
CS 231A Computer Vision
Problem Set 2

Due Date: Friday, Oct 26, 2012

1 Some Projective Geometry Problems

Suppose there are two parallel lines that extend to infinity in our world coordinates. The
images of these two lines intersect at a point, v, on the image plane known as the vanishing
point. Every line has a parallel line that goes through the origin. You can also think of a
vanishing point as a point on the line that goes through the origin, and the distance between a
vanishing point and the origin is infinite. In this problem we choose to represent the lines goes
through the origin as (using non-homogeneous coordinates)

l =

r
cosα

cosβ
cos γ

 r ∈ R


where α, β and γ are the angles from the x, y and z world axes respectively.

(a) Using homogenous coordinates show that the image coordinates of the vanishing point v
can be written as v = KRd where

d =

cosα
cosβ
cos γ


K is the camera calibration matrix and R is the rotation matrix between the camera and
the world coordinates.

(b) Express the line direction d in terms of K,R and v.

Remark : Any matrix inverse which does not hold in general, must be shown to hold
in this case.

(c) Let d1, d2, and d3 represent the directional vector for three lines, and let v1, v2, and v3
represent the vanishing points for these lines respectively. Now consider the situation
where these three lines intersect such that each line is orthogonal to the other two. That
is, each line’s directional vector d satisfies the following:

dT1 d2 = 0 dT1 d3 = 0 dT2 d3 = 0
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Using this property, show that

(K−1vi)
T (K−1vj) = 0

for i 6= j, 1 ≤ i ≤ 3, and 1 ≤ j ≤ 3

2 Ambiguity in Fundamental Matrix

Given a pair of camera matrices, (M,M ′), we can find a unique fundamental matrix F . Now
suppose we have another pair of cameras,(M̃, M̃ ′), and we compute the corresponding funda-
mental matrix F̃ . These fundamental matrices are the same, i.e. F = F̃ . Thus, this mapping
from a pair of camera matrices to a fundamental matrix is not one-to-one.

Specifically, given a fundamental matrix F , and two pairs of cameras with corresponding
camera matrices (M,M ′) and(M̃, M̃ ′), show that the camera pairs are projectively related. In
other words, show that there exists a non-singular homography matrix B such that M̃ = cMB
and M̃ ′ = M ′B, for some non-zero constant c.

We can simplify the problem by putting the camera matrix pairs in canonical form. In other
words, let M = M̃ = [ I 0 ]. This simplification does not reduce the generality of the proof
because any pair can be put into this form by first applying a projective transformation. Now
let M ′ = [ A a ] and M̃ ′ = [ Ã ã ].

(a) Write down the corresponding fundamental matrix for both cases in terms of [a]x, A, [ã]x,
and Ã.

(b) Lemma: If the rank 2 matrix F can be decomposed in two different ways as

F = [a]xA

F = [ã]xÃ

then ã = ka and Ã = k−1(A+ avT ) for some non-zero constant k and v ∈ R3.

Use this fact to rewrite M ′ and M̃ ′ in terms of A, a, k, and v.

Remark: Recall that

[a]x =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


This definition is not necessary to solve this problem.

(c) Using the form of M ′ and M̃ ′ you found in (b), pick a B such that M̃ = cMB and
M̃ ′ = M ′B for some non-zero constant c. This result shows that a fundamental matrix
specifies a set of camera pairs that are projectively related.

(d) Extra Credit (1%): Prove the lemma used in (b)

2



3 Efficient Solution for Stereo Correspondence

In this exercise you are given two or more images of the same 3D scene, taken from different
points of view. You will be asked to solve a correspondence problem to find a set of points in
one image which can be identified as the same points in another image. Specifically, the way
you formulate the correspondence problem in this exercise will lend itself to be computationally
efficient.

(a) Suppose you are given a point (p1, p2) in the first image and the corresponding point
(p′1, p

′
2) in the second image, both of the same 3D scene. Write down the homogenous

coordinates x and x′. In addition, write down the necessary and sufficient conditions for
the points x and x′ to meet in the 3D world, using what we know about fundamental
matrix F .

(b) Since our points are measurements and susceptible to noise, x and x′ may not satisfy the
conditions in (a). Writing this statistically, our measurements are given by

x = x̄+ ∆x x′ = x̄′ + ∆x′

where ∆x and ∆x′ are noise terms, and x̄ and x̄′ are the true correspondences we are
trying to determine. Now we require that only x̄ and x̄′ satisfy the condition in (a). To
find our best estimate of x̄ and x̄′, we will minimize

E = ‖∆x‖2 + ‖∆x′‖2

subject to the constraint on x̄ and x̄′ from (a). In addition to the constraint from (a), we
also need to constrain the noise terms so that x and x′ remain on the image plane, i.e.,
a constraint of ∆x so that the last coordinate of x and x̄ in homogeneous coordinate is
identical. Similar for x′ and x̄′. For this part, write down the optimization problem (i.e.
what you are minimizing and the constraints). Disregard the higher order terms of ∆x
and ∆x′ in the constraint from (a).

Your answer should be in the following form:

minimize

subject to

Hint: To constrain the noise terms ∆x and ∆x′ to lie on the image plane, the unit vector
e3 = [ 0 0 1 ]T will be useful. Also, x̄ and x̄′ should not appear in the optimization
problem.

(c) Once we drop these higher order terms, we can use Lagrange multipliers to solve the
optimization problem in (b). Show that optimal ∆x and ∆x′ are given by

∆x =
xTFx′PeFx

′

x′TF TPeFx′ + xTFPeF Tx
∆x′ =

xTFx′PeF
Tx

x′TF TPeFx′ + xTFPeF Tx

3



Hint: The projection matrix Pe = diag(1, 1, 0) will be useful to eliminate unwanted terms
after you have taken the derivative and set it to zero.

Remark: Once we have determined the optimal values for ∆x and ∆x′ we can use these
optimal values in conjunction with our measurements x and x′ to determine our estimate
of the true correspondences x̄ and x̄′.

4 Affine Camera Calibration

In this question, we will perform affine camera calibration using two different images of a
calibration grid. First, you will find correspendances between the corners of the calibration
grids and the 3D scene coordinates. Next, you will solve for the camera parameters.

It was shown in class that a perspective camera can be modelled using a 3 × 4 matrix:

xy
w

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



X
Y
Z
1

 (1)

which means that the image at point (X,Y, Z) in the scene has pixel coordinates (x/w, y/w).
The 3 × 4 matrix can be factorized into intrinsic and extrinsic parameters.

An affine camera is a special case of this model in which rays joining a point in the scene to
its projection on the image plane are parallel. Examples of affine cameras include orthographic
projection and weakly perspective projection. An affine camera can be modeled as:

xy
1

 =

p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1



X
Y
Z
1

 (2)

which gives the relation between a scene point (X,Y, Z) and its image (x, y). The difference
is that the bottom row of the matrix is [ 0 0 0 1 ], so there are fewer parameters we need
to calibrate. More importantly, there is no division required (the homogeneous coordinate is
1) which means this is a linear model. This makes the affine model much simpler to work
with mathematically - at the cost of losing some accuracy. The affine model is used as an
approximation of the perspective model when the loss of accuracy can be tolerated, or to
reduce the number of parameters being modelled.

Calibration of an affine camera involves estimating the 8 unknown entries of the matrix in
Eq. 2. (This matrix can also be factorized into intrinsics and extrinsics, but that is outside
the scope of this homework). Factorization is accomplished by having the camera observe a
calibration pattern with easy-to-detect corners.

Scene Coordinate System

The calibration pattern used is shown in Fig. 1, which has a 6 × 6 grid of squares. Each
square is 50mm × 50mm. The separation between adjacent squares is 30mm, so the entire
grid is 450mm× 450mm. For calibration, images of the pattern at two different positions were
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captured. These images are shown in Fig. 1 and can be downloaded from the course website.
For the second image, the calibration pattern has been moved back (along its normal) from the
rest position by 150mm.

We will choose the origin of our 3D coordinate system to be the top left corner of the
calibration pattern in the rest position. The X-axis runs left to right parallel to the rows of
squares. The Y -axis runs top to bottom parallel to the columns of squares. We will work in
units of millimeters. All the square corners from the first position corresponds to Z = 0. The
second position of the calibration grid corresponds to Z = 150. The top left corner in the first
image has 3D scene coordinates (0, 0, 0) and the bottom right corner in the second image has
3D scene coordinates (450, 450, 150). This scene coordinate system is labeled in Fig. 1.

(a) Image formation in an affine camera. Points are projected via parallel rays onto the
image plane

(b) Image of calibration grid at Z=0 (c) Image of calibration grid at Z=150

Figure 1: Affine camera: image formation and calibration images.

(a) Download the calibration images from the class website (http://vision.stanford.edu/
teaching/cs223b/hw/PS2_data.zip). The images will be in the affineCamera direc-
tory. Find the feature correspondences manually for calibration. In other words, first

5



calculate the scene coordinates of the square corners of the calibration grid. Next, find
the corresponding pixel coordinates in the images manually.

If you wish to measure the pixel coordinates interactively in MATLAB, you may find
the function ginput useful. It is strongly recommended that you save this matrix of
measurements in a file for later use. You do not need to find all the corners, but the
more corners you use the more accurate the calibration is likely to be. Be sure to include
corners from both images. We recommend using at least 12 corners from each image.
Report your feature correspondence pairs. You can find some helpful code for selecting
points interactively in ginputSample.m file in the affineCamera directory.

(b) Having measured enough features, solve for the camera parameters using Eq. 2. Note
that each measurement (xi, yi) ↔ (Xi, Yi, Zi) yields two linear equations for the 8 un-
known camera parameters. Given N corner measurements, we have 2N equations and 8
unknowns. Using your measured feature correspondences as inputs, write a script which
constructs the linear system of equations and solves for the camera parameters which
minimizes the least-squares error. The inputs should be your feature correspondences.
The output should be your calibrated camera matrix, and the RMS error between your
N image corner coordinates and N corresponding calculated corner locations (calculated
using the affine camera matrix and scene coordinates for corners). Please hand in your
MATLAB code. Also, please report your 3× 4 calibrated camera matrix as well as your
RMS error.

RMStotal =
√∑

((x− x′)2 + (y − y′)2)/N

(c) Could you calibrate the matrix with only one checkerboard image? Explain in words.

5 Image Stitching

In this problem, you will implement your own image stitching application. This technique is
used to combine many photographs to produce a larger image than could be possible with one
exposure alone. Refer to Fig. ?? for an example output from Adobe Photoshop’s photomerge
capability which produces highly refined panoramas using advanced techniques such as feath-
ering, pyramid blending. Ignoring the ”bells and whistles,” the image-stitching portion of this
algorithm reduces to finding the parameters for the affine transformation and homography
matrix H to map one image onto the plane of the other.

(a) Let p correspond to point on one image and let p′ correspond to the same point in the
scene, but projected onto another image. Write a general equation for how a homography
matrix H maps points from one image to another. How would H be restricted if it must
describe an affine transformation?

(b) Our first implementation of image-stitching will use an affine approximation. This matrix
transforms any point pi in one view to its corresponding homogeneous coordinates in the
second view, p′i, in accordance with your equation above. Note that pi, p

′
i ∈ R3.

Your task is to write a function that takes in n ≥ 4 pairs of corresponding points from
the two views, where each point is specified with its 2-D image coordinates, and returns

6



Figure 2: Example panorama

the affine transformation matrix. Note: We have provided skeleton code. Please down-
load the stitching.m script from the course webpage (http://vision.stanford.edu/
teaching/cs223b/hw/PS2_data.zip). The stitching.m skeleton code will be in the
imageStitching directory. You can confirm your result with MATLAB’s cp2tform com-
mand which is given in stitching.m. Please hand in the resulting, stitched image, and
your MATLAB code.

Big Hint: We can set up a solution using a system of linear equations Ax = b, where
the 8 unknowns of H are put into a vector x ∈ R8, b ∈ R2n contains image points from
one view and the 2n × 8 matrix A is filled appropriately so that the full system gives us
λpi = Hp′i . Be sure to apply what you know about H. Solve for the unknown homography
matrix parameters. In Problem 5, we assume that p=Hp’, where p is the base point. And
in your Matlab code, you also need to transpose H as the return value.

(c) Write a function that takes a set of corresponding image points (n ≥ 4 pairs) and computes
the associated 3 × 3 general homography matrix H. Use this function instead of your
AffineTransformation function from part (b) to stitch the images together. As in (b),
please hand in the resulting, stitched image,and the MATLAB code. Which method
(affine transformation, or homography) produces better results?

(d) Extra Credit (1%): Stitch a panorama using your own photos (number of images n ≥ 4).
You can choose either affine transformation or general homography transformation.

7


