
CS 231A Computer Vision (Fall 2011)
Problem Set 3

Master Set

Due: Nov. 14th, 2011 (9:30am)

1 Probabilistic Recursion for Tracking (20 points)

In this problem you will derive a method for tracking a point of interest through a sequence
of images. In this problem there exists a true location of an object or interest point that you
want to estimate in each frame. We observe this true location through a noisy image. These
observations will then be used in conjunction with prior knowledge of the general position where
our object or interest point is known to lie. Formalizing this description we can write down the
following random variables

xk ∈ Rd : the ground truth location of our object or interest point at time k

Xk = [x1, . . . , xk]T : history of the ground truth location to time step k

zk ∈ Rc : our noisy position measurement at time k of xk

Zk = [z1, . . . , zk]T : history of our noisy position measurement of xk to time step k

To gain our estimate for the position of the object or interest point at time step k we would
like to solve for p(xk|Zk). In addition, our estimate needs to be computationally efficient, and
should be easily updated for when we wish to estimate the position at k + 1. Thus we will
calculate our estimate using a probabilistic recursion. To be able to compute this recursion it
can only depend on distributions which are stored in memory. The distributions we have stored
in memory are

p(zk|xk) : our measurement model

p(xk|xk−1) : transition model

p(xk−1|Zk−1) : the result of our recursion at the previous iteration

(a) In this part of the problem we will assume that Zk−1 and zk are conditionally independent
given xk. Using this assumption derive an expression for p(xk|Zk) in terms of p(zk|xk)
and p(xk|Zk−1). This is conditioned solely on our ground truth location at time k and
measurements up to and including time k − 1. Justify each step of your derivation (it
should not be more than a few lines).

1

(b) The p(xk|Zk−1) term prevents our expression from being solely dependent on distribu-
tions that are stored in memory. We will now assume that xk and Zk−1 are conditionally
independent given xk−1. Now using this assumption write our recursion as an expression
which is solely dependent on distributions we have stored in memory. Justify your answer.

Remark: If both our measurement and transition model are Gaussian distributions, there
exists a closed form solution for the recursion. In general, the recursion is approximated
using numerical techniques known as Monte Carlo methods.

Solution:

(a) Starting with the probability we wish to obtain

p(xk|Zk) (1)

= p(xk|Zk−1, zk) (2)

=
p(zk|xk, Zk−1)p(xk|Zk−1)∫
p(zk|xk, Zk−1)p(xk|Zk−1)dxk

(3)

=
p(zk|xk)p(xk|Zk−1)∫
p(zk|xk)p(xk|Zk−1)dxk

(4)

where (3) follows from (2) after applying Bayes Rule, and (4) follows from (3) using the
assumption that Zk−1 and zk are conditionally independent given xk.

(b) Starting with the expression we obtained from part (a) we have

p(zk|xk)p(xk|Zk−1)∫
p(zk|xk)p(xk|Zk−1)dxk

(5)

=

p(zk|xk)

∫
p(xk|xk−1, Zk−1)p(xk−1|Zk−1)dxk−1∫

p(zk|xk)

∫
p(xk|xk−1, Zk−1)p(xk−1|Zk−1)dxk−1dxk

(6)

=

p(zk|xk)

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1∫

p(zk|xk)

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1dxk

(7)

where (6) follows from (5) using p(a) =
∫
p(a|b)p(b)db, (7) follows from (6) using the

assumption that xk and Zk−1 are conditionally independent given xk−1.

Grading Guideline:

Total (20 points)
(a) (10 points)

2

(4 points) applying Bayes rule to the equation
(4 points) leveraging conditional independence correctly
(2 points) correct final solution

(b) (10 points)
(4 points) applying marginalization correctly
(4 points) leveraging conditional independence correctly
(2 points) correct final solution

2 Sifting through SIFT (30 points)

SIFT has become a household name for anyone involved with computer vision. However, it is
often naively or incorrectly applied when somebody simply downloads a compiled version from
the internet and applies it to their task. The purpose of this problem is to illuminate subtleties
of SIFT that can be overlooked, while also giving practical experience to the description and
matching methods developed by Lowe et al.

(a) It is desirable to locate image features that are stable across image instances and noise
variation. Interest points are related to distinct changes in neighboring pixel values, but
choosing the correct operator was the focus of many papers. For comparison, consider
Fig. 1 which contains an input image, a difference of gaussians (DoG) of the input, and a
gradient of the input. If you wanted to detect interest points that produce a stable signal
across image variation and random noise, which operator would you use? Specifically,
write down the mathematical formulation for both approaches (DoG and gradient) and
identify properties that would support your decision. hint: think about what these kernels
look like in the frequency domain.

(b) A large part of SIFT’s immense popularity (10,000+ citations) is its excellent marriage
of a keypoint detector and a descriptor. Choosing the keypoints involves many heuristics
such as a spatial sampling, removing edge points, and contrast thresholding (described
in sections 3 and 4 of the Lowe et al. 2004), whereas the descriptor is calculated in a
straightforward manner. In this problem, we will give you a keypoint detector and ask
you to create the descriptor. Please download PS3Prob2.zip from the course webpage to
complete the rest of this problem.

(a) Original Image (b) Difference of Gaussian of Image (c) Gradient of Image

Figure 1: Different metrics for stable interest points of a given image

3

Figure 2: Diagram of keypoint descriptor formation. The blue circle is used to indicate the
presence of a gaussian centered at the keypoint.

(i) The keypoint descriptor of SIFT is created by first computing the gradient magni-
tude and orientation at each image sample point in a region around the keypoint
location, then collecting the results into orientation histograms. Please refer to Sec-
tion 6.1 Lowe’s 2004 Paper for details of implementation. Download PS3Prob2.zip

from the course webpage and examine sift_test.m. The interest point detector is
given to you, and it is your task to create the 128-d (4×4 array of histograms with
8 orientation bins per histogram) feature vector descriptor for each keypoint.

Follow the step by step instructions in mySIFTdescriptor.m to implement your
SIFT descriptor and test your code using the given sift_test.m with the test im-
age elmo.jpg. Print and turn in your mySIFTdescriptor.m and the plot of your
result SIFT descriptors. The expected output is shown in figure 3.

Figure 3: Result image of SIFT descriptors.

4

(ii) Consider the situation where you are trying to detect a rigid object that has a con-
sistent orientation across object instances (Refer to Fig. 1 for a practical example).
What change to the orientation assignment of the original SIFT algorithm could
improve detection of the specified object? hint: what invariances does SIFT have
and what are the tradeoffs?

Figure 4: In the example problem of detecting pedestrians with a stationary camera, it is a safe
assumption that they will always be of similar orientation.

Solution:

(a) The gaussian looks the same in time as in frequency. Thus the Difference of Guassians is
the difference of two lowpass filters. It would provide more stable interest points because
it captures both the edge nature of the interest points and is able to filter out some of the
noise that might cause instability. This filter effect can be seen by looking at the Fourier
Transform of the gaussian kernel, which is a guassian itself, and noticing that this kernel
will suppress high frequency noise. On the other hand, the gradient will amplify high
frequency noise.

(b) There are two parts to this problem:
(i)

% initialize your output

gray_img = rgb2gray(img);

% parameters

num_angles = 8;

num_bins = 4;

num_samples = num_bins * num_bins;

patchSize = 16;

% initialize descriptors to zero

descriptors = zeros(size(keypoints,1), num_samples * num_angles);

% for all patches

for i=1:size(keypoints,1)

5

H = fspecial(’gaussian’,10, keypoints(i,3));

scaled_img = imfilter(gray_img,H,’replicate’);

G_X = [-1 0 1];

G_Y = [-1 0 1]’;

I_X = filter2(G_X, scaled_img, ’same’); % vertical edges

I_Y = filter2(G_Y, scaled_img, ’same’); % horizontal edges

I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude

I_theta = mod(atan2(I_Y,I_X) - keypoints(i,4),2*pi); %rotation invariance!

I_theta(find(isnan(I_theta))) = 0;

angle_step = 2 * pi / num_angles;

angles = 0:angle_step:2*pi;

% find coordinates of sample points (bin centers)

sample_x_t = round(keypoints(i,1));

sample_y_t = round(keypoints(i,2));

% find window of pixels that contributes to this descriptor

x_lo = sample_x_t - patchSize/2;

x_hi = sample_x_t + patchSize/2 - 1;

y_lo = sample_y_t - patchSize/2;

y_hi = sample_y_t + patchSize/2 - 1;

try

patch_mag = I_mag(y_lo:y_hi,x_lo:x_hi) .* ...

fspecial(’gaussian’,patchSize, patchSize/2);

patch_ang = I_theta(y_lo:y_hi,x_lo:x_hi);

catch

continue; %skip the point that is too close to the image boundary

end

feature = [];

for x = 1:4:patchSize-3

for y = 1:4:patchSize-3

smallhist = zeros(1,8); %the histgram for one 4x4 region

%find the correct angle bin and increment it by the magnitude

%loop around all points inside each 4x4 section

for x_off = 0:3

for y_off = 0:3

if patch_mag(y+y_off,x+x_off) > 0

%If the magnitude is zero, then there will be no

%addition to the orientation histogram

for a = 1:8 %across the angles

if a == 8 %the angle bin must be the last one

smallhist(a) = smallhist(a) + patch_mag(y+y_off,x+x_off);

break;

6

end

if patch_ang(y+y_off,x+x_off)<angles(a+1)

smallhist(a) = smallhist(a) + patch_mag(y+y_off,x+x_off);

break;

end

end

end

end

end

feature = [feature smallhist];

end

end

%The computed feature is now the completed descriptor for that

%particular interest point!

descriptors(i,:) = feature;

end

%Normalization step:

% find indices of descriptors to be normalized (those whose norm is larger than 1)

tmp = sqrt(sum(descriptors.^2, 2));

normalize_ind = find(tmp > 1);

descriptors_norm = descriptors(normalize_ind,:);

descriptors_norm = descriptors_norm ./ ...

repmat(tmp(normalize_ind,:), [1 size(descriptors,2)]);

% suppress large gradients

descriptors_norm(find(descriptors_norm > 0.2)) = 0.2;

% finally, renormalize to unit length

tmp = sqrt(sum(descriptors_norm.^2, 2));

descriptors_norm = descriptors_norm ./ repmat(tmp, [1 size(descriptors,2)]);

descriptors(normalize_ind,:) = descriptors_norm;

(ii) In order to make the descriptors more distinctive, you could remove the rotation
invariance in SIFT by skipping the step in which you offset the descriptor gradients by
the orientation of the keypoint. In the case of noisy samples (such as the pedestrian case),
it would be useful to use your prior knowledge of the image structure - that is, the people
are always upright - to discard potentially incorrect feature matches.

Grading Guideline:

7

Total (30 points)
(a) (5 points)

(3 points) state DoG if difference of two lowpass filters so more stable
(2 points) state gradient amplifies noise

(b) (25 points)
(i) (19 points)

(5 points) Correct code for computing I_mag, I_theta
(4 points) Correct code for computing x_lo x_hi, y_lo, y_hi
(3 points) Correct code for determining 4x4 bins
(4 points) Correct code for getting angle histogram
(3 points) Correct code for descriptor generation

(ii) (6 points)
(2 points) Mentioned removing rotation invariance
(2 points) Mentioned skipping orientation offset
(2 points) Mentioned reason - people always upright

3 Single Object Recognition Via SIFT (30 points)

In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition results even in
situations of affine variance and occlusion. In this problem, we will explore a similar approach
for recognizing and locating a given object from a set of test images. It might be useful to
familiarize yourself with sections 7.1 and 7.2 of the paper, which can be found on the course
website under the reading. The code and data necessary to solve this problem can be found in
PS3Prob3.zip on the course webpage.

Figure 5: Sample Output, showing training image and keypoint correspondences.

(a) Given the descriptor g of a keypoint in an image and a set of keypoint descriptors from
another image f1...fn, write the algorithm and equations to determine which keypoint
in f1...fn (if any) matches g. Implement this matching algorithm in the given function
matchKeypoints.m and test its performance using the matchObject.m skeleton code.
Load the data in PS3_Prob3.mat and run the system with the following line:

>>matchObject(stopim{1}, sift_desc{1}, keypt{1}, obj_bbox, stopim{3}, ...

sift_desc{3}, keypt{3});

8

Note that the SIFT keypoints and descriptors are given to you in PS3_Prob3.mat file.
Your result should match the sample output in Fig. 5. [Turn in your code and a sample
image similar to Fig. 5]

(a) Image 1 (b) Image 2

Figure 6: Two sample images for part (b)

(b) Now given an object in an image, we want to explore how to find the same object in
another image by matching the keypoints across these two images.

(i) A keypoint is specified by its coordinates, scale and orientaion (u, v, s, θ). Suppose
that you have matched a keypoint in the bounding box of an object in the first
image to a keypoint in a second image, as shown in figure 6. Given the keypoint pair
and the red bounding box in Image 1, which is specified by its center coordinates,
width and height (x1, y1, w1, h1), find the predicted green bounding box of the same
object in Image 2. Define the center position, width, height and relative orientation
(x2, y2, w2, h2, o2) of the predicted bounding box. Assume that the relation between
a bounding box and a keypoint in it holds across rotation, translation and scale.

(ii) Once you have defined the five features of the new bounding box in terms of the
two keypoint features and the original bounding box, briefly describe how you would
utilize the Hough transform to determine the best bounding box in Image 2 given n
correspondences.

(c) Implement the function getObjectRegion.m to recover the position, scale, and orientation
of the objects (via calculating the bounding boxes) in the test images. You can use a coarse
Hough transform by setting the number of bins for each dimension equal to 4. Use the line
in (a) to test your code and change all the 3’s to 2, 4, 5 to test on different images. If you
are not able to localize the objects (this could happen in two of the test images), explain
what makes these cases difficult. [Turn in your getObjectRegion.m and matching result
images.]

Solution:

9

(a) Find the two nearest neighbors in the second image using Euclidean distance. If the
distance to the nearest neighbor is less than t times the distance to the second nearest
neighbor (e.g, for t = 0.8), then the points are considered to match.

(b) (i) For a single correspondence we can use the following geometric relations to calculate
the bounding box in the second orientation.

o2 = θ2 − θ1
w2 = w1 ∗ (s2/s1)

h2 = h1 ∗ (s2/s1)

x2 = u2 + (s2/s1) ∗ [cos(o2) ∗ (x1 − u1)− sin(o2) ∗ (y1 − v1)]
y2 = v2 + (s2/s1) ∗ [sin(o2) ∗ (x1 − u1) + cos(o2) ∗ (y1 − v1)]

Note: it is also possible to define the center by computing the distance and relative
orientation of the descriptor to the object center.

(ii) To extend this approach to n correspondences we would need to use a hough trans-
form (or some voting scheme) in 5 dimensional bins to determine a good fit for the
5 parameter of the bounding box in the second image.

(c) See code. The difficulties are the strong slant of the stop signs (SIFT is not invariant
to out of plane rotation) and the multiple signs (Lowe’s idea of using relative distances
of first and second nearest neighbors as threshold assumes that there is only one valid
match in the scene). In image 5, there are two signs, potentially causing the second
problem mentioned above. To get full credit, there needed to be mechanisms to handle
outliers (incorrect matches), such as Hough voting with a threshold on the number of
votes required.

Figure 7: Issues with high affine variation

Figure 8: Clean Result

10

Figure 9: Clean Result

Figure 10: Difficulties with multiple/spurious matchest

function matches = matchKeypoints(desc1, desc2, thresh)

n1 = size(desc1,2);

matches = zeros(n1, 2);

n2 = size(desc2,2);

for k1 = 1:n1

dist = zeros(n2,1);

for k2 = 1:n2

dist(k2) = sqrt(sum((desc1(:, k1)-desc2(:,k2)).^2));

end

[sval, sind] = sort(dist);

if sval(1)/sval(2)<thresh

matches(k1,1) = k1;

matches(k1,2) = sind(1);

end

end

11

matches = matches(matches(:,1)>0, :);

function [cx, cy, w, h, orient, count] = getObjectRegion(keypt1, keypt2, ...

matches, objbox, thresh)

% Find parameters for object bounding box

objx = mean(objbox([1 3])); % x-center

objy = mean(objbox([2 4])); % y-center

objw = objbox(3)-objbox(1);

objh = objbox(4)-objbox(2);

% Find parameters for keypoints in image 1

s1 = keypt1(3, matches(1, :));

o1 = keypt1(4, matches(1, :));

x1 = keypt1(1, matches(1, :));

y1 = keypt1(2, matches(1, :));

% Find parameters for keypoints in image 2

s2 = keypt2(3, matches(2, :));

o2 = keypt2(4, matches(2, :));

x2 = keypt2(1, matches(2, :));

y2 = keypt2(2, matches(2, :));

% vote from each keypoint

vote_w = s2./s1*objw;

vote_x = x2 + sum([(objx-x1) ; (objy-y1)] .* [cos(o2-o1) ; -sin(o2-o1)],1).* ...

(s2./s1);%(objx-x1)./s1.*s2;

vote_y = y2 + sum([(objx-x1) ; (objy-y1)] .* [sin(o2-o1) ; cos(o2-o1)],1).*...

(s2./s1); %(objy-y1)./s1.*s2;

vote_o = mod(o2-o1+pi/4, 2*pi)-pi/4; % pi/4 shift is so that 0 rotation...

doesn’t get split bins

% Use four uniform bins for each dimension within range of x. This

% certainly isn’t optimal, but it gets the job done for this problem.

nbins = 4;

bs = assign2bins(vote_w, nbins);

bo = assign2bins(vote_o, nbins);

bx = assign2bins(vote_x, nbins);

by = assign2bins(vote_y, nbins);

% note: having many nested for loops and dynamic array extensions (end+1)

% is very slow, but it makes the code easier to read

cx = []; cy = []; w = []; h = []; orient = []; count=[];

for ks = 1:nbins

for ko = 1:nbins

12

for kx = 1:nbins

for ky = 1:nbins

ind = bs==ks & bo==ko & bx==kx & by==ky;

if sum(ind)>thresh

cx(end+1) = median(vote_x(ind));

cy(end+1) = median(vote_y(ind));

w(end+1) = median(vote_w(ind));

h(end+1) = median(vote_w(ind))/objw*objh;

% "orient" for SIFT seems to be defined differently than...

% "orient" in display code, probably because of flipped vertical axis

orient(end+1) = -median(vote_o(ind));

count(end+1) = sum(ind);

end

end

end

end

end

% creates nb uniform bins within range of x and assigns each x to a bin

function b = assign2bins(x, nb)

b = min(max(ceil((x-min(x))/(max(x)-min(x))*nb), 1), nb);

Grading Guideline:

Total (30 points)
(a) (7 points)

(3 points) Correctly find and sort distance
(3 points) Correctly use threshold to determine matches
(2 points) Overall correctness

(b) (7 points)
(i) (5 points) 1 point for each correct equation
(ii) (2 points) Reasonable explanation

(c) (16 points)
(3 points) Correctly find all parameters
(6 points) Correct Hough transform and voting
(2 points) Use threshold to limit the number of detections
(2 points) Correct matching result images
(3 points) Reasonable explanation

4 Single Object Matching Via Shape Context (20 points)

Depending on a given problem, some feature descriptors may be better suited than others for
object recognition. In contrast to other detectors studied in class, Shape Context [Belongie et
al 2002] measures similarity between shapes and exploits it for classification. The methodology

13

also calculates a transformation that would maximally align two potential matches. It will be
useful to familiarize yourself with section 3.1 as well as the introduction of section 3 in the
paper, which can be found on the class website.

Figure 11: Visualization of polar-coordinate binning

(a) One natural application of Shape Context is to match handwritten digits. In this problem
we have provided the data, interest point detection, and matching code for you.

(i) Write a function compute_shape_context.m to generate the shape context feature
to be used when matching. Specifically your function should take in the minimum
radius, maximum radius, number of bins for radius, number of bins for angle, the
input data from the edge detection, the mean radius and outliers. Your code should
output the mean radius and the shape context feature for each data point. Write your
code in compute_shape_context.m. In this file there is a description of the input
and output data structures, as well as detailed skeleton code on what to do. This
code will take in data from the interest point detector and output data to be used
in the matching process for shape context. Run the test_shape_context.m script
to verify your implementation. Turn in your code for compute_shape_context.m.

(ii) Run the compare_digits.m script and turn in the error for each of the 3 matches.
The error for each match is the sum of the squared distances. We calculate the error
for you and print it out to a figure after running the compare_digits.m script.

(a) (b)

Figure 12: Example data from handwritten digit dataset

(b) Now we consider different images and matching scenarios other than handwriting to test
how shape context performs.

14

(i) We will use preprocessed versions of the images in Fig 13 to test your shape con-
text descriptor. Run the extend_shape_context.m script. Turn in the resulting
error values and warped figure (figure 3 generated from the code) and indicate what
properties of shape context yield this performance.

(a) (b)

Figure 13: Other test images for shape context

(ii) Considering the invariances of Shape Context when would you expect Shape Context
descriptor to have poor performance? Give specific circumstances citing the invari-
ances of Shape Context, and use the previous football result as evidence. Given that
Shape Context performs well for the digit data, when else would we expect shape
context to perform well?

Solution:

(a) Some of the letters that look a like get confused such as a 4 and a 9. For the most part
there is a certain threshold of that allows for correct detection.

(i)
function [BH,mean_dist]=compute_shape_context(Bsamp,mean_dist, ...

nbins_theta,nbins_r,r_inner,r_outer,out_vec)

% [BH,mean_dist]=compute_shape_context(Bsamp,Tsamp,mean_dist, ...

% nbins_theta,nbins_r,r_inner,r_outer,out_vec);

%

% compute (r,theta) histograms for points along boundary

%

% Bsamp is 2 x nsamp (x and y coords.)

% Tsamp is 1 x nsamp (tangent theta)

% out_vec is 1 x nsamp (0 for inlier, 1 for outlier)

%

% mean_dist is the mean distance, used for length normalization

% if it is not supplied, then it is computed from the data

%

% outliers are not counted in the histograms, but they do get

% assigned a histogram

%

nsamp=size(Bsamp,2);

in_vec=out_vec==0;

addpath(’SupportCode’)

15

% compute r,theta arrays

r_array=real(sqrt(dist2(Bsamp’,Bsamp’))); % real is needed to

% prevent bug in Unix version

theta_array_abs=atan2(Bsamp(2,:)’*ones(1,nsamp)-ones(nsamp,1)*Bsamp(2,:),...

Bsamp(1,:)’*ones(1,nsamp)-ones(nsamp,1)*Bsamp(1,:))’;

theta_array=theta_array_abs;

% create joint (r,theta) histogram by binning r_array and

% theta_array

% normalize distance by mean, ignoring outliers

if isempty(mean_dist)

tmp=r_array(in_vec,:);

tmp=tmp(:,in_vec);

mean_dist=mean(tmp(:));

end

r_array_n=r_array/mean_dist;

% use a log. scale for binning the distances

r_bin_edges=logspace(log10(r_inner),log10(r_outer),5);

r_array_q=zeros(nsamp,nsamp);

for m=1:nbins_r

r_array_q=r_array_q+(r_array_n<r_bin_edges(m));

end

fz=r_array_q>0; % flag all points inside outer boundary

% put all angles in [0,2pi) range

theta_array_2 = rem(rem(theta_array,2*pi)+2*pi,2*pi);

% quantize to a fixed set of angles (bin edges lie on 0,(2*pi)/k,...2*pi

theta_array_q = 1+floor(theta_array_2/(2*pi/nbins_theta));

nbins=nbins_theta*nbins_r;

BH=zeros(nsamp,nbins);

for n=1:nsamp

fzn=fz(n,:)&in_vec;

Sn=sparse(theta_array_q(n,fzn),r_array_q(n,fzn),1,nbins_theta,nbins_r);

BH(n,:)=Sn(:)’;

end

(ii) The errors for all three cases are in the ranges around: 9 & 5 → 0.04513, 9 & 0 →
0.028678, 9 & 9 → 0.024491.

(b) (i) The error given is in the range around 0.06824 this is due to the affine transformation
that the football has undergone.

(ii) In this problem our shape context descriptor is scale invariant, but not affine or
rotation invariant. You can make the shape context descriptor rotationally invariant
but this isn’t desirable for our application in this problem. To see this consider a
6 and a 9, rotated these two numbers are very similar to each other and thus we

16

(a)

(b)

Figure 14: Visualization from script

don’t want the descriptor to be rotationally invariant. Thus anytime there is an
affine transformation, or rotation between the two candidate correspondences shape
context will not perform well as in the football example.

Grading Guideline:

Total (20 points)
(a) (12 points)

(10 points) correctly implement code for compute_shape_context
(2 points) correct errors for comparing digits

17

(b) (8 points)
(2 points) correct errors and warped figure
(3 points) correct interpretation of affine transformation
(3 points) correct interpretation for scale invariance and lack of rotation, affine invariance

18

