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Linear Filters
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What we will learn today?

* Images as functions

e Linear systems (filters)

e Convolution and correlation

e Discrete Fourier Transform (DFT)
e Sampling and aliasing

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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Images as functions
* An Image as a function f from R? to RM:

o f( X,y ) gives the intensity at position ( X, Y )1/
* Defined over a rectangle, with a finite range:
f:[ab] x [c,d] > [0,255] R*—R'

Domain range
support
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Images as functions
* An Image as a function f from R? to RM:

e f( X, Yy ) gives the intensity at position ( X, y)
* Defined over a rectangle, with a finite range:
f: [a,b] x [c,d ] = [0,255]

Domain range
support

rxy)] R R
e Acolorimage: f(x,y)=[g(Vy)| cplor. RGP
b(x,y) Y
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Images as discrete functions

* Images are usually digital (discrete):
— Sample the 2D space on a regular grid

 Represented as a matrix of integer values

pixel
3 y
j >

62 79 23 119 120 05 |4 0
Z |10 10 9 82 8 34 0

10 58 197 46 46 0 0 43

176 135 . 188 191 88 0 49

2 i 1 29 2 37 0 77

0 89 144 147 187 102 |62 208

255 | 252 0 166 123 62 0 31

166 |63 127 17 1 0 99 30
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Images as discrete functions

Cartesian coordinates

fln,m| =
A

Notation for
discrete
functions

Fei-Fei Li

f:_lv 1:
f:—LO:
f[—l,,—l]

fl0.1
f10.0

f[O? _1]

fl1.1
f[L.0

f[lﬂ _1]
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Images as discrete functions

Array coordinates

11 . e a1 M
A =

ani -.. OUNM

Matlab notation
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What we will learn today?

e Linear systems (filters)

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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Systems and Filters

* Filtering:

— Form a new image whose pixels are a
combination original pixel values

Goals:

-Extract useful information from the images
e Features (edges, corners, blobs...)

- Modify or enhance image properties:
e super-resolution; in-painting; de-noising
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- Super-resolution
De-noising

o
D
=
S+
Q
3.
o
o
—
L
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2D discrete-space systems (filters)

fln,m| — | System S | — g|n.m|

g=3S8|f], gn,m|=85{f|n,m|}

fln,m| =, gln,m|
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Filters: Examples

e 2D DS moving average over a 3 x 3 window of

neigh borhoggwﬂlm prig. im e~
%\W(k m r;/—l m+\1 !/ @
g[n,m]: Z Zf]{[ . 1| 1|1
horwjjz.ﬁ k=n—1[=m—1 N ] 1 1
mdl L | 9 1|1 ] 1
=3 Z Z fln—Fk,m—1
T k=—11=—1
(f*h)[m nj=— Zf[k I]h[m—-k,n—1]
Qohvo,uﬂoﬂ
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Moving average

Flz, y] Glz, y.

73196 S 40 Asauno)
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Moving average

Flz, y] Glz, y.

0“ 10

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Glz, y.

0 10 20

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Glz, y.

0 10 20 30 ‘\

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Glz, y.

0 10 20 30 “ 30

(f *g)[m,n] = Zf[k, llglm—-k,n—I]
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Moving average

Flz, y] Gl yl .,

(f *g)[m,n] = Zf[k, lglm—-k,n—1]

Source: S. Seitz
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Moving average

In summary: 9L -]
e Replaces each pixel 111
. . 1
with an average of its 1| 1] 1
neighborhood. 9 1]

e Achieve smoothing
effect (remove sharp
features)
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Moving average
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Filters: Examples

* Image segmentation based on a simple

threshold:

gin, m| =

Fei-Fei Li

.<

P

1, fln,m| > 10

0, otherwise.

.
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Classification of systems

7& e

e Amplitude properties |
\

e Linearity ‘
( ) — ’n fe g
e Stability Lincas g“ft wriad stem
e Invertibility T T
[ST

e Spatial properties
e Causality
e Separability
e Memory
e Shift invariance
e Rotation invariance
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Shift-invariance

e If fln,m] =, gln,m] then

fln —mno,m —mo g 7 —no, M — Mo

for every input image f[n,m] and shifts n,,m,

* |s the moving average shift invariant a system ?
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Is the moving average system is shift invariant?

Flz, y] Glz, y.
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Is the moving average system is shift invariant?

fln, m] =, gln, m| Y T fin—k,m —1]
R —
fln — no,m — mo|
S 1
—  gln,m| = fln—Fk,m—1]

> >
1.,1%/

_ _T Tf (n —ng) —k,(m —mg) —

k=—11[1=—1

= gln —ngp,m —mg Yes!
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Linear Systems (filters)

flx,y) —|S|— g(z,y)

e Linear filtering:

— Form a new image whose pixels are a weighted sum of
original pixel values

— Use the same set of weights at each point

* Sis alinear system (function) iff it S satisfies

Slafi + Bfa] = aS|f1] + BS|f2]

superposition property
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Linear Systems (filters)

flx,y) —|S|— g(z,y)

e |sthe movmg averagei linear system?

'fﬂh\—ljnm) 72 -F(nk m-£)
S(«f)= Lzo(f(n b, w- P)

st [ 52 0f(nk 2]
x-S
° |s thresho%dln a linear system?
(R ny+ 2
ﬂ: fi[n, m[i MSQ \
— f2[n,m]<T No
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LSI (linear shift invariant) systems

Impulse respoy

do|n, m| —

doln —k,m —1| —

S

dulf fw_ 5[,,,“\]:{ I Nizm=p

O ‘W'-"Waﬁ; L

— hin, m|

S(SI)|— hAln—FEk,m—1

Fei-Fei Li
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LSI (linear shift invariant) systems

Example: impulse response of the 3 by 3 moving
average filter:

1 |
1
hin,m| = 5 y: y: doln — k,m — ]

k=—11=—1 h

- 1/9 1/9 1/9 ] 1|1 |1

= | 1/9 1/9 1/9 LT
- 1/9 1/9 1/9

1 1 1
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LSI (linear shift invariant) systems

An LS| system is completely specified by its

impulse response.
sifting property of the delta function

oo

fln,m| Z Zf/{léon—km—l]

k=—0o0 [=—0o0

o0 0O superposition

— | S LSI|— Z Z flk, ] hin —k,m — ]

da[n,m] — | S |— hln,m] k=—o0 l=—o0

Discrete convolution

= f[n, m] *« hjn, m]
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What we will learn today?

e Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]
e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m

hik,]

h[-k,-'] h[n-k,m-l]

T
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]
e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m

hik,]

h[-k,-'] h[n-k,m-l]

T
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Discrete convolution

e Fold h[n,m] about origin to form h[-k,-l]

e Shift the folded results by n,m to form h[n - k,m -]

e Multiply h[n = k,m -] by f[k, []

e Sum over all k,|

e Repeat for every n,m f[k,|] X h[n—k,m-l]

Sum (f[k,I] x h[n-k,m-I])
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Convolution in 2D - examples

0|00 ~
«0|e1|e0| = 4
0|00

Original

Courtesy of D Lowe
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Convolution in 2D - examples

0|00
0e1|e0| =
0|00
Original Filtered

(no change)

Courtesy of D Lowe
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Convolution in 2D - examples

Original

Courtesy of D Lowe
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Convolution in 2D - examples

Original Shifted right
By 1 pixel

Courtesy of D Lowe
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Convolution in 2D - examples

o] | o1 |e] ?
1 |
— .1 .1 .1 — L
9

o] | o] | @]

Original

Courtesy of D Lowe
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Convolution in 2D - examples

o] | o] | @]
]_ |
S 01 .1 .1 —
O
o] el | el
Original Blur (with a
box filter)

Courtesy of D Lowe
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Convolution in 2D - examples

°0|*0| 0 o] |el|el

| = 7
o2 |0 — 5 o] |e]l|e] —
eO| 0|0 o]|e]l|e]l ]

(Note that filter sums to 1)

“details of the image”

| \
00| <0 «0|¢0| <0 RO :
oQ|e]1|e0Q]| T o(O|e]1 |0 — 5 o] (e]l|e] %
o(O|e(Q| 0 oo/ o]l|e]l|e] 5
8

Fei-Fei Li Lecture 3- 41 3-Oct-12




e What does blurring take away?

e Let’s add it back:
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Convolution in 2D -
Sharpening filter

0| e0| 0 ol(elfel
1
Yy |e0|e2|e0| = 5-1-1-1 —
eO| 0|0 o]|e]l|e]l =

Original

Sharpening filter: Accentuates differences with local average

Courtesy of D Lowe
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Convolution properties

e Commutative property:

Jxxh=hx*xx*f

e Associative property:
(f * hy)*k*xho = [k (hy *% ho)
e Distributive property:

fox (hy + ho) = (f *% h1) + (f ** ho)

The order doesn’t matter! hq{ % ho = ho ** hq
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Convolution properties

e Shift property:

fln, m| + d2[n — nog, m — mo|] = fln —no.m — mo

e Shift-invariance:
gln,m| = fin,m| s hin, m|
— fIn—1l1,m — 1]+ hin —lo,m — [o]

=gn—1 —la,m—1l; — 5]
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Image support and edge effect

*A computer will only convolve finite support
signals.
e That is: images that are zero for n,m outside some
rectangular region

* MATLAB'’s conv2 performs 2D DS convolution of finite-
support signals.

(N1+N2-1)x(M1+M2-1)

N1xM1
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Image support and edge effect

*A computer will only convolve finite support
signals.
 What happens at the edge?

e zero “padding”
e edge value replication
h e mirror extension

® MOIe (beyond the scope of this class)

i -> Matlab conv2 uses
' zero-padding
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Cross correlation

Cross correlation of two 2D signals f[n,m] and g[n,m]

reglk, 1] = Z Z fln,mlg™n—k,m —1]

N——00 Th——0C

Z Z fin+km+lignml, klecZ

NnN——00 MmM——00

(k, 1) is called the lag

e Equivalent to a convolution without the flip

reqgln,m|l = fln,m| s g*|—n, —m|
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Cross correlation — example

| -

1 128

MATLAB’s
XCOorr2

19|SS94 1 40 Asauno)
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Cross correlation — example

Left _ Right

‘,

scanline .‘.‘- ol - :

Norm. corr

-
——
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Convolution vs. Correlation

A convolution is an integral that expresses the amount
of overlap of one function as it is shifted over another
function.

— convolution is a filtering operation

e Correlation compares the similarity of two sets of
data. Correlation computes a measure of similarity of
two input signals as they are shifted by one another.
The correlation result reaches a maximum at the time
when the two signals match best .

— correlation is a measure of relatedness of two signals
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What we will learn today?

e Discrete Fourier Transform (DFT)

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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2D Discrete-Signal Fourier Transform (DSFT)

2D discrete-signal Fourier transform (DSFT) of a 2D discrete-space
signal g[n,m]:

‘FT 'Oau o0 00 §]J5{mc,¢
G{u}x?u)&, — Z Z g n, ?’R] 1(wxntwym)

NnN——0oo MM =——

Inverse 2D DSFT:

1 T (0
gln,m| = (QW)Q/ / G(wxﬁwy)e&(“’X”*"“Y""”') dwy dwsy

For memory refresher: Forsyth and Ponce, Ch 8
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50

100

£ 150

200

250

Jean Baptiste Joseph Fourier

50 100 150 200 250

Fourier's Transform: log(Magnitude)
16

4G (wy, wy )] ¢

/2 12
10
(OY 8
6
-n/2 4
2
=T
DSFET
Fourier’'s Transform: Phase
n .
: e?,é Glwx ,wy )
/2 :
1
Oy 0
-1
-n/2
-2
-3

-
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DSFT - properties
Shift:
I origind FFT( 9 pl\Me SW

g[n — ng, M — '?’TL()] - G(u}x? WY) e—'?:(wX'Tl[:l—f_wYTTlO)

Convolution:

f[n? Tn] Aok h[n? Inq/] F(wXﬁ wY) H(wXﬁ wY)

Delta function:

0o |1, M| ]

o |[n — N, M — M| e—t(wxno+wymo)
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Example: DSFT of moving average filter

gn,m| = Z Zfrz—km—l]

A,_—l [=—1

(f *h)[m,n]zézf[k,l]h[m—k,n—l]

h
F(u}x Wy ) H(WX Wy ) 1 |1 ] 1
1
_ = T y‘ e—gwxn — 1wy m —_— 1 1 1
fn._—l m=—1 9
1 1 1

1
= 5[1 + 2 coswx||1 + 2 cos wy ]
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Function Fourier transform
OV! ‘ \ r3 (, ‘ —1’2mju:c+vy;-d d
g(z,y) | alz,ye zdy
— 00
Ml ‘Q? B ‘ .
J | Fla(z,y))(u,v)e " dudv Flg(z,y))(u,v)
— 00
v d(x,y) 1
% (z,y) uF(f)(u,v)
0.56(x + a,y) + 0.56(x — a,v) cos 2wau
—m(z?+y?) —mw(u?tv?)
B e~ Tz +y e—T(u+u =
v | L1 box: (x,y) sinusinv 'A’“Ul‘\ﬁyv
Fifiriufa,v/b)
flaz,by) ab —
iy \ L T IR
2t —o0 Dge—00 (& — 1y — ) Yoo D B = Byt =)
¥¥ (f * xg)(x,y) F(f)F(g)(u,v)
f':l' — o,y — bl e—iﬁ?ﬂ]au—{—bv If(fl
flxcos® —ysinB,xsin@ +ycosb) | F(f)(ucosf —vsinf,usinf + vcosh)
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Why is DFT important?

e Perform efficient linear convolution as product of
DFTs

e Each DFT can be implemented using the FFT
(FaSt Fourier Tra nSfOrm ) [see appendix for details]
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What we will learn today?

e Sampling and aliasing

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7 & 8
Jae S. Lim, Two-dimensional signal and image processing, Chapter 1, 4, 5
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Sampling

o E

Throw away every other row and column
to create a 1/2 size image
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Sampling

* Down-sampling operation:

(trivial form of image compression)

=22 fl
gln,m] = f[2n,2m] = | ... f]—2,0] fl
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Why is a multi-scale representation useful?

* Find template matches at all scales

— .ﬁ., when finding hands or faces, we don’t know
what size they will be in a particular image

— Template size is constant, but image size changes

o Efficient search for correspondence
— look at coarse scales, then refine with finer scales

 Examining all levels of detail
— Find edges with different amounts of blur

— Find textures with different spatial frequencies
(levels of detail)

Slide credit: David Lowe (UBC)
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Things can go wrong! -- Aliasing

256x256  128x128 64x64 32x32 16x16
. lllllll _ B lllllll - IIMII i l_l
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Things can go wrong! -- Aliasing

Disintegrating textures
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Sampling Theorem (Nyquist)

e When sampling a signalat discrete intervals, the sampling
frequency must w

A A A P
S

bad
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5 [n’m] > gsampled [n'm]
Small sampling
period N
ﬁ Q
y Gd (wX , Wy )
— H . T
* N =sampling period
e T = periodicity of the
replicas of the DFT (g)
>
T~1/N @,
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256x256 16x16

> gsampled [n'm]

Large sampling
period N

N =sampling period
e T = periodicity of the
replicas of the DFT (g)

T~1/N
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Anti-aliasing

Solutions:
/o Sample more often

 Getrid of all frequencies that are greater

than half the new sampling frequency
— Will lose information - but it’s better than aliasing

— Apply a smoothing filter to remove high
frequencies
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Anti-aliasing

Apply a smoothing filter to remove high frequencies:

Low pass filter (smoothing)
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Sampling algorithm

Algorithm 7.1: Sub-sampling an Image by a Factor of Two

a low-pass filter to the original image

Apply
(&
and twWo

h a o of between one

xels is usually an acceptable choice).

Create a new image whose dimensions on edge are half
those of the old image

Set the value of the i, j'th pixel of the new image to the value
of the 2i, 25°'th pixel of the filtered image

Fei-Fei Li Lecture 3- 71 3-Oct-12




Resampling with Prior Smoothing

256 x 256 128 = 128 64 x 64 32 x 32 16 = 16

no
smoothing

Gaussian
o= 1

Gaussian

o =2

 Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.

Image Source: Forsyth & Ponce
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The Gaussian Pyramid

Low resolution G, = (GS gaussian 12

\ . Q (G |Q !ilmj s down- Sample -

High resolutic
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Gaussian Pyramid — Stored Information

> " All the extra
M‘ levels add very
little overhead
for memory or

computation!

Source: lrani & Basri
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Summary: Gaussian Pyramid

e Construction: create each level from previous one
— Smooth and sample

 Smooth with Gaussians, in part because

— a Gaussian*Gaussian = another Gaussian
— G(o,) * G(o,) = G(sqrt(c,%* 5, ?))

e Gaussians are low-pass filters, so the
representation is redundant once smoothing has
been performed.

—> There is no need to store smoothed images at the
full original resolution.

Slide credit: David Lowe
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Application: Vision system
for TV remote control
- uses template matching

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE
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What we have learned today?

* Images as functions

e Linear systems (filters)

e Convolution and correlation

e Discrete Fourier Transform (DFT)
e Sampling and aliasing
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Appendix
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Convergence

If g absolutely summable: Z% Zx |g[n m” < 00

n——0o0 m—=—0o0

then —1(wxn+wym)
lim E E g\n,m|
N —ox

n=—N m=—N = G(u)xg u}y)

If g is square summable

E,2
(energy signal): — Z Z n,m||” < oo

NnN=—oo MmMm=——0cC

/ / GN(wX,wY)—G(wx,wy)\dexdwY — 0
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Fast Fourier transforms (FFT)

* Brute-force evaluation of the 2D DFT would require
O((NM)2) flops

X[kl 2

B { Zn ! Z:;f x[n,m] e r2rkn/N+im /M,
k=0,....N—-1,1=0,...,M—1
otherwise

* DFT is a separable operation
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Fast Fourier transforms (FFT)

* DFT is a separable operation:

N—-1M-1

Xk = T 7 x|n, m| e 12 (kn/N+lm /M)

— m=0

E : e—aZﬂ'fffn,/l\J

n=~0

M —1

E :LU[TZ TTZ —?Zﬂ'im/u

=

*Apply the 1D DFT to each column of the image, and then apply
the 1D DFT to each row of the result.

Fei-Fei Li

Lecture 3 -




Fast Fourier transforms (FFT)

- FFT computational efficiency:

 inner set of 1D FFTs : N O(M logM)
e outer set of 1D FFTs: M O(N logN)

*Total: O(MN logMN) flops

e A critical property of FFT is that N = 2%  with k =integer

If x=512x512 image =
saving is a factor of 15000 relative to the brute-force 2D DFT!
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FFT & Efficiency

e General goal: perform efficient linear convolution
ePerform convolution as product of DFTs

* Pros: DFT can be implemented using the FFT (fast

fourier transform)
*FFT is very efficient (fast!)

« Cons: DFT perform circular convolution
Compensate the wrap-around effect

*Cons: Online-memory storage
*Use the overlap-add method or overlap-save method
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FFT & Efficiency

*Suppose we wish to convolve a 256 x 256 image with a
17 x 17 filter.

*The result will be 272x272.

*The smallest prime factors of 272 is 2.

*So one could pad to a 512 x 512 image
*Note: only 28% of the final image would be the part we care about - the rest
would be zero in exact arithmetic.

Handling toa 512 x 512 image requires much memory

— Use overlap-add method
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