
CS 231A Computer Vision Midterm

Tuesday October 30, 2012

Solution Set

1 Multiple Choice (20 points)

Each question is worth 2 points. To discourage random guessing, 1 point will be deducted
for a wrong answer on multiple choice questions! For answers with multiple answers, 2
points will only be awarded if all correct choices are selected, otherwise, it is wrong
and will incur a 1 point penalty. Please draw a circle around the option(s) to indicate your
answer. No credit will be awarded for unclear/ambiguous answers.

1. (Circle all that apply) If all of our data points are in R2, which of the following clustering
algorithms can handle clusters of arbitrary shape?

(a) k-means

(b) k-means++

(c) EM with a gaussian mixture model

(d) mean-shift

Solution Only d

2. (Pick one) Suppose we are using a Hough transform to do line fitting, but we notice that
our system is detecting two lines where there is actually one in some example image.
Which of the following is most likely to alleviate this problem?

(a) Increase the size of the bins in the Hough transform

(b) Decrease the size of the bins in the Hough transform

(c) Sharpen the image

(d) Make the image larger

Solution a

3. (Pick one) Which of the following processes would help avoid aliasing while down sampling
an image?
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(a) Image sharpening

(b) Image blurring

(c) Median filtering where you replace every pixel by the median of pixels in a window
around the pixel

(d) Histogram equalization

Solution b

4. (Circle all that apply) A Sobel filter can be written as 1 2 1
0 0 0
−1 −2 −1

 =

 1
0
−1

 [ 1 2 1
]

(1)

Which of the following statements are true

(a) Separating the filter, reduces the number of computations by 30%

(b) It is similar to applying a gaussian filter followed by a derivative.

(c) Separation leads to spurious edge artifacts

(d) Separation approximates the first derivative of gaussian.

Solution a and b

5. (Pick one) Which of the following are true for Eigenfaces (PCA)

(a) Can be used to effectively detect deformable objects

(b) Invariant to Affine Transforms

(c) Can be used for lossy image compression

(d) Is invariant to shadows

Solution c

6. (Pick one) Downsampling can lead to aliasing because

(a) Sampling leads to additions of low frequency noise

(b) Sampled high frequency components result in apparent low frequency components.

(c) Sampling increases the frequency components in an image.

(d) Sampling leads to spurious high frequency noise

Solution b

7. (Pick one) If we replace one lens on a calibrated stereo rig with a bigger one, what can
we say about the essential matrix, E, and the fundamental matrix, F?

(a) E can change due to the possible change in physical length of the lens. F is unchanged.
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(b) F can change due to the possible change in lens characteristics. E is unchanged.

(c) E can change due to the possible change in lens characteristics. F is unchanged.

(d) Both are unchanged.

Solution b

8. (circle all that apply) Which of the following describes an affine camera but not a general
perspective camera?

(a) Relative sizes of visible features in a scene can be determined without prior knowledge

(b) Can be used to determine the distance from a object of a known height

(c) Approximates the human visual system

(d) An infinitely long plane can be viewed as a line from the right angle.

Solution a, d

The following questions refer to this picture in Figure 1

Figure 1: Long hallway

9. (circle all that apply) Assuming the hallway is very long and very straight, if an affine
camera were directed down the hallway, which conditions must be met to see anything at
the end of the hallway?

(a) The camera is in the exact middle of the hallway.

(b) The camera is on the floor

(c) The camera’s image plane must be very very large.

(d) The vector representing the camera’s viewing direction is exactly parallel to the floor
and the walls.

Solution D

10. (circle all that apply) Which of the following characteristics of the hallway shown can be
determined using an affine camera pointed straight down the hallway?
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(a) The color/texture of the walls

(b) The number of openings in the hallway

(c) If the hallway is getting narrower

(d) If the hallway is getting wider

Solution C
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2 True or False (20 points)

True or false, briefly justify your answer in one sentence or less. Correct answers are 2 points,
-1 point for each incorrect answer.

(a) (True/False) Fisherfaces works better at discrimination than Eigenfaces because Eigenfaces
assumes that the faces are aligned.

Solution (False), both assume the faces are aligned

(b) (True/False) If you don’t normalize your data to have zero mean, then the first principal
component found via PCA is likely to be uninformative.

Solution (True)

(c) (True/False) Given sufficiently many weak classifiers, boosting is guaranteed to get perfect
accuracy on the training set no matter what the training data looks like.

Solution (False), one could have two datapoints which are identical except for their label

(d) (True/False) Boosting always makes your algorithm generalize better.

Solution (False), you can overfit

(e) (True/False) It is possible to blur an image using a linear filter.

Solution (True)

(f) (True/False) When extracting the eigenvectors of the similarity matrix for an image to do
clustering, the first eigenvector to use should be the one corresponding to the second largest
eigenvalue, not the largest.

Solution (False), it’s the largest one

(g) (True/False) The Canny edge detector is a linear filter.

Solution (False), It has non-linear operations, thresholding, hysteresis, non-maximal su-
pression

(h) (True/False) A zero skew intrinsic matrix is not full rank because it has one less DOF.

Solution (True), It is still full rank, even if it has one less DOF.

(i) (True/False) A picture of an outdoor field will never have a horizon with an affine camera.

Solution (False), The field is only of finite length, and still on earth, which is approxi-
mately spherical, so it will curve “down” relative to the camera and occlude itself, which
yields a “horizon”.
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(j) (True/False) Any two cameras with overlapping fields of view can be used in a useful stereo
rig when using appearance-based features for correspondence.

Solution (False) If the cameras are facing each other, they can’t see features on the surface,
except on the edges which could be hard to extract since the backgrounds are different from
the two cameras, even if the object is the same.
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3 Long Answer (40 points)

11. (10 points) Detecting Patterns with Filters A Gabor filter is a linear filter that
is used in image processing to detect patterns of various orientations and frequencies. A
Gabor filter is composed of a Gaussian kernel function that has been modulated by a
sinusoidal plane wave. The real value version of the filter is shown below.

g (x, y;λ, θ, ψ, σ, γ, ) = exp
(
−x′2+γ2y′2

2σ2

)
cos
(

2π x
′

λ + ψ
)

Where

x′ = x cos (θ) + y sin (θ)

y′ = −x sin (θ) + y cos (θ)

Figure 2 shows an example of a 2D Gabor Filter.
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Figure 2: 2D Gabor Filter

(a) (6 point) What is the physical meaning of each of the five parameters of the Gabor
filter, λ, θ, φ, σ, γ, and how do they affect the impulse response?

Hint: The impulse response of a gaussian filter is shown in Equation 2, it is normally
radially symmetric, how would you make this filter elliptical? How would you make
this filter steerable? What does the 2D cosine modulation do to this filter?

• λ:

• θ:
• φ:

• σ:

• γ:

gaussian (x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(2)

Solution
λ: represents the wavelength of the sinusoidal factor
θ: represents the orientation of the normal to the parallel stripes of a Gabor function
φ: phase offest
σ: Sigma of the gaussian envelope
γ: Spatial aspect ratio, and specifies the ellipticity of the support of the Gabor func-
tion
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(b) (4 point) Given a Gabor filter that has been tuned to maximally respond to the
striped pattern in shown in Figure 3, how would these parameters, λ0, θ0, φ0, σ0, γ0,
have to be modified to recognize the following variations? Provide the values of the
new parameters in terms of the original values.

Figure 3: Reference Pattern

i.

Solution
θ = θ0 + π

4

ii.

Solution
ψ = ψ0 + π

2
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iii.

Solution
θ = θ0 + π

4 , σ = 2σ0, λ = 2λ0

iv.

Solution
γ = 1

2γ0
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12. (10 points) Stereo Reconstruction
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Figure 4: Rectified Stereo Rig

(a) (4 point)

The figure above shows a rectified stereo rig with camera centers O and O′, focal
length f and baseline B. x and x′ are the projected point locations on the virtual
image planes by the point P ; note that since x′ is to the left of O′, it is negative. Give
an expression for the depth of the point P , shown in the diagram as Z. Also give
an expression for the X coordinate of the point P in world coordinates, assuming an
origin of O. You can assume that the two are pinhole cameras.

Solution
Z = fB

x−x′

X = xZ
f

(b) (6 point)

Now assume that the camera system can’t perfectly capture the projected points loca-
tion on the image planes, so there is now some uncertainty about the point’s location
since a real digital camera’s image plane is discretized. Assume that the original x
and x’ positions now have an uncertainty of ±e, which is related to discretization
of the image plane. Give an expression of the X,Z locations of the 4 intersection
points resulting from the virtual image plane uncertainty. Give an expression for the
maximum uncertainty in the X and Z directions of the point P ’s location in world
coordinates. All expressions should be in terms of image coordinates only, you can
assume that x is always positive and x′ is always negative.

Solution
Zmin = fB

(x+e)−(x′−e)
Zmax = fB

(x−e)−(x′+e)
d = x− x′
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Figure 5: Rectified Stereo Rig with image plane error

Zdiff = Zmax − Zmin = fB 4e
(d−2e)(d+2e)

Zmid = fB
(x−e)−(x′−e) = fB

x−x′

Xmin = (x−e)Zmid

f

Xmax = (x+e)Zmid

f

Xmax −Xmin = Zmid(2e)
f

item (? point)

Assuming the X coordinate of the point P is fixed, give an expression of of the un-
certainty of the reconstruction of Z with in terms of the actual value of Z and the
other parameters of the stereo rig. What is the depth uncertainty when Z is equal
to zero? Find the depth when the uncertainty is at its maximum and give a physical
interpretation and a drawing to explain.

Solution
Zmin = fB

(x+e)−(x′−e)
Zmax = fB

(x−e)−(x′+e)
d = x− x′
Zdiff = Zmax − Zmin = fB 4xo

(d−2e)(d+2e)

Zmid = fB
(x−e)−(x′−e) = fB

x−x′

Xmin = (x−e)Zmid

f

Xmax = (x+e)Zmid

f

Xmax −Xmin = Zmid(2e)
f
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13. (13 points) AdaBoost algorithm (greedy training) Let fm(x) be the classifying
function learnt after the mth iteration.

fM (x) =
M∑
m=1

βmCm(x) (3)

Where, Cm(x)|m ∈ {1, . . . ,M} is a bunch of weak classifiers learned in M iterations.
Cm : R → {−1, 1}. We will now look at a derivation for the optimal β,C at the mth

iteration given βi, Ci∀i ∈ {1, . . . ,m− 1}

(a) (1 point) (βm, Cm) = arg min
β,C

(∑N
i=1 L [yi, fm−1(xi) + βC(xi)]

)
, where L[y, g] =

exp(−yg) is the loss function. Show that (βm, Cm) can be written in the form

(βm, Cm) = arg min
β,C

N∑
i=1

w
(m−1)
i exp{−βyiC(xi)} (4)

and define w
(m−1)
i . Note that w

(m−1)
i is the weight associated with the ith data point

after m− 1 iterations.

Solution
βm, Cm = arg min

β,C

∑N
i=1 exp{−yifm−1(xi)− βyiC(xi)}

= arg min
β,C

∑N
i=1w

(m−1)
i exp{−βyiC(xi)}

w
(m−1)
i = exp{−yifm−1(xi)}

(b) (3 point) Express the optimal Cm in the form argminCErr(C), where Err(C) is an
error function and is independent of β. Err(C) should be defined in terms of the
indicator function I[C(x) 6= yi] defined by

I[C(x) 6= yi] =

{
1, if C(x) 6= yi

0 if C(x) = yi

Solution
Cm = arg min

C
e−β ·

∑
yi=C(xi)

w
(m−1)
i + eβ ·

∑
yi 6=C(xi)

w
(m−1)
i

Cm = arg min
C

(eβ − e−β) ·
∑N

i=1w
(m−1)
i I[yi 6= C(xi)] + e−β ·

∑N
i=1w

(m−1)
i

Cm = arg min
C

∑N
i=1w

(m−1)
i I[yi 6= C(xi)]

(c) (2 point) Using the Cm from part (a), the optimal expression for βm can be obtained as
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βm = 1
2 log

(
1−errm
errm

)
where errm =

∑N
i=1 w

(m)
i I[yi 6=Cm(xi)]∑N
i=1 w

(m)
i

.

Now, find the update equation for w
(m)
i and show that w

(m)
i ∝ w(m−1)

i ·exp (2βmI[y 6= Cm(xi)])

Solution
From part(a), we have

w
(m)
i = w

(m−1)
i · e−βmyiCm(xi)

Since, yiCm(xi) = 1− 2I[yi 6= Cm(xi)]

w
(m+1)
i = w

(m)
i · e2βmI[yi 6=Cm(xi)] · e−βm

(d) (4 point) We will use this algorithm to classify some simple faces. The set of training
images is given in Fig. 6. xi is the face and yi is the corresponding face label,
∀i ∈ {1, 2, 3, 4, 5}.

x1 x2 x3

x4 x5

y1 = +1 y2 = +1 y3 = +1

y4 = -1 y5 = -1

Figure 6: Training Set ‘Faces’

We are also given 3 classifier patches p1, p2, p3 in Fig. 7. A patch detector I(+)(xi, pj)
is defined follows:

I(+)(xi, pj) =

{
1, if image xi contains patch pj

−1, otherwise

I(−)(xi, pj) = −I(+)(xi, pj)

p1 p2 p3
Figure 7: Classifier patches

All classifiers Cm are restricted to belong to one of the 6 patch detectors, i.e. Cm(x) ∈
{I(±)(x, p1), I(±)(x, p2), I(±)(x, p3)}.
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If C1(x) = I(+)(x, p2), w
(0)
i = 1, ∀i ∈ {1, 2, 3, 4, 5} and β1 = 1,

what is the optimal C2(x)? What are the updated weights w
(1)
i ? What is the final

classifier f2(x) combining C1, C2? Does I [f2(x) > 0] correctly classify all training
faces?
Solution
C2(x) = I(+)(x, p3)

w
(1)
i ∝ exp(2β2) for i = 1, 5

w
(1)
i ∝ 1 for i = 2, 3, 4

where, β2 = 0.5log(1.5)
f2(x) = C1(x) + 0.5log(1.5) · C2(x)
Yes, it correctly classifies all the training images.

14. (10 points) Implicit Shape Model (Application of Generalized Hough
Transform for joint image classification and segmentation)

You are given a ‘dictionary’ D of 1000 patches extracted from an image database. M(e,D)
is a retrieval operation which returns the closest dictionary patches from D for a query
patch f . You are also provided training images with K descriptive image patches fk
extracted at different locations dk in each image, i.e you are given {(fk, dk)}k=1,...,K .

(a) (2 point) Training: Let NL be the total number of locations in an object measured
from the object center. We wish to produce a 1000×NL probability matrix P, with
P(Di, Lj) recording the probability of finding a patch Di ∈ D at a location Lj with
respect to the object center x. All training images are annotated with the object cen-
ter. Write simple pseudocode to find P(Ii, Lj) from the training images in a manner
similar to Hough Transform.
Solution

i. Repeat following steps for every patch (e, L) on a training image, with object
center x

Find the closest disctionary patched using G = M(e,D)
Increment the bins in P corresponding to (Gi, L− x) ∀Gi ∈ G

ii. Normalize P to obtain the probability matrix

(b) (3 point) Testing (Classification): Let {(ek, dk)}k=1,...,K be the set of patches extracted
at distinctive points from a Test image at locations dk.

P (o, x|ek, dk) =
∑
i

P (o, x|Ii, dk).P (Gi|ek) (5)

is the probability of finding the object o at center x given the patch (ek, dk). Gi ∈
{M(ek, D)} is the set of all matching patches in D returned by M(ek, D). Simplify
P (o, x|Gi, dk) and show how the final terms are related to P computed in part (a).

Solution
P (o, x|Gi, dk) = P (x|o,Gi, dk)P (o|Gi, dk) (1 point)
P (o|Gi, dk) = P (o|Gi) ∝

∑
d P(Gi, d) (1 point)

P (x|o,Gi, dk) ∝ P(Gi, dk − x) (1 point)
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(c) (2 point) Testing (Classification): Given P (o, x|ek, dk) for all patches in a test image,
provide an expression for score(x, o) denoting the probability of finding the object
centered at x. Assume P (ek, dk) is a constant corresponding to a uniform prior.

Solution
score(x, o) ∝

∑
k P (o, x|ek, dk)

(d) (3 points) Now you are provided a segmentation mask for objects during training.
Provide a method to obtain P (‘pixel’ on object|o, I, L), denoting the probability of
the “pixel” of a dictionary patch I located at location L (measured from the object
center) being on the object o.

Solution
Maintain a segmentation codebook for every patch I and location L. Each codebook
entry corresponds to a pixel on the patch. During training for every patch I on the
image at a location L with respect to center, find the pixels under the segmentation
mask and increment the corresponding pixel codebook entries. Finally normalize all
codebooks to obtain the probability.

4 Short Answer (39 points)

15. (6 points) Parallel Lines under Perspective Transforms

Figure 8: Boxes rendered using different projections
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(a) (2 point) The two boxes in Figure 8 represent the same 3D shape rendered using two
projective techniques, explain their different appearance and the types of projections
used to map the objects to the image plane.
Solution Figure on the right is an orthographic projection, parallel lines are parallel,
figure on the left is perspective, parallel lines at an angle to the camera plane have a
vanishing point

(b) (2 point) For each projection, if the edges of the cubes were to be extended to infinity,
how many intersection points would there be?
Solution Left, none, right, 3 vanishing points.

(c) (1 point) What is the maximum number of vanishing points that are possible for an
arbitrary image?
Solution There is no limit, any set of parallel lines at an angle to the camera will
converge at a vanishing point

(d) (1 point) How would you arrange parallel lines so that they do not appear to have a
vanishing point?
Solution Place lines that are parallel to the camera plane, they will converge at the
point at infinity

16. (6 points) Cascaded Hough transform for detecting vanishing points

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
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1
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X − AXIS

Y
 −

 A
X

IS

Figure 9: Hough Transform

For this problem we are going to use the slope m intercept c representation of line:
y = mx + c. The attached Figure 9 shows the vertices of a rectangular patch under a
perspective transformation. We wish to find the vanishing point in the image using a
Hough Transform.

16



(a) (2 point) Plot the Hough Transform (for line fitting) representation of the image.
Assume no binning and make plots in a continuous (m, c) space. Just show the points
with two or more votes.
Solution See figure 10
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Figure 10: Make your plot here

(b) (2 point) Now using y = mx+ c representation, run Hough transform on the results
from part (a) (after using a threshold of 2 votes) to get a representation in the (x, y)
space again.
Solution
The same plot as the plot in the problem statement, with an intersection at (2.5,
1.75)

(c) (2 point) Explain how to extract the vanishing point from the representation in part
(b).
Solution The vanishing point is (2.5, 1.75)

17. (5 points) Using RANSAC to find circles

Suppose we would like to use RANSAC to find circles in R2. Let D = {(xi, yi)}ni=1 be our
data, and let I be the random seed group of points used in RANSAC.

(a) (2 points) The next step of RANSAC is to fit a circle to the points in I. Formulate
this as an optimization problem. That is, represent fitting a circle to the points as a
problem of the form

minimize
∑
i∈I

L(xi, yi, cx, cy, r)

where L is a function for you to determine which gives the distance from (xi, yi) to
the circle with center (cx, cy) and radius r.
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Solution

L(xi, yi, cx, cy, r) = |sqrt((xi − cx)2 + (yi − cy)2)− r|

(b) (2 points) What might go wrong in solving the problem you came up with in (1) when
|I| is too small?
Solution
The problem is underdetermined. With e.g. 2 points there are infinitely many circles
one can fit perfectly.

(c) (1 point) The next step in our RANSAC procedure is to determine what the inliers
are, given the circle (cx, cy, r). Using these inliers we refit the circle and determine
new inliers in an iterative fashion. Define mathematically what an inlier is for this
problem. Mention any free variables.
Solution
An inlier is a point (x, y) such that |sqrt((xi − cx)2 + (yi − cy)2) − r| ≤ T for some
threshold T .

18. (6 points) Fast forward camera
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Figure 11: Camara movement

Suppose you capture two images P and P ′ in pure translation in the Z direction shown
in Figure 11. Image planes are parallel to the XY plane.

(a) (3 points) Suppose the center of an image is (0,0). For a point (a, b) on image P ′,
what is the corresponding epipolar line on image P?
Solution the line goes through (0, 0) and (a, b) on image P .

(b) (3 points) What is the fundamental matrix in this case?
Solution
0 -1 0
1 0 0
0 0 0

19. (6 points) K-Means

18



Figure 12: A wild jackalope

(a) (3 point) What is likely to happen if we run k-means to cluster pixels when we only
represent pixels by their location? With k=4, draw the boundary around each cluster
and mark each cluster center with a point for some clusters that might result when
running k-means to convergence. Draw on Figure 12, and set the initial cluster cen-
ters to be the four corners of the image.
Solution Just a bunch of (roughly) equal-sized clusters tiling the plane, depending
on the starting locations. For the image, we expect each quadrant to be its own cluster.

(b) (1 point) What does this tell us about using pixel locations as features?
Solution It’s not sufficient, we need richer features.

(c) (2 point) We replace the sum of squared distances of all points to the nearest cluster
center criterion in k-means with sum of absolute distances of all points to the nearest
cluster center, i.e. our distance is now given by d(x1, x2) = ‖x1 − x2‖1. How would
the update step change for finding the cluster center?
Solution At every iteration
1. Assign points to the closest cluster center
2. Update the cluster centers with the median of points belonging to a cluster

20. (6 points) Canny Edge Detector

(a) (3 points) There is an edge detected using the Canny method. This detected edge is
then rotated by θ as shown in Figure 13, where the relation between a point on the
original edge (x, y) and a point on the rotated edge (x′, y′) is given by

x′ = x cos θ (6)

y′ = x sin θ (7)
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Will the rotated edge be detected using the Canny method? Provide either a mathe-
matical proof or a counter example.

Figure 13: Edge Rotated by θ

Solution
Our rotation is given by

x′ = x cos θ

y′ = x sin θ

Our canny edge depends on the magnitude of the derivative which is the only part of
the algorithm which could have really changed. This is given by

√
D2
x′x′ +D2

y′y′ =
√

cos2 θD2
xx + sin2 θD2

yy

=
√
D2
xx

which is the same rule for the original edge thus we have shown that the Canny
method is rotationally invariant.

(b) (3 points) After running the Canny edge detector on an image, you notice that long
edges are broken into short segments separated by gaps. In addition, some spuri-
ous edges appear. For each of the two thresholds (low and high) used in hysteresis
thresholding, state how you would adjust the threshold (up or down) to address both
problems. Assume that a setting exists for the two thresholds that produces the
desired result. Explain your answer very briefly.

Solution
The gaps in the long edges require a lower low threshold: parts of the long edge are
detected, so the high threshold is low enough for these edges, but the edges are discon-
nected because the low threshold is too high. Lowering the low threshold will include
more pixels of the long edges. Eliminating the spurious edges requires a higher high
threshold. The high threshold should be increased only slightly, so as not to make the
long edges disappear. The assumption in the problem statement ensures that this is
possible.
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21. (4 points) Image Segmentation

Both the minimum cut and the minimum normalized cut algorithms for image segmen-
tation have problems relating to the size of the partitions that they produce.

(a) (2 point) What is the problem with the minimum cut formulation, and how is this
dealt with by the minimum normalized cut formulation?
Solution
Min cut prefers very small and very large partitions

(b) (2 point) Although using normalized cuts is much better than using minimum cuts,
it still has a problem concerning the size of the partitions it produces. In what way
is it biased?
Solution
Prefers partitions of roughly equal size
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