Lecture 17: object detection

Professor Fei-Fei Li
Stanford Vision Lab
Object detection

Detecting rigid objects

Detected non-rigid objects

PASCAL challenge

Medical image analysis

Segmenting cells
What we will learn today?

• Implicit Shape Model
 – Representation
 – Recognition
 – Experiments and results

• Deformable Models
 – The PASCAL challenge
 – Latent SVM Model
What we will learn today?

• Implicit Shape Model
 – Representation
 – Recognition
 – Experiments and results

• Deformable Models
 – The PASCAL challenge
 – Latent SVM Model
Implicit Shape Model (ISM)

• Basic ideas
 – Learn an appearance codebook
 – Learn a star-topology structural model
 • Features are considered independent given obj. center

• Algorithm: probabilistic Gen. Hough Transform
 – Exact correspondences → Prob. match to object part
 – NN matching → Soft matching
 – Feature location on obj. → Part location distribution
 – Uniform votes → Probabilistic vote weighting
 – Quantized Hough array → Continuous Hough space

Source: Bastian Leibe
Implicit Shape Model: Basic Idea

• Visual vocabulary is used to index votes for object position [a visual word = “part”].

Training image

Visual codeword with displacement vectors

Source: Bastian Leibe
Implicit Shape Model: Basic Idea

• Objects are detected as consistent configurations of the observed parts (visual words).

Source: Bastian Leibe

Source: Bastian Leibe
Implicit Shape Model - Representation

- Learn appearance codebook
 - Extract local features at interest points
 - Agglomerative clustering \(\Rightarrow \) codebook

- Learn spatial distributions
 - Match codebook to training images
 - Record matching positions on object

Source: Bastian Leibe
Implicit Shape Model - Recognition

Interest Points → Matched Codebook Entries → Probabilistic Voting

Image Feature
Interpretation (Codebook match)
Object Position

$p(C_i|f)$
$p(o_n, x|C_i, \ell)$

Probabilistic vote weighting
(will be explained later in detail)

[Leibe, Leonardis, Schiele, SLCV'04; IJCV'08]

30-Nov-11 9

Fei-Fei Li
Implicit Shape Model - Recognition

Interest Points → Matched Codebook Entries → Probabilistic Voting

3D Voting Space (continuous)

Backprojected Hypotheses → Backprojection of Maxima

[Leibe, Leonardis, Schiele, SLCV'04; IJCV'08]
Example: Results on Cows
Example: Results on Cows

Interest points

Source: Bastian Leibe
Example: Results on Cows

Matched patches

Source: Bastian Leibe
Example: Results on Cows

Prob. Votes

Source: Bastian Leibe
Example: Results on Cows
Example: Results on Cows

Source: Bastian Leibe

Fei-Fei Li
Lecture 17 - 16
30-Nov-11
Example: Results on Cows
Scale Invariant Voting

- Scale-invariant feature selection
 - Scale-invariant interest points
 - Rescale extracted patches
 - Match to constant-size codebook

- Generate scale votes
 - Scale as 3rd dimension in voting space

 \[
 x_{vote} = x_{img} - x_{occ}(s_{img}/s_{occ}) \\
 y_{vote} = y_{img} - y_{occ}(s_{img}/s_{occ}) \\
 s_{vote} = (s_{img}/s_{occ})
 \]
 - Search for maxima in 3D voting space

Source: Bastian Leibe
Scale Voting: Efficient Computation

- Continuous Generalized Hough Transform
 - Binned accumulator array similar to standard Gen. Hough Transf.
 - Quickly identify candidate maxima locations
 - Refine locations by Mean-Shift search only around those points
 - Avoid quantization effects by keeping exact vote locations.
 - Mean-shift interpretation as kernel prob. density estimation.

Source: Bastian Leibe
Scale Voting: Efficient Computation

- Scale-adaptive Mean-Shift search for refinement
 - Increase search window size with hypothesis scale
 - Scale-adaptive *balloon density estimator*

Source: Bastian Leibe
Detection Results

• Qualitative Performance
 – Recognizes different kinds of objects
 – Robust to clutter, occlusion, noise, low contrast

Source: Bastian Leibe
Figure-Ground Segregation

• What happens first – segmentation or recognition?

• Problem extensively studied in Psychophysics

• Experiments with ambiguous figure-ground stimuli

• Results:
 – Evidence that object recognition can and does operate before figure-ground organization
 – Interpreted as Gestalt cue *familiarity*.

ISM – Top-Down Segmentation

Interest Points → Matched Codebook Entries → Probabilistic Voting

Backprojection of Maxima

3D Voting Space (continuous)

$p(\text{figure})$ Probabilities → Backprojected Hypotheses

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]

Sequestation

detection
Top-Down Segmentation: Motivation

- Secondary hypotheses ("mixtures of cars/cows/etc.")
 - Desired property of algorithm! \Rightarrow robustness to occlusion
 - Standard solution: reject based on bounding box overlap
 \Rightarrow Problematic - may lead to missing detections!

Source: Bastian Leibe
Top-Down Segmentation: Motivation

- Secondary hypotheses (“mixtures of cars/cows/etc.”)
 - Desired property of algorithm! ⇒ robustness to occlusion
 - Standard solution: reject based on bounding box overlap
 ⇒ Problematic - may lead to missing detections!
 ⇒ Use segmentations to resolve ambiguities instead.
 - Basic idea: each observed pixel can only be explained by (at most) one detection.
Segmentation: Probabilistic Formulation

- Influence of patch on object hypothesis (vote weight)

\[
p(f, \ell | o_n, x) = \sum_i p(o_n, x | C_i) p(C_i | f) p(f, \ell) / p(o_n, x)
\]

Backprojection to features \(f\) and pixels \(p\):

\[
p(p = \text{figure} | o_n, x) = \sum_{p \in (f, \ell)} p(p = \text{figure} | f, \ell, o_n, x) p(f, \ell | o_n, x)
\]

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]

Fei-Fei Li

Lecture 17 - 26

30-Nov-11
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

Image Feature f Codebook matches Object location

at location ℓ

- $p(C_i|f)$
- $p(o_n,x|C_i,\ell)$

Matching probability Occurrence distribution

[Leibe, Leonardis, Schiele, SLCV'04; IJCV'08]
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f
 - Probability that object o_n occurs at location x given (f, ℓ)

 $$ p(o_n, x|f, \ell) = \sum_i p(C_i|f) \cdot p(o_n, x|C_i, \ell) $$

 Matching probability
 Occurrence distribution
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f
 - Probability that object o_n occurs at location x given (f, ℓ)
 \[
 p(o_n, x|f, \ell) = \sum_i p(C_i|f)p(o_n, x|C_i, \ell)
 \]
 - How to measure those probabilities?
 \[
 p(C_i|f) = \frac{1}{|C|}, \quad \text{where} \quad C = \{C_i | d(C_i, f) \leq \theta\}
 \]
 \[
 p(o_n, x|C_i, \ell) = \frac{1}{\text{#occurrences}(C_i)}
 \]
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f
 - Probability that object o_n occurs at location x given (f, ℓ)
 \[
 p(o_n, x|f, \ell) = \sum_i p(C_i|f) \cdot p(o_n, x|C_i, \ell)
 \]
 - Likelihood of the observed features given the object hypothesis
 \[
 p(f, \ell | o_n, x) = \frac{p(o_n, x|f, \ell) \cdot p(f, \ell)}{p(o_n, x)} = \sum_i p(o_n, x|C_i, \ell) \cdot p(C_i|f) \cdot p(f, \ell) \cdot p(o_n, x)
 \]

 $p(f, \ell)$: Indicator variable for sampled features
 $p(o_n, x)$: Prior for the object location
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

$$p(f, \ell | o_n, x) = \frac{p(o_n, x | f, \ell) p(f, \ell)}{p(o_n, x)} = \sum_i p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)$$
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

$$p(f, \ell | o_n, x) = \frac{p(o_n, x | f, \ell) p(f, \ell)}{p(o_n, x)} = \sum_i p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)$$
Derivation: ISM Recognition

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

$$p(f,\ell | o_n, x) = \frac{p(o_n, x | f, \ell) p(f, \ell)}{p(o_n, x)} = \sum_i p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell) \frac{p(o_n, x)}{p(o_n, x)}$$
Derivation: ISM Top-Down Segmentation

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

$$p(f, \ell | o_n, x) = \frac{p(o_n, x | f, \ell) p(f, \ell)}{p(o_n, x)} = \sum_i \frac{p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)}{p(o_n, x)}$$

- Figure-ground backprojection

$$p(p = \text{figure} | o_n, x, f, C_i, \ell) = \frac{p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)}{p(o_n, x)}$$

\[\text{Fig./Gnd. label for each occurrence}\]
\[\text{Influence on object hypothesis}\]
Derivation: ISM Top-Down Segmentation

- **Algorithm stages**
 1. Voting
 2. Mean-shift search
 3. Backprojection

- **Vote weights**: contribution of a single feature f

\[
p(f, \ell | o_n, x) = \frac{\sum_i p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)}{p(o_n, x)}
\]

- **Figure-ground backprojection**

\[
p(p = \text{figure} | o_n, x, f, \ell) = \sum_i p(p = \text{fig.} | o_n, x, C_i, \ell) \frac{p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell)}{p(o_n, x)}
\]

Marginalize over all codebook entries matched to f

Fig./Gnd. label for each occurrence

Influence on object hypothesis
Derivation: ISM Top-Down Segmentation

- Algorithm stages
 1. Voting
 2. Mean-shift search
 3. Backprojection

- Vote weights: contribution of a single feature f

$$ p(f, \ell | o_n, x) = \frac{p(o_n, x | f, \ell) p(f, \ell)}{p(o_n, x)} = \sum_i p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell) \frac{p(o_n, x) p(o_n, x)}{p(o_n, x)} $$

- Figure-ground backprojection

$$ p(p = \text{figure} | o_n, x) = \sum_{p \in (f, \ell)} \sum_i p(p = \text{fig.} | o_n, x, C_i, \ell) p(o_n, x | C_i, \ell) p(C_i | f) p(f, \ell) \frac{p(o_n, x) p(o_n, x)}{p(o_n, x)} $$

Marginalize over all features containing pixel p
Top-Down Segmentation Algorithm

Algorithm 5 The top-segmentation algorithm.

// Given: hypothesis \(h \) and supporting votes \(\mathcal{V}_h \).
for all supporting votes \((x, w, \text{occ}, \ell) \in \mathcal{V}_h\) do
 Let \(img_{mask} \) be the segmentation mask corresponding to \text{occ}.
 Let \(sz \) be the size at which the interest region \(\ell \) was sampled.
 Rescale \(img_{mask} \) to \(sz \).
 \(u_0 \leftarrow (\ell_x - \frac{1}{2}sz) \)
 \(v_0 \leftarrow (\ell_y - \frac{1}{2}sz) \)
 for all \(u \in [0, sz - 1] \) do
 for all \(v \in [0, sz - 1] \) do
 \(img_{pfig}(u - u_0, v - v_0) += w \cdot img_{mask}(u, v) \)
 \(img_{pgnd}(u - u_0, v - v_0) += w \cdot (1 - img_{mask}(u, v)) \)
 end for
 end for
end for

- This may sound quite complicated, but it boils down to a very simple algorithm...
Segmentation

- Interpretation of $p(\text{figure})$ map
 - per-pixel confidence in object hypothesis
 - Use for hypothesis verification

Original image
$p(\text{figure})$
$p(\text{ground})$

Segmentation

$\frac{p(\text{figure})}{p(\text{ground})}$
Example Results: Motorbikes

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Example Results: Cows

- **Training**
 - 112 hand-segmented images

- **Results on novel sequences:**

Single-frame recognition - No temporal continuity used!

[Leibe, Leonardis, Schiele, SLAV'04; IJCV'08]
Example Results: Chairs

Office chairs

Dining room chairs

Source: Bastian Leibe
Detections Using Ground Plane Constraints

Battery of 5 ISM detectors for different car views

[Leibe, Leonardis, Schiele, SLCV'04; IJCV'08]

left camera 1175 frames

Fei-Fei Li
Inferring Other Information: Part Labels (1)
Inferring Other Information: Part Labels (2)

Grab area Wheels Armrests Seat Frame Background

Test image

Result

[Thomas, Ferrari, Tuytelaars, Leibe, Van Gool, 3DRR'07; RSS'08]
Inferring Other Information: Depth Maps

“Depth from a single image”

[Thomas, Ferrari, Tuytelaars, Leibe, Van Gool, 3DRR'07; RSS'08]
Extension: Estimating Articulation

• Try to fit silhouette to detected person

• Basic idea
 – Search for the silhouette that simultaneously optimizes the
 • Chamfer match to the distance-transformed edge image
 • Overlap with the top-down segmentation
 – Enforces global consistency
 – Caveat: introduces again reliance on global model

[Leibe, Seemann, Schiele, CVPR’05]
Extension: Rotation-Invariant Detection

• Polar instead of Cartesian voting scheme

 ![Diagram showing polar representation](image)

• Benefits:
 – Recognize objects under image-plane rotations
 – Possibility to share parts between articulations.

• Caveats:
 – Rotation invariance should only be used when it’s really needed.
 (Also increases false positive detections)

[Mikolajczyk, Leibe, Schiele, CVPR’06]
Sometimes, Rotation Invariance Is Needed...

[Mikolajczyk et al., CVPR’06]
You Can Try It At Home...

- Linux binaries available
 - Including datasets & several pre-trained detectors
 - http://www.vision.ee.ethz.ch/bleibe/code

Source: Bastian Leibe
Discussion: Implicit Shape Model

• **Pros:**
 – Works well for many different object categories
 • Both rigid and articulated objects
 – Flexible geometric model
 • Can recombine parts seen on different training examples
 – Learning from relatively few (50-100) training examples
 – Optimized for detection, good localization properties

• **Cons:**
 – Needs supervised training data
 • Object bounding boxes for detection
 • Reference segmentations for top-down segm.
 – Only weak geometric constraints
 • Result segmentations may contain superfluous body parts.
 – Purely representative model
 • No discriminative learning

Source: Bastian Leibe
What we will learn today?

• Implicit Shape Model
 – Representation
 – Recognition
 – Experiments and results

• Deformable Models
 – The PASCAL challenge
 – Latent SVM Model
Object Detection
– the PASCAL Challenge

• ~10,000 images, with ~25,000 target objects.
 – Objects from 20 categories (person, car, bicycle, cow, table...).
 – Objects are annotated with labeled bounding boxes.
Latent SVM Model: an Overview

- detection
- root filter
- part filters
- deformation models

Very similar to the constellation model

Source: Pedro Felzenswalb
Histogram of Oriented Gradient (HOG) Features

- Image is partitioned into 8x8 pixel blocks.
- In each block we compute a histogram of gradient orientations.
 - **Invariant** to changes in lighting, small deformations, etc.
- We compute features at different resolutions (pyramid).

Source: Pedro Felzenswalb
Filters

- Filters are rectangular templates defining weights for features.
- Score is dot product of filter and subwindow of HOG pyramid.

\[\text{Score of } H \text{ at this location is } H \cdot W \]

Source: Pedro Felzenswalb
Object Hypothesis

Multiscale model captures features at two-resolutions

Score is sum of filter scores plus deformation scores
Training the Latent SVM Model

- Training data consists of images with labeled bounding boxes.
- Need to learn the model structure, filters and deformation costs.
Connection with Linear Classifiers

• Score of model is sum of filter scores plus deformation scores
 – Bounding box in training data specifies that the score should be high for some placement in a range

\[f_w(x) = w \cdot \Phi(x) \]

- **Standard SVM**
 - **Weight vector**
 - **Features**

\[f_w(x) = \max_z w \cdot \Phi(x, z) \]

- **Latent SVM**
 - **Concatenation of filters and deformation parameters**
 - **Concatenation of features and part displacements**

\[w \text{ is a model} \]
\[x \text{ is a detection window} \]
\[z \text{ are filter placements} \]
Latent SVM Training

\[f_w(x) = \max_z w \cdot \Phi(x, z) \]

- Semi-convex optimization problem
 - \(f_w(x) = \max_z w \cdot \Phi(x, z) \) is convex in \(w \)
 - convex if we fix \(z \) for positive examples

- Iterative optimization procedure:
 - Initialize \(w \)
 - Iterate:
 - Pick best \(z \) for each positive example
 - Optimize \(w \) via gradient descent with data mining
Latent SVM Training: Initializing w

• For k component mixture model:
 – Split examples into k sets based on bounding box aspect ratio

• Learn k root filters using standard SVM
 – Training data: Warped positive examples and random windows from negative images (Dalal & Triggs)

• Initialize parts by selecting patches from root filters:
 – Sub-windows with strong coefficients
 – Interpolate to get higher resolution filters
 – Initialize spatial model using fixed spring constants
Learned Models
Example Results
More Results
Quantitative Results

- 9 systems competed in the 2007 challenge.
- Out of 20 classes:
 - First place in 10 classes
 - Second place in 6 classes
- Some statistics:
 - It takes \(~2\) seconds to evaluate a model in one image.
 - It takes \(~3\) hours to train a model.
 - MUCH faster than most systems.

Source: Pedro Felzenswalb
Code for Latent SVM

Source code for the system and models trained on PASCAL 2006, 2007 and 2008 data are available at:

http://www.cs.uchicago.edu/~pff/latent

Source: Pedro Felzenswalb
Summary

• Deformable models provide an elegant framework for object detection and recognition.
 – Efficient algorithms for matching models to images.
 – Applications: pose estimation, medical image analysis, object recognition, etc.

• We can learn models from partially labeled data.
 – Generalized standard ideas from machine learning.
 – Leads to state-of-the-art results in PASCAL challenge.

• Future work: hierarchical models, grammars, 3D objects.

Source: Pedro Felzenswalb
What we have learned today

• Implicit Shape Model
 – Representation
 – Recognition
 – Experiments and results

• Deformable Models
 – The PASCAL challenge
 – Latent SVM Model