Lecture 4.
Finding lines: from detection to
model fitting

Professor Fei-Fei Li
Stanford Vision Lab
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What we will learn today

 Edge detection
— Canny edge detector
e Line fitting
— Hough Transform
— RANSAC (Problem Set 2 (Q5))
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(A) Cave painting at Chauvet, France, about 30,000 B.C;
(B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoplyphs, Peru, about 700 — 200 B.C;

(C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China;
(D) Line drawing by 7-year old I. Lleras (2010 A.D.).
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We know edges are special from
human (mammalian) vision studies

P ,]/ Double opponent simple cell

[ m

Hubel & Wiesel, 1960s
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We know edges are special from
human (mammalian) vision studies

152  Biederman

Figure 4.14
Complementary-part images. From an original intact image (left column), two complemen-

Fei-Fei Li Lecture 4 - 10-Oct-11




[ line drawings

*k

0.4 @@ photographs

3

0.3-

0.2F

chancer -

V2+\VP V4 PPA

V1

Caddigan, Beck & Fei-Fei, PNAS, 2011

I

r, Chai

Walthe

10-Oct-11

6

1
4
()
-
-
e’
o
()
—

Fei-Fei Li




Edge detection

e Goal: Identify sudden
changes (discontinuities) in
an image /’_‘“\\
— Intuitively, most semantic and

shape information from the
image can be encoded in the

edges
— More compact than pixels

//"
s . & X
e |deal: artist’s line drawing / ”k\
(but artist is also using SN
object-level knowledge) Source: b. Lowe
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Origin of Edges
x _

surface normal discontinuity

depth discontinuity

AO surface color discontinuity
f |

A~ illumination discontinuity

e Edges are caused by a variety of factors

~4

Source: Steve Seitz
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What we will learn today

 Edge detection

— Canny edge detector
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Characterizing edges

e An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative

[

\

edges correspond to
extrema of derivative
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Image gradient

e The gradient of an image: Vf — [8f af]

ox’ Oy
vi= 50 T

— [p 9f
Vi= [ ’ 89]
The gradient points in the direction of most rapid increase in intensity

The gradien given by @ = tan—! (af/
e how does this relate to the direction of the edge? 0/#“70 Lbé

The edge strength is given by the gradient magnitude

||Vf|| — \/( ) + ( ) Source: Steve Seitz
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Differentiation and convolution

eRecall, for 2D function, *We could approximate
f(x,y): this as

of _y (f(x +£.7) f(x,y)j o S )= /(5,.7)

= =im - ~

ox &0 £ & Ox Ax
This is linear and shift *(which is obviously a i
invariant, so must be the convolutio)r(w)o( , J-oke

|
11 1 |

result of a convolution.

Source: D. Forsyth, D. Lowe
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Finite difference filters

e Other approximations of derivative filters

1Jo1] [1]

1| 1]
Prewitt: M, = |[|-1]0]1 s M, = o] o] 0
1ol 1 ]-1] -]

-1]0]1 HIE
Sobel: M, = |-2]0]2 : M, = () 0

0
Roberts: M, = (') + M, = E

Source: K. Grauman
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Finite differences: example

 Which one is the gradient in the x-direction? How about y-direction?
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Effects of noise

 Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f ()

1 1 1 1 1 I 1

1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Source: S. Seitz
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Effects of noise

e Finite difference filters respond strongly to
noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What is to be done?

Source: D. Forsyth
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Effects of noise

e Finite difference filters respond strongly to
noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What is to be done?

— Smoothing the image should help, by forcing
pixels different to their neighbors (=noise pixels?)
to look more like neighbors

Source: D. Forsyth
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Solution: smooth first

Sigma = 50

S
\,3
Signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
oQ
Kernel

o
I

600 800 1000 1200 1400 1600 1800 2000

+*
oQ
Convolution

0 200 400 600 800 1000 1200 1400 1600 1800 2000

+*
oQ
—r
Differentiation

0 200 400 600 800 1000 1200 1400 1600 1800 2000

e To find edges, look for peaks in di(f*g)
X

Source: S. Seitz
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Derivative theorem of convolution

e Differentiation is convolution, and convolution
IS associative: ”i(fﬂfg):f*ig
ﬁ dx

e This saves us one operation:

Sigma = 50

~
Signal

L 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

......................................................................................

1 1 I 1 L I ! 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

Source: S. Seitz
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Derivative of Gaussian filter

WSS
N7
SN 577
SIS

*[1-1] =

e |s this filter separable?
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Derivative of Gaussian filter

x-direction y-direction

e Which one finds horizontal/vertical edges?
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

e Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth
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Implementation issues

e The gradient magnitude is large along a thick “trail”
or “ridge,” so how do we identify the actual edge
points?

Source: D. Forsyth

e How do we link the edge points to form curves?
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Designing an edge detector

|I)

e Criteria for an “optimal” edge detector:

— Good detection: the optimal detector must minimize the
probability of false positives (detecting spurious edges
caused by noise), as well as that of false negatives (missing
real edges)

— Good localization: the edges detected must be as close as
possible to the true edges

— Single response: the detector must return one point only for
each true edge point; that is, minimize the number of local
maxima around the true edge
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Designing an edge detector

III

e Criteria for an “optimal” edge detector:
— Good detection
— Good localization

— Single response
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Canny edge detector

e This is probably the most widely used edge
detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, |EEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.
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Canny edge detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

— Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB: edge(image, ‘canny’)
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Example

e original image (Lena)
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Example

norm of the gradient
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Example

thresholding
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Example

Thinning (non-maximum suppression)
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Non-maximum suppression

At g, we have a

maximum if the value
® ® ® O ©

is larger than those at
P both pand atr.
Interpolate to get
these values.

@ ® q @
Gradient
® ® O o ®
T
® @ ® ®

Source: D. Forsyth
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Edge linking

Assume the marked

e ® e e point is an edge point.
Then we construct the
r tangent to the edge
® Py o curve (which is normal
: o the gradient at tha
Gradient to th dient at that
adich g point) and use this to

predict the next points
(here either r or s).

@ o ® O

Source: D. Forsyth
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Hysteresis thresholding

 Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis (/

_ v
e use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz
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Hysteresis thresholding

lhhlll

lr:"! 1

hlgh threshold low threshold hysteresis threshold
(strong edges) (weak edges)
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Effect of o (Gaussian kernel spread/size)

original Canny with 0 = 1 Canny with 0 = 2

The choice of ¢ depends on desired behavior

e large o detects large scale edges

e small o detects fine features < S Seit
ource: o. >seltz
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Edge detection is just the beginning...

image human segmentation gradient magnitude

 Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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What we will learn today

e Line fitting
— Hough Transform
— RANSAC (Problem Set 2 (Q5))
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Fitting as Search in Parametric Space

e Choose a parametric model to represent a set of
features

e Membership criterion is not local

— Can’t tell whether a point belongs to a given model just by
looking at that point.

e Three main questions:
— What model represents this set of features best?
— Which of several model instances gets which feature?
— How many model instances are there?

e Computational complexity is important

— Itis infeasible to examine every possible set of parameters
and every possible combination of features

Source: L. Lazebnik
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Example: Line Fitting

e Why fit lines?
Many objects characterized by presence of straight lines

e Wait, why aren’t we done just by running edge detection?

Slide credit: Kristen Grauman
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Fei-Fei Li

e Extra edge points (clutter),
multiple models:
— Which points go with
which line, if any?

 Only some parts of each
line detected, and some
parts are missing:

— How to find a line that
bridges missing evidence?

Bz « Noise in measured edge

points, orientations:

— How to detect true underlying
parameters?

Slide credit: Kristen Grauman
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Voting i f1ai spues

e [t's not feasible to check all combinations of features by
fitting a model to each possible subset.

e \Voting is a general technique where we let the features
vote for all models that are compatible with it.

— Cycle through features, cast votes for model parameters.
— Look for model parameters that receive a lot of votes.

* Noise & clutter features will cast votes too, but typically
their votes should be inconsistent with the majority of
“good” features.

e Ok if some features not observed, as model can span
multiple fragments.

Slide credit: Kristen Grauman
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Fitting Lines

e Given points that belong to a line,
what is the line?

e How many lines are there?
 Which points belong to which lines?

e Hough Transform is a voting technique
that can be used to answer all of these
e Main idea:

1. Record all possible lines on which each
edge point lies.

2. Look for lines that get many votes.

Slide credit: Kristen Grauman
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Finding Lines in an Image: Hough Space
6’7"* .‘erlﬂ"’”b‘

;;?J y y/6§+ N e?icnf&r
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»
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; P

Image space Hough (parameter) space

e Connection between image (x,y) and Hough (m,b) spaces
— Aline in the image corresponds to a point in Hough space.

— To go from image space to Hough space:
e Given a set of points (x,y), find all (m,b) such that y = mx + b

Slide credit: Steve Seitz
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Finding Lines in an Image: Hough Space
m's

y A ’ b A
b ¢
l
Xo X m
Image space Hough (parameter) space

e Connection between image (x,y) and Hough (m,b) spaces
— Aline in the image corresponds to a point in Hough space.

— To go from image space to Hough space:
e Given a set of points (x,y), find all (m,b) such that y = mx + b
— What does a point (x,, y,) in the image space map to?
* Answer: the solutions of b =-x,m + y,
e Thisis aline in Hough space

Slide credit: Steve Seitz
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Finding Lines in an Image: Hough Space

b A
b= —xzogm + yo (X),%>
ﬁ N
‘ b:—xln:l +y1 (K’/V,)
Xo X m
Image space Hough (parameter) space

 What are the line parameters for the line that contains
both (x,, y,) and (x;, y,)?

— Itis the intersection of the lines » = —x,m + y,and
b=-xm+y,

Slide credit: Steve Seitz
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Finding Lines in an Image: Hough Space

y A b
PS ]
e ~J_ —
ﬁ \A E—
et ~N
// S~
X m
Image space Hough (parameter) space

e How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?
— Let each edge point in image space vote for a set of possible
parameters in Hough Space

— Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.

Slide credit: Steve Seitz
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Polar Representation for Lines

e |ssues with usual (m,b) parameter space:
— can take on infinite values;

— undefined for vertical lines.

[0.0. A . d : perpendicular distance
9) from line to origin
d @ : angle the
Y perpendicular line makes

with the x-axis

xXCos@+ysinfd =d

where 6 € [0,7) andd ER

Slide credit: Steve Seitz

e Pointin image space = sinusoid segment in Hough space
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Hough Transform Algorithm

H: accumulator array (votes)

Using the polar parameterization:
xCo0SO+ysinfd=d

: . 0
Basic Hough transform algorithm
1. Initialize H[d,d] = 0.
2. For each edge point (x,y) in the image
for @ € [0, ) // some quantization d

HId, O] +=1
3.  Find the value(s) of (d,6) where H[d,4] is maximum.
4. The detected line in the image is given by
d =xc0s@+ ysin@
e Time complexity (in terms of number of votes)?
Hough line demo

Slide credit: Steve Seitz
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Example: HT for Straight Lines

Black = no votes

.§

Qo

X o 3

w

Image space Votes g

- 0

edge coordinates Bright value = high vote count o
2

2
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Example: HT for Straight Lines

Square:

David Lowe

Slide credit:
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Example: HT for Straight Lines

Slide credit: David Lowe
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Real-World Examples

slmE=a
IERER IRER =29
NEOIEEEEE

Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman

Fei-Fei Li
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Showing longest segments found
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Impact of Noise on Hough Transform

0

Image space Votes
edge coordinates

What difficulty does this present for an implementation?

Slide credit: David Lowe
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Impact of Noise on Hough Transform

Image space
edge coordinates

Votes

Here, everything appears to be “noise”, or random edge points, but we still see

peaks in the vote space.

Fei-Fei Li
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Generalized Hough Transform

 What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: ¥ = a — p..

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 0.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Slide credit: Kristen Grauman
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Example: Detecting Circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumu-
lators) was used for each circle radius (quarters vs. penny).

Slide credit: Kristen Grauman Coin finding sample images from: Vivek Kwatra
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Example: Detecting Circles with Hough

Combined detections
Original Edges Votes: Quarter

Slide credit: Kristen Grauman Coin finding sample images from: Vivek Kwatra
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Voting: Practical Tips

e Minimize irrelevant tokens first (take edge points with
significant gradient magnitude)
e Choose a good grid / discretization

— Too coarse: large votes obtained when too many different
lines correspond to a single bucket

— Too fine: miss lines because some points that are not
exactly collinear cast votes for different buckets

e Vote for neighbors, also (smoothing in accumulator
array)

e Utilize direction of edge to reduce free parameters by 1

* To read back which points voted for “winning” peaks,
keep tags on the votes.

Slide credit: Kristen Grauman
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Hough Transform: Pros and Cons

Pros
e All points are processed independently, so can cope with
occlusion

e Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

e (Can detect multiple instances of a model in a single pass

Cons

e Complexity of search time increases exponentially with the
number of model parameters

 Non-target shapes can produce spurious peaks in
parameter space

e (Quantization: hard to pick a good grid size

Slide credit: Kristen Grauman
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Another model fitting strategy:
RAN SAC [Fischler & Bolles 1981]

e RANdom SAmple Consensus

 Approach: we want to avoid the impact of
outliers, so let’s look for “inliers”, and use only
those.

e Intuition: if an outlier is chosen to compute
the current fit, then the resulting line won’t
have much support from rest of the points.

Kristen Grauman

Slide credit:
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RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to base
transformation estimate (e.g., a group of matches)

Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute <
least-squares estimate of transformation on all of the 5
inliers S
e Keep the transformation with the largest number of g
inliers =
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RANSAC Line Fitting Example

e Task: Estimate the best line

— How many points do we need to egtimate the line?

®
Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

e Task: Estimate the best line

)

)

)

° [ ]
® 'S
) =
9 ® o
8 >
@
X
® 5
Sample two points =
o o P P S
o o
175}

Fei-Fei Li Lecture 4 - 65 10-Oct-11



RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

®
Slide credit: Jinxiang Chai

Fei-Fei Li Lecture 4 - 66 10-Oct-11



RANSAC Line Fitting Example

e Task: Estimate the best line

Total number of points
within a threshold of
line.

Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

e Task: Estimate the best line ) 1)
(,X)

Total number of points
within a threshold of
line.

Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

e Task: Estimate the best line

Repeat, until we get a good
result.

Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

‘11 inlier p@

e Task: Estimate the best line

Repeat, until we get a good
result.

Slide credit: Jinxiang Chai

Lecture4 - 70 10-Oct-11

Fei-Fei Li




Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:
‘0 t — the smallest number of points required
a)‘ vk — the number of iterations required

/_@ the threshold used to identify a point that fits well
) é—_ —b the number of nearby points required
to assert a model fits well
Until k iterations have occurred
“Draw a sample of n points from the data
uniformly and at random
2.15i| to that set of n points
For each data point outside the sample
5 + Test the distance from the point to the line
against #; if the distance from the point to the line

i csnmiend 3o m]mass
1ie point is ciose

end
“ Ih('l'(‘ are d or more [)()illl:ﬁ (‘](JS(‘ LO lll(' lill(‘
* then there is a good fit. Refit the line using all

t hese_pgints.

end
Use the best fit
fitting er

‘om this collection, using the
as a criterion
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RANSAC: How many samples?

e How many samples are needed?
— Suppose@ fraction of inliers (points from line).
n — n points needed to define hypothesis (2 for lines) [\%

\f') A\ —@mﬁles chosen( | (if sk -‘FF>
W\

00- Prob. that a single sample of n points is correct: w' bk

* Prob. that all £ samples fail is: (14@")"

—> Choose & high enough to keep this below desired failure
rate.

Slide credit: David Lowe
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RANSAC: Computed k@o.%)

Sample ) Proportion of outliers{w)
size (N

n 2% 10% 20% 25% 30% 40% 50%

3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 12

12 17 26 S5/ 146

16 24 37 97 293

20 33 54 163 588

26 44 /8 272 1177

0O N O O & WD
a &~ B W OLODN
© 00 N O 01 b

Slide credit: David Lowe
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After RANSAC

e RANSAC divides data into inliers and outliers and

vields estimate computed from minimal set of inliers.

* |Improve this initial estimate with estimation over all
inliers (e.g. with standard least-squares
minimization).

e But this may change inliers, so alternate fitting with
re-classification as inlier/outlier.
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RANSAC: Pros and Cons

e Pros:

— General method suited for a wide range of model fitting
problems

— Easy to implement and easy to calculate its failure rate

e Cons:

— Only handles a moderate percentage of outliers without
cost blowing up

— Many real problems have high rate of outliers (but
sometimes selective choice of random subsets can help)

e The Hough transform can handle high percentage of
outliers

Fei-Fei Li Lecture 4 -




What we have learned today

"« Edge detection
— Canny edge detector
e Line fitting
— Hough Transform
— RANSAC (Problem Set 2 (Q5))
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Supplementary materials
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Generalized Hough Transform

To detect the model shape in a new image:

 For each edge point
— Index into table with its gradient orientation 6

— Use retrieved r vectors to vote for position of
reference point

e Peak in this Hough space is reference point
with most supporting edges

Assuming translation is the only transformation here, i.e.,
orientation and scale are fixed.
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Kristen Grauman

Slide credit:



Example: Generalized Hough Transform

/< v

Model shape

v

<«

Say we’ve already stored a
table of displacement
vectors as a function of edge
orientation for this model
shape.

Fei-Fei Li

10-Oct-11
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Example: Generalized Hough Transform

e v v

<«

Displacement vectors
for model points =

.

Now we want to look at
some edge points detected
in a new image, and vote on
the position of that shape.

f
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Example: Generalized Hough Transform

e v v

<«

Range of voting
locations for test point =

Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform

e v v

<«

Range of voti
locations for test point

Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform

e v v

<«

Votes for points

with 6 =1 > <«

Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform

e v v

<«

Displacement vectors
for model points

Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform

Range of voting
locations for test point

Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform

Votes for points
with 8 =/

Slide credit: Svetlana Lazebnik
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Extensions to Hough Transform
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Extensions

Extension 1: Use the image gradient

1. Same

2. for each edge point I[x,y] in the image
0= gradient at (x,))
d =xCcosé— ysin@

H[d, 6] +=1
3. same
4, same

(Reduces degrees of freedom)

Slide credit: Kristen Grauman
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Extensions

Extension 1: Use the image gradient
1. same

2. for each edge point |[)C,y] in the image

compute unique (d,6) based on image gradient at (x,))
H[d,0 +=1
3. same
4. same
(Reduces degrees of freedom)

Extension 2
— Give more votes for stronger edges (use magnitude of gradient)

Extension 3

— Change the sampling of (Cl’, 9) to give more/less resolution

Extension 4
— The same procedure can be used with circles, squares, or any other shape...

Fei-Fei Li Lecture 4 - 89 10-Oct-11

Slide credit: Kristen Grauman



Extension: Cascaded Hough Transform

e Let’s go back to the original (m,b) parametrization

 Alinein the image maps to a pencil of lines in the
Hough space

* What do we get with parallel lines or a pencil of
lines?
— Collinear peaks in the Hough space!

 So we can apply a Hough transform to the output
of the first Hough transform to find vanishing
points

T. Tuytelaars, M. Proesmans, L. Van Gool "The cascaded Hough transform”, ICIP’97.

Slide credit: Svetlana Lazebnik
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Cascaded Hough Transform
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Cascadd Hough Transform

G

T. Tuytelaars, M. Proesmans, L. Van Gool "The cascaded Hough transform®”, ICIP’97.
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)* +(y,=b)* =7

e For a fixed radius r, unknown gradient

Slide credit: Kristen Grauman

Image space Hough space a
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)* +(y,=b)* =7

e For a fixed radius r, unknown gradient

Intersection:

most votes for

Y P POTSTRTI "  omr-. S center occur
here. c
; i @©
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Image space Hough space >

Fei-Fei Li Lecture 4 - 95 10-Oct-11




Hough Transform for Circles

e Circle: center (a,b) and radius r
(x, —a)’ +(, -b)* =r°

* For an unknown radius r, unknown gradient direction

A r
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x, —a)’ +(, -b)* =r°

* For an unknown radius r, unknown gradient direction

A r
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x, —a)’ +(, -b)* =r°

 For an unknown radius r, known gradient direction
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Hough Transform for Circles

For every edge pixel (x,») :
For each possible radius value r:

For each possible gradient direction 6:
// or use estimated gradient

a =x—r cos(0)
b=y +rsin(0)
Hla,br] +=1
end
end

Kristen Grauman

Slide credit:
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Example: Detecting Circles with Hough

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.

Slide credit: Kristen Grauman
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