
CS 231A Computer Vision (Autumn 2012)
Problem Set 1

Solution Set

Due: Oct. 9th, 2012 (2:15 pm)

1 Finding an Approximate Image Basis – EigenFaces (25 points)

In this problem you will implement a solution to a facial recognition task. Specifically, you will
determine whether a given image contains a face that belongs to a given set of people. The
method you will explore is discussed in Lecture 2, and is known as EigenFaces. EigenFaces
relies upon the idea of Principle Component Analysis (PCA).

In this problem, we have high dimensional data and believe that valuable information can be
represented in a lower dimensional space. This dimensionality reduction is a typical application
of PCA. We will start by representing our data as a line and then decrease the dimensions of
our representation.

The images in this problem are in the form of vectors, where x(i) denotes the vector corre-
sponding to the image i. Our representation will consist of a set of linearly independent vectors
a(i). The set of vectors, a(i) is known as the facespace. Given a test image as a vector y, we will
project it onto the range of the facespace. For our projection, we aim to find a set of weights
w to solve

min. ‖Aw − y‖22
where A =

[
a(1) . . . a(n)

]
, or in other words a(i) are the columns of A. Our projection is given

by yproj = Awopt. Once we have this projection, we can determine whether y is in our given
set of people.

First consider the approximation to our high dimensional data by a line set, L, where a ∈ Rn,
b ∈ Rn and a is a unit vector. The set

L = { az + b | z ∈ R}

is a line in Rn. For any vector x ∈ Rn the distance between x and L is defined by

d(x, L) = min
y∈L
‖x− y‖2

where ‖x‖2 =
√∑n

i=1 |xi|2 (l2 norm). We have m vectors, and we would like to find the line L
that minimizes the total squared distance

dt =

m∑
i=1

d(x(i), L)2

1

Figure 1: Example facespace

In other words we’d like to fit the points to a straight line, as close as possible such that dt is
minimized.

(a) Show that d(x, L) = ‖(I − aaT)(x− b)‖2. Hint: you might consider using a least squares
approach

(b) Using the result from (a), the total distance squared is given by

dt =
m∑
i=1

‖(I − aaT)(x(i) − b)‖22

Show that the optimal b, which minimizes dt while all other variables are held constant,
is given by

bopt =
1

m

m∑
i=1

x(i)

That is bopt is the mean of the vectors x(i). Hint: P = (I − aaT) is a projection matrix.

(c) Using this choice of b = bopt, find the optimal value of a which minimizes dt, in terms of
x(i) and bopt? Hint: Try to formulate the problem as a maximization problem of the form
max(aTΣa).

The remaining parts of this problem require programming. We have provided skeleton
code in PS1_data.zip in the folder eigenFaces. The provided code can be executed using
Matlab on the computing clusters/personal machines. The appropriate .m files have been
commented to indicate where your code should be placed and the variables provided by
us. All your code for this problem should be located in eigenface.m.

(d) Run the script readYaleFaces. This will load a matrix A, whose columns are the reshaped
images of the data set, into the Matlab workspace. Find the mean of these images (as
in the Lecture 2 notes) and subtract it from all the images to form a matrix B (of same
dimension as A). Write code that finds the r largest singular values and the corresponding
left singular vectors of B. These singular vectors are the eigenfaces corresponding to
our data set. Turn in the 5 largest singular values. Please put your code is the m-file
eigenface.m. Note: that this is a big matrix, and just typing svd may not do what you
want. Check the help for the svd command in Matlab.

2

(e) For facial recognition, we project the given image onto the facespace. If the resulting
error is less than a given threshold, the image is recognized as belonging to the facespace.
For this part use 25 eigenfaces, i.e. choose r = 25 above. You are given twenty im-
ages, i.e. image1.mat . . . image20.mat. Images image1.mat, image3.mat, image6.mat,
image12.mat, and image14.mat are not in the facespace. To determine if an image y is
in the facespace we use a threshold τ such that if ‖y − yproj‖22 ≥ τ the given image is
not in the facespace and if ‖y − yproj‖22 < τ the given image is in the facespace. This
threshold τ should maximize the number of correct classifications. To find a value for τ
use the following threshold values and report the value which yields the maximum correct
classifications τ = {0.009E8, 0.09E8, 0.9E8, 9E8}. Also report the number of correct
detections this optimal value of τ achieves. In the skeleton code there is code that will
calculate the number of correct detections for you.

Solution:

(a) We have
d = min

z
‖az + b− x‖2

and so the least squares solution is

z = (aTa)−1aT (x− b) = aT (x− b)

substituting back in gives the result.

(b) Letting P = (I − aaT), we have

dt =
∑
i

‖P (x(i) − b)‖2

=
∑
i

(x(i) − b)TP TP (x(i) − b)

=
∑
i

(x(i) − b)TP (x(i) − b)

notice that P is a projection matrix, thus P T = P and PP = P . To find bopt find the
gradient with respect to b denoted by ∇b.

∇b dt =
∑
i

∇b(x(i)TPx(i) − 2x(i)TPb+ bTPb)

=
∑
i

(2Pb− 2Px(i))

= P
∑
i

(b− x(i))

⇒ bopt =
1

m

∑
i

x(i)

3

(c) The optimal a can be chosen as follows

dt =
m∑
i=1

‖(I − aaT)(x(i) − bopt)‖2

=
m∑
i=1

(x(i) − bopt)T (I − aaT)(x(i) − bopt)

=
m∑
i=1

‖x(i) − bopt‖2 −
m∑
i=1

(
(x(i) − bopt)Ta

)2
=

m∑
i=1

‖x(i) − bopt‖2 − aTΣa

where

Σ =
m∑
i=1

(x(i) − bopt)(x(i) − bopt)T

Since the first term is constant, the optimal a can be chosen so as to maximize aTΣa.
Thus, the optimal a is the unit norm eigenvector corresponding to λmax(Σ).

(d) See matlab code

First 5 Singular values are along the diagonal (Old solution)

ans =

1.0e+05 *

1.2663 0 0 0 0

0 0.8434 0 0 0

0 0 0.6743 0 0

0 0 0 0.6096 0

0 0 0 0 0.4901

(e) The accuracy is 19/20, which is obtained using τ = 0.9E8

Note: For parts (d) and (e), depending on which machines you ran on and how you ran
the svd command, it is possible to attain different singular values and accuracies. We did
not deduct points if your code was right.

Matlab Code

% CS 231A

% Problem Set 1

% Problem 1

% load data

4

readYaleFaces;

% part d -- find the mean

mean_image = mean(A,2);

% subtract the mean image from all the images

B = zeros(size(A,1),size(A,2));

for i = 1:size(A,2)

B(:,i) = A(:,i) - mean_image;

end

% % form a smaller matrix to take the eigenvalues of

% B_sm = B’*B;

% [V_sm,D_sm] = eig(B_sm);

% % arrange the singular values in decreasing order

% D = zeros(size(D_sm,1),size(D_sm,2));

% V = zeros(size(V_sm,1),size(V_sm,2));

% for i = 1:size(D_sm,1)

% V(:,size(V_sm,1)+1-i) = V_sm(:,i);

% D(size(D_sm,1)+1-i,size(D_sm,1)+1-i) = sqrt(D_sm(i,i));

% end

% % the matrix B is not full rank, thus we need to make

% % the matrices for the

% % svd thin

% D_hat = D;

% V_hat = V;

% find the matrix U of the left singular vectors

%to be used for eigenfaces

%U_hat = B*pinv(D_hat*V_hat’);

[U,S,V] = svd(B,0);

% report first 5 singular values and the coressponding 5

fprintf(’First 5 Singular values are along the diagonal’)

S(1:5,1:5)

% part e -- determine accuracy and plot projections

clear e

e = zeros(size(image1,1)*size(image1,2),1);

x_proj = zeros(size(image1,1)*size(image1,2),1);

for i = 1:20

clear x

testFileName = [’image’ num2str(i)];

x = eval(testFileName);

x = double(reshape(x,size(x,1)*size(x,2),1));

5

r = 25;

V_r = U(:,1:r);

alpha_opt = pinv(V_r)*(x-mean_image);

x_proj(:,i) = mean_image + V_r*alpha_opt;

e(:,i) = x - x_proj(:,i);

norm_e(i) = e(:,i)’*e(:,i);

end

numGndTrth = 20;

gnd_truth = ones(numGndTrth,1);

gnd_truth(1) = 0;

gnd_truth(3) = 0;

gnd_truth(6) = 0;

gnd_truth(12) = 0;

gnd_truth(14) = 0;

thres = 10^8*[.009 .09 .9 9];

num_correct = 0;

for i = 1:length(thres)

for j = 1:length(gnd_truth)

if (norm_e(j) < thres(i) && gnd_truth(j) == 1)

num_correct = num_correct + 1;

elseif (norm_e(j) > thres(i) && gnd_truth(j) == 0)

num_correct = num_correct + 1;

end

end

num_correct

num_correct = 0;

end

2 Steerable filters (25 points)

Images can often be characterized by an aggregation of local information contained in the
derivative or gradient. State of the art image descriptors often rely on such local gradients. In
this problem, you will derive one local operator, steerable filters, which provides the directional
derivative of an image. Due to the efficiency of local operators they are often used in real-time
computer vision tasks such as motion estimation and face recognition. Steerable filters also
provide the flexibility to look for derivatives you might be expecting in a specific direction.

Let G0(x, y) be some 2-dimension Linear Shift Invariant (LSI) filter, a function of the
cartesian coordinates x and y. Let Gθ(x, y) be a rotation of G0(x, y) by θ radians about the
origin in the counter-clockwise direction.

(a) Show that
Gθ(x, y) = G0(r cos(φ− θ), r sin(φ− θ))

where r =
√
x2 + y2 and tanφ = y/x.

6

(b) Using the fact that Gθ(x, y) can be written as

Gθ(x, y) = G0 (r cos(φ− θ), r sin(φ− θ))

write an expression for Gθ(x, y) in terms of r, θ, φ, given that G0(x, y) = −2xe−(x
2+y2).

Let F θ(x, y) = I(x, y) ? Gθ(x, y) where ? denotes convolution. Using your expression
for Gθ(x, y) show that F θ(x, y) = a(I(x, y) ? G0(x, y)) + b(I(x, y) ? Gπ/2(x, y)) where
a, b ∈ R i.e. F θ(x, y) can be written as a linear combination of I(x, y) ? G0(x, y) and
I(x, y) ? Gπ/2(x, y). State the value of a, b explicitly.

(c) Find the direction of maximum response at a point (x,y) of the image I(x, y) to the
steerable filter Gθ(x, y). The direction of maximum response is the θ, such that F θ(x, y)
has the largest magnitude. Give your answer in terms of the image I(x, y) and the
responses F 0(x, y), F π/2(x, y) to the two steerable basis filters G0(x, y), Gπ/2(x, y).

Remark: Once this maximum response is found you can use it to steer your filter Gθ(x, y)
such that it will produce a large response when an image similar to the original I(x, y)
passes through the filter.

Solution:

(a) We have two sets of coordinate systems centered at the same origin. The first coordinate
system is described by the cartesian coordinates (x, y) and corresponds to Gθ(x, y), the
second is described by the cartesian coordinates (x′, y′) and corresponds to G0(x, y). We
can express the first coordinate system in terms of its polar coordinates

x = r cosφ

y = r sinφ

where r =
√
x2 + y2 and φ = arctan(y/x). Since the two coordinate systems share the

same origin and the (x′, y′) coordinate system is a clock-wise rotated version of the (x, y)
coordinate system we can write

x′ = r cos(φ− θ)
y′ = r sin(φ− θ)

Thus we have
Gθ(x, y) = G0 (r cos(φ− θ), r sin(φ− θ))

(b) Starting with

G0(x, y) = −2xe−(x
2+y2)

and using part (a) we can write

Gθ(x, y) = G0(r cos(φ− θ), r sin(φ− θ))

= −2(r cos(φ− θ))e−(x2+y2)

7

Recalling that r2 = x2 + y2 and the trigonometric identity cos(φ − θ) = cosφ cos θ +
sinφ sin θ we can write

Gθ(x, y) = −2r cosφ cos θe−r
2 − 2r sinφ sin θe−r

2

= −2x cos θe−r
2 − 2y sin θe−r

2

where we use the fact that

r cosφ = x

r sinφ = y

realizing that
G

π
2 (x, y) = −2ye−r

2

we reach the linear combination that was asked for

Gθ(x, y) = cos θG0(x, y) + sin θG
π
2 (x, y)

Given an input image I(x, y) we can write the response F θ(x, y) to the filter Gθ(x, y) as

F θ(x, y) = I(x, y) ? Gθ(x, y)

= I(x, y) ?
[
cos θG0(x, y) + sin θG

π
2 (x, y)

]
= cos θI(x, y) ? G0(x, y) + sin θI(x, y) ? G

π
2 (x, y)

where the last line follows from the linearity property of convolution.

(c) To find direction of maximum response at a given point (x, y) we take the partial derivative
of F θ(x, y) with respect to θ and set it equal to zero.

∂

∂θ
F θ(x, y) =

∂

∂θ
cos θF 0(x, y) +

∂

∂θ
sin θF

π
2 (x, y) = 0

= − sin θF 0(x, y) + cos θF
π
2 (x, y) = 0

solving for θ we find

θmax = arctan

(
F

π
2 (x, y)

F 0(x, y)

)

= arctan

(
I(x, y) ? G

π
2 (x, y)

I(x, y) ? G0(x, y)

)

3 Digital Matting (25 points)

In digital matting, a foreground element is extracted from a background image by estimating
a color and opacity for the foreground element at each pixel. Thus we can think of digital
matting as a form of background subtraction. The opacity value at each pixel is typically called
its α. Matting is used in order to composite the foreground element into a new scene. Matting

8

and compositing were originally developed for film and video production. The most common
compositing operation is the over operation, which is summarized by the compositing equation

C = αF + (1− α)B

where C ∈ R3, F ∈ R3, and B ∈ R3 are the pixel’s composite, foreground, and background
color vectors , respectively, and α ∈ R is the pixel’s opacity component used to linearly blend
between foreground and background.

For the development that follows, we will assume that our input image has already been
segmented into three regions: background, foreground, and unknown, with the background and
foreground regions having been delineated conservatively. The goal then, is using local image
statistics to solve for the foreground color F , background color B, and opacity α given the
observed color C for each pixel within the unknown region of the image.

The method you will derive uses a continuously sliding window for local neighborhood
definitions, marches inward from the foreground and background regions, and utilizes nearby
computed F , B, and α values (in addition to these values from known regions) in constructing
oriented Gaussian distributions. Using a statistical framework we will leverage these distribu-
tions to improve the accuracy of the foreground and background within the initially unknown
region. Specifically we will use maximum a posteriori (MAP) estimation to improve our fore-
ground and background segmentation. The MAP estimate is given by

arg max
F,B,α

P (F,B, α | C)

Remark : If you need a refresher on MAP estimation, log likelihood functions, and/or maximum
likelihood estimation you can refer to Chapter 3 of Pattern Classification Duda, Hart, and Stork
which we have posted on the course webpage. We also gave a brief introduction to maximum
likelihood estimation in Problem Set 0 Problem 5.

(a) Generally we don’t know the distribution P (F,B, α | C). In this problem we will use the
simplifying assumption that F , B and α are independent. Using this assumption rewrite
the MAP estimate as the sum of log-likelihood functions, arg maxF,B,α `(F,B, α | C) =
?. Make sure there are no terms in your solution that are probabilities given C.

(b) We can model the log-likelihood function of our observation C as

`(C | F,B, α) = −‖C − αF − (1− α)B‖2

σ2C

(a) Input (b) Opacity α (c) Composite

Figure 2: Example of digital matting

9

where we know σC . Also we model the log-likelihood function of foreground color F as

`(F) = −(F − F̄)TΣ−1F (F − F̄)

where for the purposes of this problem you can assume F̄ and ΣF have already been
computed. The log-likelihood for the background B is

`(B) = −(B − B̄)TΣ−1B (B − B̄)

again, for the purposes of this problem you can assume B̄ and ΣB have already been
computed. Also, Σ−1F and Σ−1B are symmetric matrices. To solve for the MAP estimate,
we need to split this problem into two sub-problems. To solve the first sub-problem we
hold α constant while optimizing `(F,B, α) over F and B. For this part of the problem
hold α constant and show that the optimal F and B are given by the linear equation[

Σ−1F + Iα2/σ2C Iα(1− α)/σ2C
Iα(1− α)/σ2C Σ−1B + I(1− α)2/σ2C

] [
F
B

]
=

[
Σ−1F F̄ + Cα/σ2C

Σ−1B B̄ + C(1− α)/σ2C

]
(c) Now, we solve the second sub-problem by optimizing `(F,B, α) over α while holding F

and B constant. In this problem we assume that `(α) is a constant. Show that, under
this assumption, the optimal α is given by

α =
(B − F)T (B − C)

‖B − F‖2

Remark: To obtain the final estimates for F ,B and α in this problem we must iterate
between these two solutions.

Solution:

(a) Using Bayes’ rule we can rewrite our MAP problem as

arg max
F,B,α

P (F,B, α | C) = arg max
F,B,α

P (C | F,B, α)P (F)P (B)P (α)

P (C)

we can rewrite this as a sum by taking the log of the right hand side of the above equation.
Since log is monotonically increasing we will find the same optimal values for our variables.
The result is

arg max
F,B,α

`(F,B, α) = arg max
F,B,α

`(C | F,B, α) + `(F) + `(B) + `(α)

(b) Plugging our distributions into our log-likelihood function from (b) (we drop the variables
in ` for notational brevity) we get

`(. . .) = −‖C − αF − (1− α)B‖2

σ2C
− (F − F̄)TΣ−1F (F − F̄)− (B − B̄)TΣ−1B (B − B̄)

= −(C − αF − (1− α)B)T (C − αF − (1− α)B)

σ2C
. . .

− (F − F̄)TΣ−1F (F − F̄)− (B − B̄)TΣ−1B (B − B̄)

10

Now we will solve the first sub problem by taking the partials of `(. . .) with respect to F
and B and setting them equal to zero. We start by finding the partial with respect to F
of the first term in the above equation

−∇F
(C − αF − (1− α)B)T (C − αF − (1− α)B)

σ2C

= ∇F
(−CT + αF T + (1− α)BT)(C − αF − (1− α)B)

σ2C

= ∇F
−CTC + 2αCTF + 2(1− α)CTB − α2F TF − 2α(1− α)F TB − (1− α)2BTB

σ2C

=
2αC − 2α2F − 2α(1− α)B

σ2C

We now find the partial of the second term with respect to F

−∇F
(
(F − F̄)TΣ−1F (F − F̄)

)
= −∇F

(
F TΣ−1F F − 2F̄ TΣ−1F F + F̄ TΣ−1F F̄

)
= −2Σ−1F F + 2Σ−1F F̄

The third term in `(. . .) depends solely on B and thus goes to zero when taking the partial
with respect to F . Thus combining all the partials, setting them to zero and rearranging
we have the following equation

(Iα2/σ2C + Σ−1F)F + α(1− α)B/σ2C = Σ−1F F̄ + αC/σ2C

We now take the partial of `(. . .) with respect to B starting with the first term of `(. . .)
we have

∇B
−CTC + 2αCTF + 2(1− α)CTB − α2F TF − 2α(1− α)F TB − (1− α)2BTB

σ2C

=
2(1− α)C − 2α(1− α)F − 2(1− α)2B

σ2C

When evaluating the partial with respect to B the second term goes to zero and the third
term is the same as the partial of the second term when evaluating with respect to F only
replacing the F with B yielding

−2Σ−1B B + 2Σ−1B B̄

Combining all the partials, setting them to zero and rearranging we have the following
equation

(1− α)C/σ2C + Σ−1B B̄ =
(
(1− α)2I/σ2C + Σ−1B

)
B + α(1− α)F/σ2C

putting this in a single linear equation we have[
Σ−1F + Iα2/σ2C Iα(1− α)/σ2C
Iα(1− α)/σ2C Σ−1B + I(1− α)2/σ2C

] [
F
B

]
=

[
Σ−1F F̄ + Cα/σ2C

Σ−1B B̄ + C(1− α)/σ2C

]

11

(c) Considering the second sub problem we first note that the only term to be optimized here
is the first term in `(. . .) this gives us the following optimization problem where α is the
variable we are optimizing over

maximize −‖C − αF − (1− α)B‖2

σ2C

we can convert this to an equivalent optimization problem over α

minimize ‖C − αF − (1− α)B‖2

rearranging
minimize ‖(B − F)α− (B − C)‖2

noticing this is a least squares problem and assuming that (B−F) is skinny and full rank
the optimal α is given by

α =
[
(B − F)T (B − F)

]−1
(B − F)T (B − C)

because B and F are vectors we can write

α =
(B − F)T (B − C)

‖B − F‖2

4 Content-Aware Image Resizing (25 points)

For this exercise, you will implement a version of the content-aware image resizing technique
described in Shai Avidan and Ariel Shamirs SIGGRAPH 2007 paper, Seam Carving for Content-
Aware Image Resizing. In this problem all the code and data can be found in PS1_data.zip in
the seamCarving folder. First read through the paper, with emphasis on sections 3, 4.1, and
4.3.

(a) Write a Matlab function which computes the energy of an image, where Energy is defined
to be

e(x, y) =
∑

c∈{R,G,B}

∣∣∣∣∂Ic(x, y)

∂x

∣∣∣∣+

∣∣∣∣∂Ic(x, y)

∂y

∣∣∣∣
where Ic(x, y) is the pixel in color channel c located at (x, y). This function should be
written in computeEnergy.m, take an RGB image in and return a 2D array of equal size
which contains the derivative. In this case, we will use Sobel filters to take the horizontal
and vertical derivatives, then create our energy from the sum of the absolute value. The
sobel filters are defined as:

Gy =

 1 2 1
0 0 0
−1 −2 −1

 Gx =

 1 0 −1
2 0 −2
1 0 −1

Also we have included a sample image parta_sampleinput.jpg, and the output of our
version of computeEnergy.m, parta_sampleoutput.mat to help you debug your code.
You can use the testEnergy.m to show the difference between your output and our
output. Hint: you may find the Matlab function filter2 useful.

12

(b) The energy of the optimal seam is defined in Equation 4 of Avidan et al as:

s∗ = min
z

n∑
i=1

e(I(si))

where I(si) are the pixels of a path of a seam. In this problem we will compare two
different methods of solving this problem. Turn in your code for both sub problems.

(i.) Implement a greedy algorithm for finding the optimal seam by sequentially adding
each pixel in the path depending on the energies of immediate options. Use the skele-
ton code found in findSeam_Greedy.m to write your code. We have given you our
seam carving results of the greedy algorithm on stanford.jpg, as stanford_resize_gdy.jpg
to help you debug your final seam carving code in part(c).

(ii.) Implement the dynamic programming solution given in the paper with the following
update step:

M(i, j) = e(i, j) + min(M(i− 1, j − 1),M(i− 1, j),M(i− 1, j + 1))

Where M is the cumulative energy function, as mentioned in the paper. Use the
skeleton code found in findSeam_Dyn.m to help you write your code. The results of
the dynamic programming is provided as stanford_resize_dyn.jpg. You can use
it to debug your final code in part(c).

(c) Use the skeleton code provided in reduceWidth.m to combine your parts (a) and (b) into
a functional seam carving application.

(d) Now test your code by running the following tests using both the dynamic programming
and greedy techniques. Submit all images generated from this part:

reduceWidth(‘stanford.jpg’, 200)

reduceWidth(‘dogs.jpg’, 200)

reduceWidth(‘pool.jpg’, 200)

We have given you our results on the stanford.jpg image as stanford_resize_dyn.jpg
and stanford_resize_gdy.jpg for the dynamic programing and greedy algorithms re-
spectively to help you debug your code. Comment on where the inferiority of the greedy
methodology is most apparent and how this is solved by dynamic programming. Also

Figure 3: Example of content-aware image resize compared to standard rescale

13

comment on what types of images are sensitive to this manipulation and which images
can have many lines removed without a perceptible difference. Find 2 images of your
own and run experiments to show both a good and bad performance using the dynamic
programming approach.

Solution:

This is our code for the ComputeEnergy.m function

function E = ComputeEnergy_sol(img)

E = zeros(size(img,1),size(img,2));

G_x = [1 0 -1; 2 0 -2; 1 0 -1];

G_y = [1 2 1; 0 0 0; -1 -2 -1];

for color = 1:3

E = E + abs(filter2(G_x, img(:,:,color))) + abs(filter2(G_y, img(:,:,color)));

end

end

This our code for the findSeam_Greedy.m function

function pix = findSeam_Greedy_sol(energy)

Pot = energy;

pix = [];

pix(1) = find(Pot(1,:) == min(Pot(1,:)),1);

for ii=2:size(Pot,1)

%create list of next three options

options = [Pot(ii,pix(ii-1))];

if pix(ii-1) == 1

options = [options 10000000];

else

options = [options Pot(ii,pix(ii-1)-1)];

end

if pix(ii-1) == size(Pot,2)

options = [options 10000000];

else

options = [options Pot(ii,pix(ii-1)+1)];

end

idx = find(options == min(options));

if idx ==1 %The lowest energy step is straight down

pix(ii) = pix(ii-1);

elseif idx ==2 %The lowest energy step is to the left

pix(ii) = pix(ii-1) -1;

14

else %The lowest energy step is to the right

pix(ii) = pix(ii-1) +1;

end

end

This is our code for the findSeam_Dyn_sol.m function

function pix = findSeam_Dyn_sol(energy)

%M is the cumulative energy function

M = zeros(size(energy));

%Prev_indices is a matrix that will point to the element in the (i-1)th row

%that an M(i,j) came from.

prev_indices = zeros(size(M));

M(1,:) = energy(1,:);

for i = 2:size(energy,1)

%for columns not on the extreme right or left

for j = 2:size(energy,2)-1

[min_M,col_idx] = min([M(i-1,j-1),M(i-1,j),M(i-1,j+1)]);

prev_indices(i,j) = j+ (col_idx-2);

M(i,j) = energy(i,j) + min_M;

end

%for the right edge

j = size(energy,2);

[min_M,col_idx] = min([M(i-1,j-1),M(i-1,j)]);

prev_indices(i,j) = j+ (col_idx-2);

M(i,j) = energy(i,j) + min_M;

%for the left edge

j = 1;

[min_M,col_idx] = min([M(i-1,j),M(i-1,j+1)]);

prev_indices(i,j) = j+ (col_idx-1);

M(i,j) = energy(i,j) + min_M;

end

%find the ending location of the path that contains the least energy

[min_M, col_idx] = min(M(end,:));

%re-trace the path

pix = zeros(size(M,1),1);

pix(end) = col_idx;

for i = length(pix)-1:-1:1

pix(i) = prev_indices(i+1,pix(i+1));

15

end

Results:
reduceWidth(‘stanford.jpg’, 200)

reduceWidth(‘dogs.jpg’, 200)

reduceWidth(‘pool.jpg’, 200)

The greedy algorithm’s search for local minimum tends to have its start clustered in one re-
gion of the image. This leads to one area of the image being disproportionately deleted. The
dynamic programming algorithm doesn’t have this problem, and tends to delete seams more
uniformly over the image.

However the greedy is better at following regular geometry, and following lines. This is seen
in the result of the pool cue stick image.

Images that can have many seams removed without perceptible difference, are images that
typically do not rely on fine grain detail and tend to be a larger composite scene, such as the
stanford image.

16

(a) Dynamic Programming

(b) Greedy

Figure 4: Stanford Result

17

(a) Dynamic Programming

(b) Greedy

Figure 5: Dogs Result

18

(a) Dynamic Programming

(b) Greedy

Figure 6: Pool Result
19

	Finding an Approximate Image Basis – EigenFaces (25 points)
	Steerable filters (25 points)
	Digital Matting (25 points)
	Content-Aware Image Resizing (25 points)

