
CS 231A Computer Vision (Autumn 2012)
Problem Set 0

Grading Set

Due: Oct. 2, 2012 (2:15 pm)

1 Monty Hall (20 points)

In Computer Vision, probability is a widely used mathematical tool to solve problems rang-
ing from low-level to high-level vision. This exercise will serve as a reminder of some basic
probability concepts you find useful later in the course.

Consider the following problem: Gold is placed behind one of three curtains. A contestant
chooses one of the curtains. Monty Hall, the game host, opens an unselected empty curtain.
The contestant can choose either to switch his selection to the third curtain or not. In this
problem you will use basic probability to maximize the contestant’s probability of winning the
gold.

(a) List the set of all possible outcomes i.e. the sample space for the Monty Hall problem.
Let the three curtains be labeled A, B, C. An outcome consists of the curtain with gold,
x, the curtain chosen by the contestant, y, and the curtain chosen by Monty, z, denoted
as (x, y, z). For example, the outcome (A,B,C) means that the curtain with the gold is
A, the curtain chosen by the contestant is B, and the curtain chosen by Monty is C.

(b) Assume that placement of the gold behind the three curtains is random, that the con-
testant’s choice of curtains is random and independent of the gold placement, and that
Monty Hall’s choice of an empty curtain is equally likely between the two alternatives
(if the two unselected curtains are empty). Specify the probabilities of each outcome for
this random experiment and use it to compute the probability of winning the gold if the
contestant decides to switch. For instance, consider computing P (A,B,C). This can
be rewritten as P (A,B,C) = P (C | A,B)P (A,B) = P (C | A,B)P (A)P (B). The first
equality holds from the chain rule of probability, and the second equality from the fact
that the choice of position of the gold is independent of the choice of the contestant.

(c) Given your answer to part b, should the contestant switch their choice? That is, compute
P (W | S = 1) (the probability of winning if the contestant switches) and P (W | S = 0)
(the probability of winning if the contestant doesn’t switch), which tell you whether the
contestant should switch curtains or not.

Solution:
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(a) The sample space consists of triplets of the form (curtain with gold behind it, curtain
chosen by player, curtain that Monty opens). If we denote the curtains by A,B, and C
then the sample space, denoted by Ω has 12 outcomes:

Ω = {(A,A,B), (A,A,C), (A,B,C), (A,C,B), (B,B,A), (B,B,C),

(B,A,C), (B,C,A), (C,C,A), (C,C,B), (C,B,A), (C,A,B)}

(b) For a discrete sample space, the probability measure is completely specified by the prob-
abilities of the single outcome events. For this problem we can calculate the probabilities
as follows:

P (A,A,B) = P (gold is behind A, player’s first choice is A)·
P (Monty opens B | gold is behind A, player’s first choice is A)

= 1
2 · P (gold is behind A) · P (player’s first choice is A)

= 1
2 ·

1
3 ·

1
3 = 1

18

Note that Monty Hall’s choice of curtain to open is not independent of where the gold
is placed and what the player’s initial choice was. That is why we used conditional
probability in the above derivation. Using the same approach we find

P (A,A,C) = P (B,B,A) = P (B,B,C) = P (C,C,A) = P (C,C,B) = 1
18

This covers all the cases where the gold placement and the initial choice of contestant
coincide. For the other cases,

P (A,B,C) = P (gold is behind A, player’s first choice is B)·
P (Monty opens C | gold is behind A, player’s first choice is B)

= 1 · P (gold is behind A) · P (player’s first choice is B)

= 1 · 13 ·
1
3 = 1

9

Using the same argument,

P (A,C,B) = P (B,A,C) = P (B,C,A) = P (C,A,B) = P (C,B,A) = 1
9

(c) We now have a complete description of the probability space for this random experiment.
To find the probability of winning if the player switches, we need to find the subset W of
the sample space corresponding to this event, which is

W = {(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}

The probability of W is the sum of the probabilities of its members, and therefore the
probability of winning is

P (W ) = 6 · 19 = 2
3

The probability of winning if the contestant switches is P (W | S = 1) = 2
3 , the probability

of winning if the contestant switches is P (W | S = 0) = 1
3 . Thus to maximize to the

probability of the contestant winning, the contestant should switch their choice.
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Grading Guideline:

Total (20 points)
(a) (4 points)

(2 points) half or more of sample space correct
(2 points) entire sample space correct

(b) (8 points)
(2 points) correctly defining all 1/18 probabilities
(2 points) correctly defining all 1/9 probabilities
(2 points) correctly computing 1/18 probability
(2 points) correctly computing 1/9 probability

(c ) (8 points)
(3 points) correctly computing P (W | S = 1) probability
(3 points) correctly computing P (W | S = 0) probability
(2 points) correctly concluding that contestant should switch

2 Support Vector Machines (20 points)

Machine learning is an important tool to accomplish many tasks in Computer Vision, especially
classification problems. One staple algorithm in binary classification is the Support Vector
Machine (SVM). In this problem you will implement a SVM package and use it to separate a
sample dataset.

First, lets get some insight into why we might want to use a SVM in a binary classification
problem. SVMs are an example of supervised learning; that is, after training a model with
known input/output pairs, the model can classify new datapoints. In the binary classification
problem you have a set of n data points,{x(1), . . . , x(n)}, with labels {y(1), . . . , y(n)} where
y(i) ∈ {−1, 1}. We are looking for a function h(x) to separate the data points with different
labels as shown in Fig 1. The data points which lie along the dotted line in Fig 1 are called the
support vectors. Specifically the SVM is the solution to the optimization problem

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to y(i)(wTx(i) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

where w and b are parameters that define our classifier h(x) = wTx + b. The parameter C
controls the relative weighting between the twin goals of making the ‖w‖2 small and of ensuring
that most examples are correctly classified. If you want more specifics on SVMs, please read
Prof. Andrew Ng’s Notes at the CS 229 course webpage http://www.stanford.edu/class/

cs229/materials.html.
In this problem you will install the SVM package liblinear. You will use this package

through its Matlab interface. The liblinear package is written in C, so you will need to have
a compiler linked to your Matlab install.
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Figure 1: An example of the output of a separating h(x) for a linearly separable data set.

(a) Use the liblinear package to test and train a SVM on an idealized dataset (similar to
that shown in Fig 1). This will also act as a tutorial through installation and use of
liblinear.

Download the current version of the liblinear package from http://www.csie.ntu.

edu.tw/~cjlin/liblinear/#download. First read the README, then if you are using
windows set your current Matlab directory to .\liblinear-version\matlab\ and run
the make.m script. If you are using Mac OS X or a Linux distribution you should edit
Makefile such that the variable MATLABDIR is the installation directory of Matlab. To
find the Matlab installation directory, open Matlab and use the matlabroot command
to return the installation path. Then set MATLABDIR to this directory in your Makefile.
Then type make in the terminal to build. In case you have issues making liblinear, we
have included a compiled version of its train function in PS0_data.zip.

Download PS-0_data.zip from the course webpage and run the SVM_data_parta script
which will load the data for this problem into your Matlab workspace. This data will act
as a test for your installation of liblinear.

Once you have installed liblinear, write a Matlab script that trains a classifier using
data and plots your separating h(x) and the given data. The script plotSVM is written
for you that plots the separating h(x) and the given data. You will know if your answer is
correct because it should be very similar to the data above. There should be no incorrect
classifications because the data for this problem is linearly separable. Hint: the input
matrices need to be sparse, so Matlab’s sparse command will be useful

Turn in a plot of the classifer and the data, as well as your code.

(b) In practice, data is rarely linearly separable and so regularization is needed to make
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the model more robust to outliers. In this part you will experiment with the regular-
ization parameter C to find an optimal fit. Run the SVM_data_partb script to get the
new data set for this problem. Using liblinear and varying the parameter C by using
C = logspace(-4,4,5), find a classifier that is visually similar to the classifier you found
in part a.

Turn in a plot of the classifier and the data, your value of C, as well as your code.

Solution:

(a) Once you have liblinear installed this code will train the classifier and give the plot shown
in Fig 2. The code that generates this is given below.

Figure 2: Classifier for data in part a

(b) The code below trains the classifier such and makes it similar to the classifier generated
in part a, the classifier for part b is shown in Fig 3. The value of C which achieves this
is the 4th element, or C(4) in C = logspace(-4,4,5).

% Problem 2 part a

close all

% load the data

SVM_data_parta

% train the model
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model_parta = train(labels,sparse(data));

% plot the classifier and the data

plotSVM(data, labels, model_parta);

% Problem 2 part b

close all;

% load the data

SVM_data_partb

% train the model

C = logspace(-4, 4, 5);

for i = 1:length(C)

model = train(labels,sparse(data),[ ’-c ’ num2str(C(i))]);

% plot the classifier and the data

plotSVM(data, labels, model);

end

Figure 3: Classifier for data in part b

Grading Guideline:
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Total (20 points)
(a) (8 points)

(4 points) Plot with incorrect hyperplane
(b) (12 points)

(3 points) correct C parameter chosen
(9 points) correct plot

3 Lagrangian derivation of least norm (20 points)

Many times in computer vision it is necessary to formulate an optimization problem to solve
the vision task at hand. In this problem you will use the Lagrangian to solve an optimization
problem. Consider finding an x ∈ Rn such that Ax = b, where A ∈ Rm×n, and b ∈ Rm. In
this problem we will assume that a solution x exists. There is the possibility that there is more
than one solution. We explore how to pick a single solution when many exist. There is also the
possibility that no solution exists for Ax = b, and we wish to find an x which nearly satisfies
Ax = b. We will not address this situation in this problem.

In the scenario where there exists multiple solutions to Ax = b we can formulate an opti-
mization problem to choose one of these solutions. Consider the following optimization problem

minimize ‖x‖22
subject to Ax = b

The solution to this optimization problem is the least norm solution to Ax = b when there are
multiple values of x. This may occur when e.g. n ≥ m, which we shall assume is true for the
remainder of the problem.

(a) Formulate the Lagrangian L(x, λ) of the optimization problem.

(b) Find the partial derivatives of L(x, λ) with respect to x and λ, then set the derivatives
equal to zero. The x that satisfies these conditions is the optimal solution xopt. Give the
closed form solution for xopt in terms of A and b. Assume that A is full rank (has rank
m).

Solution:

(a) The Lagrangian for the optimization problem is given by

L(x, λ) = xTx+ λT (Ax− b)

(b) Taking the partial derivatives with respect to x and λ and setting equal to zero yields

∂L
∂x

= 2xTopt + λTA = 0

∂L
∂λ

= (Axopt − b)T = 0
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These are the optimality conditions. From the first condition xopt = −1
2A

Tλ. Substituting
into the second condition we have AATλ = −2b. Solving for lambda we have

λ = −2(AAT )−1b

Note that we can be sure this inverse exists as A is full rank, implying that ATA is also
full rank and hence invertible. Substituting back into the expression for xopt we get a
close form solution for xopt

xopt = AT (AAT )−1b

Grading Guideline:

Total (20 points)
(a) (5 points)

(0 points) incorrect Lagrangian setup
(b) (15 points)

(5 points) correct partial derivative x
(5 points) correct partial derivative for lambda
(5 points) correct closed form solution for xopt

4 Interacting with the SVD (20 points)

Linear algebra is essential in Computer Vision, especially in camera models and epipolar/multiview-
geometry. Eigenvectors, eigenvalues and the fundamental spaces (nullspace, rowspace, etc.) are
important concepts with which one has to be comfortable. One popular tool is the Singular
Value Decomposition (similar to Principle Component Analysis), which is a powerful technique
to understand how a matrix transforms a space. From this information, many techniques (such
as compression and sensitivity analysis) can be reasonably implemented in very large dimen-
sions. An excellent resource for this topic can be found in Prof. Andrew Ng’s lecture notes at
www.stanford.edu/class/cs229/notes/cs229-notes10.pdf.

The purpose of this problem is to familiarize yourself with properties of the Singular Value
Decomposition through experiments in a low-dimensional setting. We will use the following
matrix throughout this problem:

A =

[
−2 11
−10 5

]
(a) Find all solutions to the equation Ax = b where b = [1 1]T

(b) Calculate the U, Σ , V matrices for the SVD of A. Is this unique? If not, give an
alternative solution. hint: you may find the Matlab command svd useful

(c) Sketch the ellipsoid corresponding to the SVD of A. The ellipsoid will have semi-axis
directions of the left singular vectors ui, and with corresponding semi-axis half lengths of
σi.
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(d) Find the rank-1 approximation of A, denoted Ã. That is, set the smallest magnitude
singular value to zero and use this new SVD to calculate Ã. Sketch the ellipsoid for the
SVD of this matrix, Ã.

(e) Repeat part a but replace A with its rank-1 approximation, Ã. hint: make sure to include
the solution for Ãx = 0

Solution:

(a) Either by eyeballing it, using matlab’s backslash operator ( A b ), or using what you
learned in Problem 3 ( inv(A’A)*A’*b ), we see that the answer is x = [−.06 .08]T .
Note that this is just a particular solution, and the full set of solutions for such a problem
are expressed as

x = xparticular + null(A)

In this case, however, null(A) is empty and therefore the solution set is just the particular
solution we calculated above.

(b) In general, the SVD is not unique.

U =

[
−0.7071 −0.7071
−0.7071 0.7071

]
Σ =

[
14.1421 0

0 7.0711

]
V =

[
0.6 −0.8
−0.8 −0.6

]
Here is another possible arrangement:

U =

[
0.7071 0.7071
0.7071 −0.7071

]
Σ =

[
14.1421 0

0 7.0711

]
V =

[
−0.6 0.8
0.8 0.6

]
(c) Sketch of ellipsoid: A = [-2 11; -10 5];

%create a circle of x-y coordinates in 1 degree intervals

circ = zeros(2, 360);

deg = [ 1 : 1 : 360 ];

circ(1, :) = cos(deg * pi / 180);

circ(2, :) = sin(deg * pi / 180);

[U, S, V] = svd(A)

figure;

hold on;

axis equal;

%transform the unit circle by the A matrix

Acirc = A * circ;

plot(Acirc(1, :), Acirc(2, :), ’.’);

%The columns of the U matrix are the eigenvectos of AA’

%We illustrate this by drawing two lines from the origin, in the director
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%of the eigenvectors and scaled by the corresponding singular values /

%eigenvalues of AA’

plot([0 S(1,1)*U(1,1)],[0 S(1,1)*U(1,2)],’r’)

plot([0 S(2,2)*U(2,1)],[0 S(2,2)*U(2,2)],’r’)

Figure 4: Output of Ellipsoid code

(d) The Rank-1 Approximation is achieved by setting the second singular value to 0. The
resulting matrix is:

Ã =

[
−6 8
−6 8

]
This produces a degenerate ellipse: The minor axis is now zero!

Figure 5: Output of Ellipsoid code from the Rank-1 Approximation

(e) Ã now has a non-trivial nullspace. Thus the solution is

x =

[
7/6
1

]
+ λ

[
0.8
0.6

]

Grading Guideline:
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Total (20 points)
(a) (4 points)

(4 points) correct solution for x
(b) (4 points)

(2 points) valid SVD solution
(2 points) stating that SVD is not unique

(c) (4 points)
(2 points) correct ellipse dimensions
(2 points) correct ellipse orientation

(d) (4 points)
(4 points) correct matrix

(e) (4 points)
(2 points) correct solution without nullspace
(2 points) correctly include nullspace

5 Maximum Likelihood Estimation (20 points)

There are many problems in Computer Vision that are most suitable for solving through proba-
bilistic techniques. In fact, the foundation for many state-of-the-art high level vision algorithms
(scene understanding, human pose estimation, etc.) is in probabilistic approaches. Maximum
Likelihood Estimation, a popular yet straightforward method, is the process of maximizing the
probability that a parameterized model would behave in a specified manner. Prof. Andrew
Ng gives a good overview of MLE in the context of its similarity to Linear Regression in pages
11-13 of his notes at www.stanford.edu/class/cs229/notes/cs229-notes1.pdf.

In this problem, Consider that N independent samples xi, 1 ≤ i ≤ N are drawn from a
Gaussian distribution with unknown mean and unknown variance σ2. Recall that the formula
for a Gaussian density is

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

Your task is to estimate these unknown parameters given the N samples by maximum
likelihood.

(a) Write an expression for the probability of the sample xk given the parameters µ and σ.

(b) Now write an expression for the likelihood (the joint probability), L, of all N samples
given that all samples are identically and independently distributed.

(c) Find the values of µ and σ that will maximize the log-likelihood, l = lnL. This is
equivalent to maximizing the likelihood, but applying the logarithm to part (b) turns the
product into a sum, which is much easier to manipulate.

Solution:
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(a) The expression is:

p(xk;µ, σ) =
1

σ
√

2π
e−(xk−µ)2/2σ2

(b) Because all the samples are drawn independently, we see that

L = p(x1, x2, x3, . . . , xN ;µ, σ) = p(x1;µ, σ)p(x2;µ, σ)p(x3;µ, σ) . . . p(xN ;µ, σ)

(c) First we take the logarithm of the equation. Then we calculate the derivatives with respect
to µ and σ.

lnL = l = ln p(x1;µ, σ) + ln p(x2;µ, σ) + . . .+ ln p(xN ;µ, σ)

Looking at a single term in this sum we have

ln p(xi;µ, σ) = −1

2
ln 2πσ2 − 1

2σ2
(xi − µ)2

and taking the partials and setting them equal to zero we see

N∑
i=1

1

σ2
(xi − µ) = 0

and

−
N∑
i=1

1

σ2
+

N∑
i=1

(xi − µ)2

σ4
= 0

Rearranging and solving we have our solution

µ =
1

N

N∑
i=1

xi

And

σ2 =
1

N

N∑
i=1

(xi − µ)2

Grading Guideline:

Total (20 points)
(a) (3 points)

(3 points) correctly writing down probability
(b) (3 points)

(3 points) correctly writing down product of probabilities
(c ) (14 points)

(2 points) changing product into sums from log
(4 points) correct partial derivative for µ
(4 points) correct partial derivative for σ or σ2

(2 points) correct closed form solution for µ
(2 points) correct closed form solution for σ or σ2
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