
CS 231A Computer Vision (Fall 2011)
Problem Set 2

Solution Set

Due: Oct. 28th, 2011 (5pm)

1 Some Projective Geometry Problems (15 points)

Suppose there are two parallel lines that extend to infinity in our world coordinates. The images
of these two lines intersect at a point, v, on the image plane known as the vanishing point. In
this problem we choose to represent the lines as

l =

r
cosα

cosβ
cos γ

 r ∈ R


where α, β and γ are the angles from the x, y and z world axes respectively.

(a) Using homogenous coordinates to show that the image coordinates of the vanishing point
v can be written as v = KRd where

d =

cosα
cosβ
cos γ


K is the camera calibration matrix and R is the rotation matrix between the camera and
the world coordinates.

(b) Express the line direction d in terms of K,R and v.

Remark : Any matrix inverses which do not hold in general, must be shown to hold
in this case.

(c) Now consider the situation where three lines intersect such that each line is orthogonal
to the other two. That is, each line’s directional vector d satisfies the following

dT1 d2 = 0 dT1 d3 = 0 dT2 d3 = 0

Using this property, show that

(K−1vi)
T (K−1vj) = 0

for i 6= j
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Solution:

(a) As mentioned in the problem a group of parallel lines intersect at one point on the image
plane as the world coordinate radius from the image plane goes to infinity. Without loss
of generality, we consider only one of the lines, denoted by l0, that goes through the origin
of world coordinate system. Using the representation of the line given in the problem we
can write the homogenous coordinate representation of our line as

l =




cosα
cosβ
cos γ
1/r

 r ∈ R


letting r → ∞ the image of the line l0 with reach the vanishing point. Therefore using
the equations from lecture to convert between world coordinates and image coordinates
we can write the vanishing point as

v = lim
r→∞

[
K 0

] [R T
0 1

]
cosα
cosβ
cos γ
1/r



=
[
K 0

] [R T
0 1

]
cosα
cosβ
cos γ

0



=
[
K 0

] [Rd
0

]
= KRd

where

d =

cosα
cosβ
cos γ


(b) In lecture we have already shown K is of the form:

K =

α −α cot θ u0
0 β

sin θ v0
0 0 1


since |K| = αβ/ sin θ 6= 0, K−1exists. Here we use the fact that any rotation can be
decomposed into three single rotations around each axis, i.e.

R = RxRyRz =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

cos θz − sin θz 0
sin θz cos θz 0

0 0 1


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now considering |Ri| = cos2 θi + sin2 θi = 1 and |R| = |RxRyRz| = |Rx||Ry||Rz| = 1, R−1

exists. Therefore we can write d = R−1K−1v.

(c) From the last problem we have d = R−1K−1v ⇒ Rd = K−1v. Also we make use of the
fact that any rotation matrix is a unitary matrix, i.e. RTR = I.

dTi dj = 0

dTi (RTR)dj = 0

(Rdi)
T (Rdj) = 0

(K−1vi)
T (K−1vj) = 0

This holds for i 6= j

2 Fundamental Matrix (15 points)

In this question, you will explore some properties of fundamental matrix and derive a minimal
parameterization for it.

(a) Show that two 3 × 4 camera matrices M and M ′ can always be reduced to the following
canonical forms by an appropriate projective transformation in a 3D space, which is
represented by a 4 × 4 matrix H. Here, we assume eT3 (−A′A−1b + b′) 6= 0, where e3 =
(0, 0, 1)T , M = [A, b] and M ′ = [A′, b′].
Note: You don’t have to show the explicit form of H for the proof.
(Hint: The camera matrix has rank 3.)

M̂ =

1 0 0 0
0 1 0 0
0 0 1 0

 and M̂ ′ =

a11 a12 a13 b1
a21 a22 a23 b2
0 0 0 1


(b) Given a 4 × 4 matrix H representing a projective transformation in a 3D space, prove

that the fundamental matrices corresponding to the two pairs of camera matrices (M,M ′)
and (MH,M ′H) are the same.

(c) Using the conclusions from (a) and (b), derive the fundamental matrix F of the camera
pair (M,M ′) using a11, a12, a13, a21, a22, a23, b1, b2. Then use the fact that F is only
defined up to a scale factor to construct a seven-parameter expression for F . (Hint:
The fundamental matrix corresponding to a pair of camera matrices M = [I | 0] and
M ′ = [A | b] is equal to [b]×A.)

Solution:

(a) Since the camera matrix M has rank 3, we can always first find 4 × 4 matrix H0

H0 =

[
A−1 −A−1b

0 1

]
.

such that

MH0 =

1 0 0 0
0 1 0 0
0 0 1 0

 .
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Applying the same transformation to M ′ we will get a new matrix,

M ′H0 = [A′A−1,−A′A−1b+ b′] =

m′11 m′12 m′13 m′14
m′21 m′22 m′23 m′24
m′31 m′32 m′33 m′34

 .
As eT3 (−A′A−1b+ b′) 6= 0, m′34 6= 0.

Now multiply another matrix

H1 =


1 0 0 0
0 1 0 0
0 0 1 0

−m′
31

m′
34
−m′

32
m′

34
−m′

33
m′

34

1
m′

34


to the right of both of them, we will have

MH0H1 =

1 0 0 0
0 1 0 0
0 0 1 0

 andMH0H1 =

m
′
11 −

m′
14m

′
31

m′
34

m′12 −
m′

14m
′
32

m′
34

m′13 −
m′

14m
′
33

m′
34

m′
14

m′
34

m′21 −
m′

24m
′
31

m′
34

m′22 −
m′

24m
′
32

m′
34

m′23 −
m′

24m
′
33

m′
34

m′
24

m′
34

0 0 0 1

 .
So a projection transformation matrix H = H0H1 will reduce M and M ′ to the canonical
forms.

(b) Observe that MX = (MH)(H−1X), and similarly for M ′. Thus if x and x′ are matched
points with respect to the pair of cameras (M,M ′), corresponding to a 3D point X,
then they are also matched points with respect to the pair of cameras (MH,M ′H),
corresponding to the point H−1X.

(c) From the conclusion of (b), the fundamental matrix of the camera pair (M,M ′) is the
same as the fundamental matrix of the camera pair (M̂, M̂ ′), which is [b̂]×Â where

Â =

a11 a12 a13
a21 a22 a23
0 0 0

 , b̂ =

b1b2
1


Thus F can be found.

F = [b̂]×Â =

 0 −1 b2
1 0 −b1
−b2 b1 0

a11 a12 a13
a21 a22 a23
0 0 0

 =

 −a21 −a22 −a23
a11 a12 a13

−a11b2 + a21b1 −a12b2 + a22b1 −a13b2 + a23b1


We can divide F by a21 to get a seven-parameter expression, −1 −a22

a21
−a23
a21

a11
a21

a12
a21

a13
a21

−a11
a21
b2 + b1 −a12

a21
b2 + a22

a21
b1 −a13

a21
b2 + a23

a21
b1

 .
The new seven parameters are a11

a21
, a12
a21

, a13
a21

, a22
a21

, a23
a21

, b1, b2.
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3 Efficient Solution for Stereo Correspondence (25 points)

In this exercise you are given two or more images of the same 3D scene, taken from different
points of view. You will be asked to solve a correspondence problem to find a set of points in
one image which can be identified as the same points in another image. Specifically, the way
you formulate the correspondence problem in this exercise will lend itself to be computationally
efficient.

(a) Suppose you are given a point (p1, p2) in the first image and the corresponding point
(p′1, p

′
2) in the second image, both of the same 3D scene. Write down the homogenous

coordinates x and x′. In addition, write down the necessary and sufficient conditions for
the points x and x′ to meet in the 3D world in terms of what we know about fundamental
matrix F .

(b) Since our points are measurements and susceptible to noise x and x′ may not satisfy the
conditions in (a). Writing this statistically, our measurements are given by

x = x̄+ ∆x x′ = x̄′ + ∆x′

where ∆x and ∆x′ are noise terms, and x̄ and x̄′ are the true correspondences we are
trying to determine. Now we require that only x̄ and x̄′ satisfy the condition in (a). To
find our best estimate of x̄ and x̄′ we will minimize

E = ‖∆x‖2 + ‖∆x′‖2

subject to the constraint on x̄ and x̄′ from (a). In addition to the constraint from (a), we
also need to constrain the noise terms so that x and x′ remain on the image plane. For
this part, write down the optimization problem (i.e. what you are minimizing and the
constraints). Disregard the higher order terms of ∆x and ∆x′ in the constraint from (a).

Your answer should be in the following form:

minimize

subject to

Hint: To constrain the noise terms ∆x and ∆x′ to lie on the image plane the unit vector
e3 = [ 0 0 1 ]T will be useful. Also, x̄ and x̄′ should not appear in the optimization
problem.

(c) Once we drop these higher order terms, we can use Lagrange multipliers to solve the
optimization problem in (b). Show that optimal ∆x and ∆x′ are given by

∆x =
xTFx′PeFx

′

x′TF TPeFx′ + xTFPeF Tx
∆x′ =

xTFx′PeF
Tx

x′TF TPeFx′ + xTFPeF Tx

Hint: The projection matrix Pe = diag(1, 1, 0) will be useful to eliminate unwanted terms
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after you taken the derivative and set it to zero

Remark: Once we have determined the optimal values for ∆x and ∆x′ we can use these
optimal values in conjunction with our measurements x and x′ to determine our estimate
of the true correspondences x̄ and x̄′.

Solution:

(a) Writing the homogenous coordinates we have

x =

p1/f0p2/f0
1

 x′ =

p′1/f0p′2/f0
1


From the lecture, the necessary and sufficient conditions for the line of sight points to
map to the same world coordinates is the epipolar equation xTFx′ = 0.

(b) We begin by rewriting x̄ and x̄′ as

x̄ = x−∆x x̄′ = x′ −∆x′

Using the condition from part (a) on x̄ and x̄′ we have

(x−∆x)TF (x′ −∆x′) = 0

Expanding and ignoring higher order terms we find

x′TF T∆x+ xTF∆x′ = xTFx′

. For points x and x′ to remain on the image plane the noise terms must satisfy

eT3 ∆x = 0 eT3 ∆x′ = 0

Thus our optimization problem becomes

minimize ‖∆x‖2 + ‖∆x′‖2

subject to x′TF T∆x+ xTF∆x′ = xTFx′

eT3 ∆x = 0

eT3 ∆x′ = 0

(c) Using Lagrange multipliers we can write out our Lagrangian for the optimization problem
we wrote down in part (b) as

‖∆x‖2 + ‖∆x′‖2 − λ
(
x′TF T∆x+ xTF∆x′

)
− µ1eT3 ∆x− µ2eT3 ∆x′

finding the derivatives with respect to ∆x and ∆x′ and setting them to zero we have

2∆x− λFx′ − µ1e3 = 0 2∆x′ − λF Tx− µ2e3 = 0
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Using the hint we multiply both equations by the projection matrix Pe = diag(1, 1, 0) we
have Pe∆x = ∆x, Pe∆x

′ = ∆x′ and Pee3 = 0 thus we can write

2∆x− λPeFx′ = 0 2∆x′ − λPeF Tx = 0

Solving we find

∆x =
λ

2
PeFx

′ ∆x′ =
λ

2
PeF

Tx

Then substituting this into the answer to part (b) we have

λ

2
x′TF TPeFx

′ +
λ

2
xTFPeF

Tx = xTFx′

solving for λ we have
λ

2
=

xTFx′

x′TF TPeFx′ + xTFPeF Tx

substituting this value of λ in to the equations we found for ∆x and ∆x′ we can write

∆x =
xTFx′PeFx

′

x′TF TPeFx′ + xTFPeF Tx

∆x′ =
xTFx′PeF

Tx

x′TF TPeFx′ + xTFPeF Tx

4 Affine Camera Calibration (20 points)

It was shown in class that a perspective camera can be modeled using a 3 × 4 matrix:

xy
w

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



X
Y
Z
1

 (1)

which means that the image at point (X,Y, Z) in the scene has pixel coordinates (x/w, y/w).
The 3 × 4 matrix can be factorized into intrinsic and extrinsic parameters.

An affine camera is a special case of this model in which rays joining a point in the scene to
its projection on the image plane are parallel. Examples of affine cameras include orthographic
projection and weakly perspective projection. An affine camera can be modeled as:

xy
1

 =

p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1



X
Y
Z
1

 (2)

which gives the relation between a scene point (X,Y, Z) and its image (x, y). The difference
is that the bottom row of the matrix is [ 0 0 0 1 ], so there are fewer parameters we need
to calibrate. More importantly, there is no division required (the homogeneous coordinate is
1) which means this is a linear model. This makes the affine model much simpler to work
with mathematically - at the cost of losing some accuracy. The affine model is used as an
approximation of the perspective model when the loss of accuracy can be tolerated, or to
reduce the number of parameters being modelled.
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Calibration of an affine camera involves estimating the 8 unknown entries of the matrix in
Eq. 2. (This matrix can also be factorized into intrinsics and extrinsics, but that is outside
the scope of this homework). Factorization is accomplished by having the camera observe a
calibration pattern with easy-to-detect corners.

Scene Coordinate System

The calibration pattern used is shown in Fig. 1, which is a 6 × 6 grid of squares. Each
square is 50mm × 50mm. The separation between adjacent squares is 30mm, so the entire
grid is 450mm× 450mm. For calibration, images of the pattern at two different positions were
captured. These images are shown in Fig. 1 and can be downloaded from the course website.
For the second image, the calibration pattern has been moved back (along its normal) from the
rest position by 150mm.

We will choose the origin of our 3D coordinate system to be the top left corner of the
calibration pattern in the rest position. The X-axis runs left to right parallel to the rows of
squares. The Y -axis runs top to bottom parallel to the columns of squares. We will work in
units of millimeters. All the square corners from the first position corresponds to Z = 0. The
second position of the calibration grid corresponds to Z = 150. The top left corner in the first
image has 3D scene coordinates (0, 0, 0) and the bottom right corner in the second image has
3D scene coordinates (450, 450, 150). This scene coordinate system is labeled in Fig. 1.

Corner Extraction

The task that you must complete for this question begins here. Extract the feature correspon-
dences required for calibration. In other words, first find the scene coordinates of the square
corners of the calibration grid. Next, find the corresponding pixel coordinates in the images.

If you wish to measure the pixel coordinates interactively in MATLAB, you may find the
function ginput useful. It is strongly recommended that you save this matrix of measurements
in a file for later use. You do not need to find all the corners, but the more corners you use the
more accurate the calibration is likely to be. Be sure to include corners from both images. We
recommend using at least 12 corners from each image.

Solving for the camera matrix

Having measured enough features, we can now solve for the camera parameters using Eq. 2.
Note that each measurement (xi, yi)↔ (Xi, Yi, Zi) yields two linear equations for the 8 unknown
camera parameters. Given N corner measurements, we have 2N equations and 8 unknowns.
Using your measured feature correspondences as input, write code which constructs the linear
system of equations and solves for the camera parameters which minimizes the least-squares
error.

(a) Could you calibrate the matrix with only one checkerboard image? Explain why.

(b) The RMS error (in pixels) between the corner positions and the positions predicted by
the camera parameters.

(c) Give your 3× 4 calibrated camera matrix.
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(a) Image formation in an affine camera. Points are projected via parallel rays onto the
image plane

(b) Image of calibration grid at Z=0 (c) Image of calibration grid at Z=150

Figure 1: Affine camera: image formation and calibration images.

Solution:

(a) No - you need to calibrate the camera on at least two planar surfaces. If only one planar
surface is used, the linear system becomes rank deficient and a unique solution cannot be
obtained.

(b) (c) By expanding out the original linear system, we can reformulate the question by placing
all the affine camera matrix element unknowns into a single x vector (the A matrix and
b vector will be known), then use least squares to find a best fit solution.
This is the original linear system:

x =

[
x1 ... xn
y1 ... yn

]
, P =

p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

 , X =


X1 ... Xn

Y1 ... Yn
Z1 ... Zn
11 ... 1n

 (3)

x = PX (4)
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By expanding out the first 3D world to 2D point correspondences, we obtain:

x1 = p11X1 + p12Y1 + p13Z1 + p14

y1 = p21X2 + p22Y2 + p23Z2 + p24

A similar expansion can be obtained for all the 3D world to 2D image point correspon-
dences. Since pij are the unknowns in this case, and everything else is known, we can
place the pij coefficients in an x vector, and write out the corresponding A matrix and b
vector of the linear system. Thus, we obtain

Ax = b

A =


X1 Y1 Z1 1 0 0 0 0
0 0 0 0 X1 Y1 Z1 1
X2 Y2 Z2 1 0 0 0 0
0 0 0 0 X2 Y2 Z2 1
...



b =


x1
y1
x2
y2
...



x =



p11
p12
p13
p14
p21
p22
p23
p24


Solving via least squares,

x = (ATA)−1AT b

Alternatively, we can also solve for P directly via least norm:

P = xX(XXT )−1 (5)

An RMS value is obtained by projecting the 3D world coordinates onto the 2D image using
the P matrix we have just solved for. Next, the Euclidean distance between the projected
points and the actual point on the image is obtained using the following definition for
RMS:
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RMS =

√√√√ N∑
i=1

1

N
((xi − xicalculated)2 + (yi − yicalculated)2)

where N signifies the number of point correspondences used.

Code:

%CS231A Problem Set 2, Homework 4

% Linear Fit for Perspective Camera Model Calibration

% Code overview: Load in data, extract corners, create correspondences,then

% solve for the missing parameters via least squares

%% Load in images

img1 = imread(’fig1imgAlabel.jpg’);

img2 = imread(’fig1imgBlabel.jpg’);

figure, imagesc(img1); colormap(gray);

title(’Click a point on this image’); axis image;

a = []

%% Take in corner input - make sure to click in order corresponding to A

%% below.

for i = 1:12

[x y] = ginput(1);

a = [a [x;y]]

img1(round(y),round(x)) = 255;

imagesc(img1); colormap(gray);

title(’Click a point on this image’); axis image;

end

figure, imagesc(img2); colormap(gray);

title(’Click a point on this image’); axis image;

for i = 1:12

[x y] = ginput(1);

a = [a [x;y]]

img1(round(y),round(x)) = 255;

imagesc(img2); colormap(gray);

title(’Click a point on this image’); axis image;

end

save a

%% 3D coordinates

A = [];

A = [ [ 0 0 0]’ [80 0 0]’ [160 0 0]’ [240 0 0]’ [320 0 0]’ [400 0 0]’ ...

[400 80 0]’ [400 160 0]’ [400 240 0]’ [400 320 0]’ [400 400 0]’ [450 450 0]’ ];

A = [ A [ 0 0 150]’ [80 0 150]’ [160 0 150]’ [240 0 150]’ [320 0 150]’ [400 0 150]’ ...

[400 80 150]’ [400 160 150]’ [400 240 150]’ [400 320 150]’ [400 400 150]’ [450 450 150]’ ];

A = [A;ones(1,size(A,2)) ]
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aFix = [a; ones(1, size(a,2))]

%Solve for the matrix (least norm)

% P = aFix*A’*inv(A*A’)

%Solve using least squares

P = findHMatrixCalibration(A’, a’);

%RMS Calculation

aCalculated = P * A

RMS = sqrt(mean(sum((aCalculated - aFix).^2,1)))

% RMS =

%

% 0.9706

%--------------------------------------------------------

%returns the H matrix given point (3D) and pointp(image) (transformed coordinates)

% point is N X 3, pointp is N X 2

function out = findHMatrixCalibration (point, pointp)

%shows the general form of A matrix...

% x1 = point1(1);

% x2 = point2(1);

% x3 = point3(1);

% x4 = point4(1);

% y1 = point1(2);

% y2 = point2(2);

% y3 = point3(2);

% y4 = point4(2);

%

% x1p = point1p(1);

% x2p = point2p(1);

% x3p = point3p(1);

% x4p = point4p(1);

% y1p = point1p(2);

% y2p = point2p(2);

% y3p = point3p(2);

% y4p = point4p(2);

%

% A = [x1 y1 z1 1 0 0 0 0;

% 0 0 0 0 x1 y1 z1 1;

% x2 y2 z2 1 0 0 0 0;
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% 0 0 0 0 x2 y2 z2 1 ;

% x3 y3 z3 1 0 0 0 0;

% 0 0 0 0 x3 y3 z3 1;

% x4 y4 z4 1 0 0 0 0;

% 0 0 0 0 x4 y4 z4 1 ;

% ];

% ...

% b = [x1p y1p x2p y2p x3p y3p x4p y4p ... ]’;

%

A = [];

b = [];

for index = 1:size(point,1)

xCurrent = point(index,1);

xpCurrent = pointp(index,1);

yCurrent = point(index,2);

ypCurrent = pointp(index,2);

zCurrent =point(index, 3);

%calculates A matrix and B vector

A = [A;

xCurrent yCurrent zCurrent 1 0 0 0 0;

0 0 0 0 xCurrent yCurrent zCurrent 1];

b = [b; xpCurrent; ypCurrent];

end

%least squares solution

x = (A’*A)^-1 * A’*b;

% x = A\B; This is an alternative way to obtain the solution.

a = x(1);

b = x(2);

c = x(3);

d = x(4);

e = x(5);

f = x(6);

g = x(7);

h = x(8);

H = [a b c d;

e f g h;

0 0 0 1];

out = H;

end

The answer should be within the range of the following:
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RMS = .97

P =

0.535 −0.023 0.121 128.6
0.046 0.538 −0.104 43.39
0.000 0.000 0.000 1.000


5 Image Stitching (25 points)

In this problem, you will implement your own image stitching application. This technique is
used to combine many photographs to produce a larger image than could be possible with one
exposure alone. Refer to Fig. 2 for an example output from Adobe Photoshop’s photomerge ca-
pability which produces highly refined panoramas using advanced techniques such as feathering,
pyramid blending. Ignoring the ”bells and whistles,” the image-stitching portion of this algo-
rithm reduces to finding the parameters for the affine transformation and homography matrix
H to map one image onto the plane of the other.

(a) Let p correspond to a point on one image and let p′ correspond to the same point in the
scene, but projected onto another image. Write a general equation for how a homography
matrix H maps points from one image to another. How would H be restricted if it must
describe an affine transformation?

(b) Our first implementation of image-stitching will use an affine approximation. This matrix
transforms any point pi in one view to its corresponding homogeneous coordinates in the
second view, p′i, in accordance with your equation above. Note that pi, p

′
i ∈ R3.

Your task is to write a function that takes in n ≥ 4 pairs of corresponding points from
the two views, where each point is specified with its 2-D image coordinates, and re-
turns the affine transformation matrix. Note: We have provided skeleton code. Please
download PS2_data.zip from the course webpage. The skeleton code stitching.m and
findHAMatrix.m can be found in the imageStitching directory. You can confirm your
result with MATLAB’s cp2tform command which is given in stitching.m. Please hand
in the result stitched image, and your code in findHAMatrix.m.

Big Hint: We can set up a solution using a system of linear equations Ax = b, where
the 8 unknowns of H are put into a vector x ∈ R8, b ∈ R2n contains image points from
one view and the 2n × 8 matrix A is filled appropriately so that the full system gives us
λpi = Hp′i. Be sure to apply what you know about H. Solve for the unknown homography
matrix parameters.

(c) Write a function in findHMatrix.m which takes a set of corresponding image points (n ≥ 4
pairs) and computes the associated 3×3 general homography matrix H. Use this function
instead of your findHAMatrix function from part (b) to stitch the images together. As
in (b), please hand in the result stitched image,and your code in findHMatrix.m.

Which method (affine transformation, or homography) produces better results?

(d) Stitch a panorama using your own photos (number of images n ≥ 4).
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Figure 2: Example panorama

Solution:

(a) The mapping is of the form Hp = p′. The affine transform is a subset of homographies
where the third row of H is [0 0 1]. Your linear equation for a single point correspondence
takes the following form: p11 p12 p13

p21 p22 p23
0 0 1

xy
1

 =

wx′wy′

w


Note that we are using homogeneous coordinates in this case, but our point correspon-
dences are in image coordinates. In the affine homography case, w = 1.

(b) A similar technique is used as in problem 4, where the unknown elements of the H matrix
are placed in a vector x. Next, the A matrix and b vector are determined, and we can
solve for x using linear least squares. This should be your setup:

Ax = b

A =


x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
...



b =


x′1
y′1
x′2
y′2
...


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x =



p11
p12
p13
p21
p22
p23


Solving via least squares,

x = (ATA)−1AT b

(c) Solving for a general homography matrix is very similar to solving for your affine trans-
formation matrix, except now the constraint on the last row of H has been relaxed. In
general, a homography matrix has 9 unknowns. However, there is an inherent scale am-
biguity of the homography matrix due to the use of homogeneous coordinates. Thus, to
allow for a unique solution for your homography matrix, we fix p33 = 1.p11 p12 p13

p21 p22 p23
p31 p32 1

xy
1

 =

wx′wy′

w


Note that we are using homogeneous coordinates in this case, but our point correspon-
dences are in image coordinates. Here is the expanded expression for a single point
correspondence.

p31x+ p32y + 1 = w

p11x+ p12y + p13 = wx′

p21x+ p22y + p23 = wy′

In the general homography case, w is no longer to be guaranteed to be 1 so we must write
w in terms of the H matrix elements and take it into account when solving for them.

p11x+ p12y + p13 = (p31x+ p32y + 1)x′

p21x+ p22y + p23 = (p31x+ p32y + 1)y′

Rearranging the terms, we obtain:

p11x+ p12y + p13 − p31xx′ − p32yx′ = x′

p21x+ p22y + p23 − p31xy′ − p32yy′ = y′

Similar equations can be written for the remaining point correspondences. A similar
technique is used as in problem 4, where the unknown elements of the H matrix are
placed in a vector x. Next, the A matrix and b vector are determined, and we can solve
for x using linear least squares. This should be your setup:

Ax = b
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A =


x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y′1 −y1y′1
x2 y2 1 0 0 0 −x2x′2 −y2x′2
0 0 0 x2 y2 1 −x2y′2 −y2y′2
...



b =


x′1
y′1
x′2
y′2
...



x =



p11
p12
p13
p21
p22
p23
p31
p32


Solving via least squares,

x = (ATA)−1AT b

The general homography method should produce better stitching results (the pixels from
the 2 images should match better when stitched together) because in general, the rotation
of a camera about its center is modeled by a general homography, not an affine transform.
The affine transform is merely a simplifcation of the general homography to produce
acceptable results, while reducing the amount of computation required to compute the
transformation matrix.
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(a) Image Stitching Using Affine Transform

(b) Image Stitching Using Homography

Figure 3: Sample output
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Code:

%Problem 5: Image Stitching

%This code is a skeleton for you to implement yor own image stitching

%algorithm. This is not a formal structure, but should give you everything

%you need to build your own stitching algorithm.

%Running this code with the current settings will simply overlay the two

%images on top of each other

%Pick your test images.

img1_name = ’uttower2.JPG’;

img2_name = ’uttower1.JPG’;

img1 = imread(img1_name);

img2 = imread(img2_name);

%CPSelect will open MATLAB’s Control Point Selection UI

%This will output two arrays; base_points and input_points

%You do not have to call this cpselect every time, providing you save

%the vectors input_points and base_points.

cpselect(img1_name, img2_name); pause;

%Here you calculate the transformation matrix with your code

%YOUR CODE HERE

H = findHMatrix(base_points, input_points);

H = findHAMatrix(base_points, input_points); % this is for the

% affine case

TFORM = maketform(’projective’,H’);

%END CODE

%The remainder of this code is just plotting your result

% test = imtransform(img1, TFORM);

% imshow(test);

[trans xdata ydata] = imtransform(img1, TFORM);

[n o b] = size(trans);

[l m z] = size(img2);

%Now combine the two images into a final output

combine_images(xdata,ydata, trans, img2)
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%---------------------------------------------------------------------------------------

%returns the H matrix given point and pointp (transformed coordinates)

function out = findHMatrix (point, pointp)

% x1 = point1(1);

% x2 = point2(1);

% x3 = point3(1);

% x4 = point4(1);

% y1 = point1(2);

% y2 = point2(2);

% y3 = point3(2);

% y4 = point4(2);

%

% x1p = point1p(1);

% x2p = point2p(1);

% x3p = point3p(1);

% x4p = point4p(1);

% y1p = point1p(2);

% y2p = point2p(2);

% y3p = point3p(2);

% y4p = point4p(2);

%

% A = [x1 y1 1 0 0 0 -x1*x1p -y1*x1p;

% 0 0 0 x1 y1 1 -x1*y1p -y1*y1p;

% x2 y2 1 0 0 0 -x2*x2p -y2*x2p;

% 0 0 0 x2 y2 1 -x2*y2p -y2*y2p;

% x3 y3 1 0 0 0 -x3*x3p -y3*x3p;

% 0 0 0 x3 y3 1 -x3*y3p -y3*y3p;

% x4 y4 1 0 0 0 -x4*x4p -y4*x4p;

% 0 0 0 x4 y4 1 -x4*y4p -y4*y4p;

% ];

%

% B = [x1p y1p x2p y2p x3p y3p x4p y4p]’;

%

A = [];

b = [];

for index = 1:size(point,1)

xCurrent = point(index,1);

xpCurrent = pointp(index,1);

yCurrent = point(index,2);

ypCurrent = pointp(index,2);

%calculates A matrix and B vector

A = [A;

xCurrent yCurrent 1 0 0 0 -xCurrent * xpCurrent -yCurrent * xpCurrent;

0 0 0 xCurrent yCurrent 1 -xCurrent * ypCurrent -yCurrent * ypCurrent;];

b = [b; xpCurrent; ypCurrent];

end
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%least squares solution

x = (A’*A)^-1 * A’*b;

% x = A\B; This is an alternative way to obtain the solution.

a = x(1);

b = x(2);

c = x(3);

d = x(4);

e = x(5);

f = x(6);

g = x(7);

h = x(8);

H = [a b c;

d e f;

g h 1];

out = H;

end

%---------------------------------------------------------------------------------------

%returns the affine matrix given point and pointp (transformed coordinates)

function out = findHAMatrix (point, pointp)

% A description assuming 4 correspondences

% x1 = point1(1);

% x2 = point2(1);

% x3 = point3(1);

% x4 = point4(1);

% y1 = point1(2);

% y2 = point2(2);

% y3 = point3(2);

% y4 = point4(2);

%

% x1p = point1p(1);

% x2p = point2p(1);

% x3p = point3p(1);

% x4p = point4p(1);

% y1p = point1p(2);

% y2p = point2p(2);

% y3p = point3p(2);

% y4p = point4p(2);

%

% A = [x1 y1 1 0 0 0 ;

% 0 0 0 x1 y1 1 ;

% x2 y2 1 0 0 0 ;
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% 0 0 0 x2 y2 1 ;

% x3 y3 1 0 0 0 ;

% 0 0 0 x3 y3 1 ;

% x4 y4 1 0 0 0 ;

% 0 0 0 x4 y4 1 ;

% ];

%

% B = [x1p y1p x2p y2p x3p y3p]’;

%

%populates A matrix and b vector

%A matrix and b vector are calculated by writing out the matrix

%multiplication of the original linear algebra problem, placing all

%unknowns in the x vector, and populating the corresponding A matrix and b

%vector which should be in terms of the known points.

A = [];

b = [];

for index = 1:size(point,1)

xCurrent = point(index,1);

xpCurrent = pointp(index,1);

yCurrent = point(index,2);

ypCurrent = pointp(index,2);

A = [A;

xCurrent yCurrent 1 0 0 0;

0 0 0 xCurrent yCurrent 1];

b = [b; xpCurrent; ypCurrent];

end

% least squares solution

x = (A’*A)^-1 * A’*b;

% x = A\B; This is an alternative way to get the result.

a = x(1);

b = x(2);

c = x(3);

d = x(4);

e = x(5);

f = x(6);

g = 0;

h = 0;

H = [a b c;

d e f;

g h 1];

out = H;

end
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