance
parameter ui corresponding to each vertex vi. (b) Three training images showing the part
locations and the last image depicting the learned structure model.

A pictorial structure model is a type of part-based model where an object is given by
a collection of parts with connections between certain pairs of parts. A pictorial structure

1

model is a graph structure with vertices V = {v1, . . . , vn} corresponding to the n parts in the
model. It is parameterized by θ = {u, E, c} where u = {u1, . . . , un} are appearance parameters
(such as patches), E = {eij} is the set of edges indicating whether parts are connected, and
c = {cij | (vi, vj) ∈ E} are connection parameters. Each part vi has its own appearance
parameter ui (the specifics of this parameter are not needed to solve this problem). For a given
image, we would like to find the object configuration L = (l1, . . . , ln), where each li specifies
the location of part vi.

In this problem, we specifically find p(L | I, θ) which denotes the probability of an object
configuration given an image I, and a model θ. Using Bayes Rule we have p(L | I, θ) ∝ p(I |
L, θ)p(L | θ) where p(I | L, θ) defines the likelihood of seeing a particular image given that
an object is at some location, and p(L | θ) is the likelihood that an object is at a particular
location.

To get some intuition of this model let’s consider scanning this model over an image. Given
a learned model θ, there are two components to evaluate for our model configuration corre-
sponding to each of the probability terms above (from Bayes Rule). First, for each part i, we
compare our appearance parameter ui to the image I and get a measure for how likely the
location of the corresponding part is. Second, given a model θ we can calculate the likelihood
of a object configuration L. An intuitive way to think of how cij describes the relation between
two parts is to think of the connections between the parts as springs and cij as the measure of
stiffness of those springs. Although we do not know the location of each part given an image
we have a general idea of how the object locations will appear relative to each other, and we
have a way of measuring how likely a given part is to appear at each location using u.

(a) Write p(I | L, θ) as a function of I, ui, E, cij and li. Assume that the parts do not overlap.
Hint: What information is not needed to evaluate the likelihood of an image given a part
configuration, and the model?

(b) For this part p(L | θ) has the form

p(L | θ) =

∏
(vi,vj)∈E p(li, lj | θ)∏
vi∈V p(li | θ)deg vi−1

where deg vi is the degree of vertex vi in the graph defined by E. In addition, assume
that there is no information associated with the absolute location of an individual part.

Represent p(L | θ) in terms of only E, cij , and li. Use the expression for p(L | θ) and the
assumption given above.

(c) In the previous parts of this problem we have assumed that our model θ is known. In this
part you will derive how we learn this model given training images. Specifically use the
maximum likelihood (ML) estimation to find the model θ∗ = (u∗, E∗, c∗).

(i) Write down the ML estimate for θ∗.
Assume that you are given m i.i.d. (independent and identically distributed) training
images. Use the expressions you found in parts (a) and (b) to simplify your answer.
Note that we do not expect you to find a closed form solution for θ∗. You only need
to pose the optimization problem whose solution is θ∗.

(ii) Show that our estimate for θ∗ can be found by solving two separate maximization
problems. Show how to find our estimates for u∗i ,E

∗, c∗ij from these problems. Again,
in this problem you do not need to provide a closed form solution, you only need to

2

set up the optimization problems.

(iii) Extra Credit (1%): Give a method for finding E∗ and c∗ in accordance with the
ML estimate of θ∗ separately. First assume that E is a fully connected graph, using
this find an estimate for c∗ij . Using these values for your c∗ij ’s find an estimate for
E∗. Hint: Pose E∗ as a common graph problem.

(d) A question that you should always be asking yourself when you see a new recognition
algorithm is what the method is invariant to, and how it accomplishes these invariances.
Specifically, is the method developed in this problem invariant to scale, intensity, affine
transformation and/or rotation? Provide justification for your answers in a few sentences.

Solution:

(a) Assuming that our parts do not overlap, we can write

p(I | L, θ) = p(I | L, u) =
n∏

i=1

p(I | li, ui)

where the first equality holds from the observation that no information is gained from
either E or c because we already know the location of our object.

(b) Since we do not assign any value to the information of an absolute part location we have
p(li | θ) = 1 using this we write

p(L | θ) =
∏

(vi,vj)∈E

p(li, lj | θ) =
∏

(vi,vj)∈E

p(li, lj | cij)

where the last equality holds because the appearance u adds no information here and the
information from E is already captured in the product condition.

(c) (i) First we need to write down the ML estimate for θ∗ given m training images which
is

θ∗ = arg max
θ

m∏
k=1

p(Ik | Lk, θ)p(Lk | θ)

(ii) The ML estimate can be broken into two separate for u and one for E, and c. First
lets consider finding the estimate for u. Our estimate for u can be found by using
p(I | L, u) because this is the only term which u appears. Simplifying we can find
each ui due to

p(I | L, u) =
n∏

i=1

p(I | li, ui)

thus our ML estimate is given by

u∗i = arg max
ui

n∏
k=1

p(Ik | lki , ui)

3

Our estimates for E∗ and c∗ij can be found by solving the second maximization
problem,

c∗, E∗ = arg max
E,c

∏
(vi,vj)∈E

p(li, lj | cij)

Extra Credit For this part we see that E and C only appear in the p(L | θ) term.
However they appear there together and we would like to estimate them separately.
If we notice that E∗ depends on c∗ but c∗ does not depend on E∗ we can estimate
c∗ first. We see that our estimate c∗ can be decomposed into estimate for c∗ij and is
given by

c∗ij = arg max
cij

m∏
k=1

p(lki , lkj | cij)

Now we consider estimating E∗. Remembering that the cij indicate how strong the
connection between parts and that E defines a graph, we follow the hint and will
use a function of cij to define weights of a graph and then find the minimal spanning
tree. Currently though our problem is

E∗ = arg max
E

∏
(vi,vj)∈E

m∏
k=1

p(lki , lkj | c∗ij)

using logarithms we can rewrite this as

E∗ = arg max
E

∑
(vi,vj)∈E

m∑
k=1

log
[
p(lki , lkj | c∗ij)

]

= arg min
E

∑
(vi,vj)∈E

m∑
k=1

− log
[
p(lki , lkj | c∗ij)

]
as a note this will yield the same maximum E because log is monotonically increasing.
Now we can apply an algorithm to find the minimal spanning tree to find E∗.

(d) Since the way we compare appearance it not given in precise detail, we do not know
whether our method is invariant to intensity (it is safe to assume that it is though). Since
we are using only the relative locations of the part models we are invariant to rotation. We
are slightly invariant to affine transformations as long as they aren’t too large, resulting
in significant occlusion of part (say a profile view of a human body), again because our
model can adjust for deformations. The method is not invariant to scale.

Grading Guideline:

Total (50 points)
(a) (10 points)

(5 points) CORRECT FORMULA
(5 points) CORRECT EXPLANATION

(b) (10 points)
(5 points) CORRECT FORMULA
(5 points) CORRECT EXPLANATION

4

(c) (25 points)
(i) (5 points)

(5 points) CORRECT FORMULA
(ii) (20 points)

(5 points) CORRECT FORMULA for u ML estimate
(5 points) CORRECT DERIVATION for u ML estimate
(5 points) CORRECT FORMULA for c,E ML estimate
(5 points) CORRECT DERIVATION for c,E ML estimate

(c)(iii) (1 extra credit)
(d) (5 points)

-1 for each: INCORRECT scale; intensity; affine transformation; rotation;

2 Scene Classification and Matching Using ObjectBank (50 points)

In this problem you will experiment with a low-level (based on local image features) and high-
level (based on object relevance) approach to scene classification. Furthermore, you will explore
the use of different feature vectors with a linear kernel support vector machine (SVM) in order to
improve classification performance. The scene classification will be performed on a given subset
of the UIUC Sports data-set. The dataset along with all other materials for this problem can
be downloaded from the course web page (PS4_data.zip).

One of the most exciting branches of modern Computer Vision research is the description
of the entire scene depicted in an image. While there are many available solutions to object
detection and image description, a conclusive approach to describe the semantic contents of a
natural scene has not yet emerged. However, ObjectBank [3, 4] is a new technology that has
demonstrated very good results with a relatively simple approach.

ObjectBank (OB) is similar to an array of filters in traditional signal processing insofar that
it is an array of object detectors applied to one image. However, instead of outputting a simple
measure of the signal inside a frequency band, the output of an object detector is a 3-dimensional
response map which quantifies the presence of an object as a function of resolution and (x,y)-
coordinates. These response maps can be concatenated to create an overall description of a
scene in terms of the presence of objects. For example, Fig. 2 shows some sample responses from
a test image of sailboats. The“Sailboat” filter has several large responses that correlate to the

Figure 2: Diagram of computation pipeline for ObjectBank representation of an image.

5

Algorithm 1 Create ObjectBank Feature Vector
FeatureV ector ⇐ []
for detector d in DetectorSet do

ResponseMap ⇐ Detect(d, image)
SPMPoints ⇐ Compress(ResponseMap)
FeatureV ector.Append(SPMPoints)

end for

location of the actual boats, the“Water” filter has a uniformly large response, and the“Bear”
filter demonstrates effectively zero signal. These object detector results can be concatenated
into a cohesive Feature Vector for the image, which can then be fed into an SVM or other
classification technique.

One of the complications of this technique is the need for data compression or reduction.
Each object detector yields an output of roughly 12,000 datapoints, and with 177 objects
currently in the ObjectBank, the feature vector (dimension = 12000 ∗ 177 ≈ 2.1mil) would
be high dimensional and unlikely to work in a standard machine learning technique due to
overfitting, etc. The current solution for this problem is to continually subdivide the image
and extract the maximum value in each subdivision in a modification of the Spatial Pyramid
Matching (SPM) [2] technique as shown in Fig. 3.

For the purposes of this assignment, we will “black box” the detection portion of the system.
If you are curious to learn more, please refer to the following papers: [1, 3, 4] (not required
for this assignment)

Note: You need to print & submit your code for all parts of this problem to
receive full credit as the final results have already been provided in the starter
code. You do not need to submit any files that were not modified by you.

(a) Before exploring the object-based approach of ObjectBank, you will experiment with the
low-level bag of words (BoW) representation. That is, you will create a feature vector
using the BoW approach discussed in class and train a linear SVM to classify scenes.

We have provided you with a pre-trained code-book to form the feature vector. Assign
each SIFT descriptor to its nearest code-book entry using L2 distance and aggregate the
results in a histogram to form the BoW feature. Use the Liblinear SVM package (same as

Figure 3: Overview of the Spatial Pyramid Kernel in which histograms of interest point (denoted
by the three markers) are created for each subdivision in a 2-level pyramid. The method used
in ObjectBank is very similar, except it only extracts the local max inside each subdivision.

6

PS0) to train and test your classifier on the given subset of the UIUC Sports data-set. To
compare your classification accuracy to the one we obtained, run the Problem2a.m script.

(b) Using your result in part (a) as a benchmark, we will implement ObjectBank in several
steps. We have given you the response maps corresponding to the data-set in the folder
response_maps. To speed up the processing of the data, we will be using only 50 of the
177 objects for this assignment.

(i) To motivate the switch from BoW to OB use a 0-level SPM to create your feature
vector (i.e. select the max of each response map and add it to the feature vector).
Train a linear SVM and compare the classification accuracy to the one we obtain
for this part, and the result that you obtained for part (a). The code and specific
instructions for this part of the assignment are in Problem2bi.m.

(ii) Now use a 2-level SPM to form the feature vector form the given response maps.
Train a linear SVM and compare your performance results to the given bench-
mark. The code and specific instructions for this part of the assignment are in
Problem2bii.m. (When the dimensions of the given response map are not divisible
by 2, either round up or down.)

(c) Assume that you are given a single image (without a label) and asked to find the “most
similar” image from your dataset (also without labels). How would you approach this
problem? Describe and implement a method using the OB response maps to gener-
ate features for the purpose of selecting the closest semantic match to the given image.
Essentially, we would like to build a Google for images without using textual input.

This problem is intended to be more open-ended and provide a lot of room for creativity.
To begin with, be clear on the type of similarity you are trying to achieve. Some possible
definitions are pixel-by-pixel accuracy, OB feature correspondence, or local image-patch
matching. Once you have a sense of your metric, you could try several approaches that we
have discussed in the course: clustering, norm of differences, 1-vs-all SVMs, correlation,

(a)

(b)

Figure 4: Sample Test Images

7

etc.. To get full credit for this problem, please write a clear description of your method-
ology and an explanation of trade-offs compared to other methods to demonstrate your
understanding of the material.

The sample data that you are given in this problem is a mix of data with clear ground
truths (i.e., a picture of people playing badminton should match with another picture of
people playing badminton) and intentionally poor matches. It is interesting to note what
matches you get and to share insights into why the results make sense to you. Please
submit your code, a description of your method, and a printout of image
match results displayed by Problem2c.m.

Grading Guideline:

Total (50 points)
(a) (10 points)

(7 points) CORRECT CompileBoW.m
(3 points) CORRECT Problem2a.m

(b) (20 points)
(15 points) CORRECT MaxGetSpatialPyramid.m
(5 points) CORRECT Problem2bi.m Problem2bii.m

(c) (20 points)
(9 points) REASONABLE approach
(7 points) REASONABLE result
(3 points) REASONABLE explanation
(1 points) documentation

References

[1] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively trained,
multiscale, deformable part model. In IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR) Anchorage, Alaska, June 2008., 2008.

[2] Svetlana Lazebni, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2169–2178, 2006.

[3] Li-Jia Li, Hao Su, Yongwhan Lim, and Li Fei-Fei. Objects as attributes for scene classifi-
cation. In European Conference of Computer Vision (ECCV), International Workshop on
Parts and Attributes, Crete, Greece, September 2010.

[4] Li-Jia Li, Hao Su, Eric P. Xing, and Li Fei-Fei. Object bank: A high-level image repre-
sentation for scene classification & semantic feature sparsification. In Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2010.

8

