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What we will learn today?

e Introduction

e Optical flow

e Feature tracking

* Applications
 (Problem Set 3 (Q1))
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From images to videos

e Avideo is a sequence of frames captured over time
e Now our image data is a function of space (x, y) and time (t)

— I(x,y,1)
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Motion estimation techniques

e Optical flow

— Recover image motion at each pixel from spatio-temporal
image brightness variations (optical flow)

e Feature-tracking

— Extract visual features (corners, textured areas) and “track”
them over multiple frames
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Optical flow

Vector field function of the
spatio-temporal image
brightness variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
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Feature-tracking
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Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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Optical flow

e Definition: optical flow is the apparent motion of
brightness patterns in the image

 Note: apparent motion can be caused by lighting
changes without any actual motion

— Think of a uniform rotating sphere under fixed lighting
vS. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from
optical flow

‘ Source: Silvio Savarese
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Estimating optical flow

0/ ) Q °
N, .
o—» 0 ; (@) .
1(x,y,t-1) 1(X,y,1)

* Given two subsequent frames, estimate the apparent motion field
u(x,y), v(x,y) between them

e Key assumptions

e Brightness constancy: projection of the same point looks the same in
every frame

e Small motion: points do not move very far
e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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The brightness constancy constraint

(z,y)
O\dlsplacement = (u,v)

(z -I(3 u,y + v)
[(x,y,t=1) [(X,y,1)

* Brightness Constancy Equation:
(X, y,t=1) = 1 (X+u(x,y), Yy +V(x, y),t)

Linearizing the right side using Taylor expansion:

...... l.mage derivative along x

| (X+u,y+u,t)= (X, y,1- 1)+I u(x y)+ 1, -v(X, y)+|
| (X+u,y+u,t)—1(x,y,t— 1)_I u(x,y)+ly-v(x,y)+lt

‘ Source: Silvio Savarese

)
Hence, I -u+l, v+l =0 —VI-{uv] +1 =0
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The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each
pixel?

VI-uv]' +1,=0

* How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e.,
parallel to the edge) cannot be measured

gradient

- . (u,v)
If (u, v) satisfies the equation,

so does (u+u’, v+v’) if
vi-uv] =0

(u+u’,v+v’)

edge

‘ Source: Silvio Savarese
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The aperture problem

\ Actual motion

‘ Source: Silvio Savarese
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The aperture problem

Perceived motion

‘ Source: Silvio Savarese

Fei-Fei Li Lecture 13 - 13 5-Nov-11



The barber pole illusion

’,

http://en.wikipedia.org/wiki/Barberpole illusion

‘ Source: Silvio Savarese
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The barber pole illusion

‘ Source: Silvio Savarese

http://en.wikipedia.org/wiki/Barberpole illusion
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Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the
International Joint Conference on Artificial Intelligence, pp. 674—679, 1981.

e How to get more equations for a pixel?
e Spatial coherence constraint:
e Assume the pixel’s neighbors have the same (u,v)

— If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(p;) + VI(py) - [u v]

- I(p1) ILy(p1) - Li(p1) %
Iz(p2) Iy(p2) w | _ | l(p2) 3

: : V : =
Iz(p25) Iy(p2s) | | 1t(P2s5) :

Fei-Fei Li Lecture 13- 17 5-Nov-11



Lucas-Kanade flow

e Qverconstrained linear system:

- L(p1) Iy(p1) - Ii(p1) |
I(p2)  Iy(p2) { U ] _ | 1i(p2) A d=0b
: : Y : 25x2 2x1 2bx1
| Ix(p2s) Iy(p2s) | | Ii(p2s) |

‘ Source: Silvio Savarese
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Conditions for solvability

e When is this system solvable?

e What if the window contains just a single straight edge?

‘ Source: Silvio Savarese
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Lucas-Kanade flow

e Overconstrained linear system

- L(p1) Iy(p1) - Ii(p1) |
I(p2)  Iy(p2) { U ] _ | 1i(p2) A d=0b
: : Y : 25x2 2x1 2bx1
| Ix(p2s) Iy(p2s) | | Ii(p2s) |

Least squares solution for d given by (ATA) d= A'b

[ZILBIZB ZIa:Iy] [U] _ { ZI:cIt]
S LI, SLIL | |v| T | LI

AT A Alp

The summations are over all pixels in the K x K window

‘ Source: Silvio Savarese
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Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation

Do dxdy ) Ixly w| | ey
/ > Ixly > Iyly v | > Iyly

AT A Alp

When is This Solvable?

e A'A should be invertible
e A'A should not be too small due to noise

— eigenvalues A, and A , of ATA should not be too small
e A'A should be well-conditioned

— A/ A, should not be too large (A , = larger eigenvalue)

\ Does this remind anything to you?

‘ Source: Silvio Savarese
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M = A'A is the second moment matrix !
(Harris corner detector...)

T. | SLI, SLIy | I . T
Al A = [ZLBIy Zlyfz] _Z[Iy][fxfy]—ZVI(VI)

e Eigenvectors and eigenvalues of A'A relate to edge
direction and magnitude

e The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change

e The other eigenvector is orthogonal to it

‘ Source: Silvio Savarese
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Interpreting the eigenvalues

Classification of image points using eigenvalues of the
second moment matrix:

Ay

‘ Source: Silvio Savarese
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S vivn!
— gradients very large or very small
—large A, small A,

‘ Source: Silvio Savarese
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Low-texture region

Novi(viy?!
— gradients have small magnitude
—small A, small A,

‘ Source: Silvio Savarese
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High-texture region

Nvi(vn?t
— gradients are different, large magnitudes
—large A, large A,

‘ Source: Silvio Savarese
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What are good features to track?

e Can measure “quality” of features from just a
single image

Hence: tracking Harris corners (or equivalent)
guarantees small error sensitivity!

- Implemented in Open CV

‘ Source: Silvio Savarese
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Revisiting the small motion assumption

ST

0

~ .

- L
o~

e |s this motion small enough?

— Probably not—it’s much larger than one pixel (2" order terms dominate)
— How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Fei-Fei Li Lecture 13 - 30 5-Nov-11




Multi-resolution Lucas Kanade Algorithm

 Compute ‘simple” LK at highest level
o Atlevel i

Take tlow u, ,, v, | from level i-1

* bilinear mtelpolate it to create u,”
matrices of twice resolution for Ie\ el ]

multiply «, ", v,” by 2

compute, f, from a block displaced by
u, (x, ). v, (x, )

Apply LI\ to get u, (x, v). v, (x, v) (the
correction in flow)

Add corrections u,'v,’, i.e. u, = u, + u,’

‘ Source: Silvio Savarese
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Coarse-to-fine optical flow estimation
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Gaussian pyramid of image 2

‘ Source: Silvio Savar

Gaussian pyramid of image 1
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Iterative Refinement

 |terative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field
- use image warping techniques

3. Repeat until convergence

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Coarse-to-fine optical flow estimation
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Optical Flow Results

[.ucas-Kanade
without pyramids

1 iR

Fails in areas of large
Moton

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results
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e http://www.ces.clemson.edu/~stb/klt/
* OpenCV

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Motion segmentation

e How do we represent the motion in this scene?
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‘ Source: Silvio Savarese
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Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

 Break image sequence into “layers” each of which has a
coherent (affine) motion
2|

Fei-Fei Li Lecture 13 - 39
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What are layers?

e Each layer is defined by an alpha mask and an affine motion model

— \
—_ —
- - -~
(a) A (b)
Moving Hand Background

(c)

-~

Frame 1 Frame 2 Frame 2

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

‘ Source: Silvio Savarese
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Affine motion
u(x,y)=a,+a,x+a,y
v(X,y)=a, +a;x+a.y

e Substituting into the brightness constancy
equation:

l-u+l, -v+1 =0

‘ Source: Silvio Savarese
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Affine motion
u(x,y)=a,+a,x+a,y
v(X,y)=a, +a;x+a.y

e Substituting into the brightness constancy
equation:

| (@, +a,x+azy)+1 (a, +ax+agy)+ 1, =0

e Each pixel provides 1 linear constraint in 6 unknowns

e |east squares minimization:

Err(@) =Y [1,(a, +a,x+ay) + 1, (a, +ax+ay) +1,]

Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

Fei-Fei Li Lecture 13 - 43 5-Nov-11
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

2. Iterate until convergence:
eAssign each pixel to best hypothesis

—Pixels with high residual error remain unassigned

‘ Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene
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‘ Source: Silvio Savarese
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How do we estimate the layers?

e 1. 0Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

2. Iterate until convergence:
eAssign each pixel to best hypothesis

—Pixels with high residual error remain unassigned
ePerform region filtering to enforce spatial constraints
eRe-estimate affine motions in each region

‘ Source: Silvio Savarese
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J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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Tracking

‘ Sources: Kristen Grauman, Deva Ramanan
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What we will learn today?

e Feature tracking
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Motion estimation techniques

e Optical flow

— Recover image motion at each pixel from spatio-
temporal image brightness variations (optical flow

e Feature-tracking

— Extract visual features (corners, textured areas) and
“track” them over multiple frames

e Shi-Tomasi feature tracker
e Tracking with dynamics

‘ Source: Silvio Savarese
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Feature tracking

e So far, we have only considered optical flow estimation in
a pair of images

e |If we have more than two images, we can compute the
optical flow from each frame to the next

e Given a point in the first image, we can in principle
reconstruct its path by simply “following the arrows”

‘ Source: Silvio Savarese
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Tracking challenges

 Ambiguity of optical flow
— Find good features to track

 Large motions

— Discrete search instead of Lucas-Kanade

 Changes in shape, orientation, color

— Allow some matching flexibility

e QOcclusions, dis-occlusions

— Need mechanism for deleting, adding new features

e Drift — errors may accumulate over time

— Need to know when to terminate a track

‘ Source: Silvio Savarese
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Shi-Tomasi feature tracker

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

e Find good features using eigenvalues of second-moment
matrix

—  Key idea: “good” features to track are the ones that can be tracked
reliably

e From frame to frame, track with Lucas-Kanade and a
pure translation model

—  More robust for small displacements, can be estimated from smaller
neighborhoods

e Check consistency of tracks by affine registration to the
first observed instance of the feature

—  Affine model is more accurate for larger displacements
—  Comparing to the first frame helps to minimize drift

‘ Source: Silvio Savarese
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Fei-Fei Li

Tracking example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1Ist, 11th, and
21st frames of a subsequence from the movie.

HEEEE
| 2 2 3=

Figure 2: The traffic sign windows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).

—
L ——
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Tracking with dynamics

e Key idea: Given a model of expected motion,
predict where objects will occur in next frame,
even before seeing the image

— Restrict search for the object

— Improved estimates since measurement noise is
reduced by trajectory smoothness

‘ Source: Silvio Savarese
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Tracking with dynamics

Initial position prediction  measurement update

Yt Vi y

. O O ®

X

A

<

XV
><V
><V

The Kalman filter:

Method for tracking linear dynamical models in Gaussian noise

The predicted/corrected state distributions are Gaussian
e Need to maintain the mean and covariance
e (Calculations are easy (all the integrals can be done in closed form)

‘ Source: Silvio Savarese
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2D Target tracking using Kalman filter in MATLAB
by AliReza KashaniPour

http://www.mathworks.com/matlabcentral/fileexchange/14243

‘ Source: Silvio Savarese
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What we will learn today?

* Applications
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Uses of motion

* Tracking features
 Segmenting objects based on motion cues
* Learning dynamical models
 Improving video quality
— Motion stabilization
— Super resolution

* Tracking objects
 Recognizing events and activities
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stimating 3D structure

Savarese

10

Silvi

Source
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Segmenting objects based on motion cues

e Background subtraction
— A static camera is observing a scene

— Goal: separate the static background from the moving foreground

‘ Source: Silvio Savarese
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Segmenting objects based on motion cues

* Motion segmentation
— Segment the video into multiple coherently moving objects

_____

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed,
Proceedings of the British Machine Vision Conference (BMVC) 2006

‘ Source: Silvio Savarese
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Tracking objects

—
. I\

Sphere

L

ZYin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern
Recognition (CVPR '07), Minneapolis, MN, June 2007.

Fei-Fei Li
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Synthesizing dynamic textures

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002

Original Synthesized
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Super-resolution

Example: A set of low
quality images

Fei-Fei Li
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Super-resolution

Each of these images looks  MsL ¢ Ehier bl dala o
ke this: coneple: of cxeeptions. 1
la-temiperatnre salde
tntvestimated (ar some
EnAarndacinring? b
pmrwellmy af Jn105
mbcrestnaciural coarse
mitd rycling o FasThdZS

‘ Source: Silvio Savarese

Fei-Fei Li Lecture 13 - 66 5-Nov-11



Super-resolution

ost of the test data o
ouple of exceptions.
ow-temperature solde
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microstructural coarse
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The recovery result:

‘ Source: Silvio Savarese
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Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

‘ Source: Silvio Savarese
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Recognizing events and activities

Crossing — Talking — Queuing — Dancing — jogging

W. Choi & K. Shahid & S. Savarese WMC 2010

‘ Source: Silvio Savarese
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Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using
Spatial-Temporal Words, (BMVC), Edinburgh, 2006.
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among
People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09
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Optical flow without motion!




What we have learned today?

e Introduction

e Optical flow

e Feature tracking

* Applications
 (Problem Set 3 (Q1))
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